1
|
Zhou Q, Wang T, Liu L, Kong Y, Liu Y, Wu W, Diao X. Special Characterization and Excellent Antioxidant Capabilities of Zinc Chelated Squid Protein Nanoparticles. Foods 2025; 14:1789. [PMID: 40428568 PMCID: PMC12110907 DOI: 10.3390/foods14101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
The functional exploration of marine-derived proteins is at the forefront of nutritional research. The Argentine squid protein (ASP) was extracted from Argentine squid carcasses and was hydrolyzed using neutral protease, with the degree of hydrolysis serving as the response variable. Using single-factor experiments and response surface methodology, we identified optimal conditions for preparing Argentine squid protein peptides (ASPP). The hydrolysis degree reached 41.32% ± 0.27 under the conditions of 7% enzyme preparation addition, 2.4 h enzyme digestion time, and 6% substrate concentration. The ASPP was subsequently chelated with zinc sulfate to produce Zn-ASPP, whose structural and functional properties-including particle size, FTIR, DSC, viscosity, SEM, solubility, emulsibility, foamability, and antioxidant capacity-were systematically characterized. The results indicate that Zn-ASPP forms stable nanoparticles with strong antioxidant activity. The strongest antioxidant capacity reached 73.79% at a solution pH of 8, making it particularly valuable for food industry applications. This work may provide a theoretical basis and practical guidance for the development of zinc-fortified marine protein supplements with enhanced antioxidant properties.
Collapse
Affiliation(s)
- Qiyi Zhou
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Q.Z.); (T.W.); (L.L.); (Y.K.); (Y.L.)
- Putuo Sub-Center of International Joint Research Center for Marine Biological Sciences, Zhongke Road, Putuo District, Zhoushan 316104, China
| | - Tianming Wang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Q.Z.); (T.W.); (L.L.); (Y.K.); (Y.L.)
| | - Lixin Liu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Q.Z.); (T.W.); (L.L.); (Y.K.); (Y.L.)
- Putuo Sub-Center of International Joint Research Center for Marine Biological Sciences, Zhongke Road, Putuo District, Zhoushan 316104, China
| | - Yaqi Kong
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Q.Z.); (T.W.); (L.L.); (Y.K.); (Y.L.)
- Putuo Sub-Center of International Joint Research Center for Marine Biological Sciences, Zhongke Road, Putuo District, Zhoushan 316104, China
| | - Yifan Liu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Q.Z.); (T.W.); (L.L.); (Y.K.); (Y.L.)
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Q.Z.); (T.W.); (L.L.); (Y.K.); (Y.L.)
| | - Xiaozhen Diao
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Q.Z.); (T.W.); (L.L.); (Y.K.); (Y.L.)
| |
Collapse
|
2
|
Rana A, Katiyar A, Arun A, Berrios JN, Kumar G. Natural sulfur compounds in mental health and neurological disorders: insights from observational and intervention studies. Front Nutr 2025; 12:1534000. [PMID: 40271431 PMCID: PMC12014460 DOI: 10.3389/fnut.2025.1534000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Over the years, the global disease burden of neurological disorders (NDs) and mental disorders (MDs) has significantly increased, making them one of the most critical concerns and challenges to human health. In pursuit of novel therapies against MD and ND, there has been a growing focus on nutrition and health. Dietary sulfur, primarily derived from various natural sources, plays a crucial role in numerous physiological processes, including brain function. This review offers an overview of the chemical composition of several natural sources of the sulfur-rich substances such as isothiocyanates, sulforaphane, glutathione, taurine, sulfated polysaccharides, allyl sulfides, and sulfur-containing amino acids, all of which have neuroprotective properties. A multitude of studies have documented that consuming foods that are high in sulfur enhances brain function by improving cognitive parameters and reduces the severity of neuropathology by exhibiting antioxidant and anti-inflammatory properties at the molecular level. In addition, the growing role of natural sulfur compounds in repairing endothelial dysfunction, compromising blood-brain barrier and improving cerebral blood flow, are documented here. Furthermore, this review covers the encouraging results of supplementing sulfur-rich diets in many animal models and clinical investigations, along with their molecular targets in MD, such as schizophrenia, depression, anxiety, bipolar disorder, and autism spectrum disorder, and ND, such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS). The prospects of natural sulfur compounds show great promise as they have potential applications in nutraceuticals, medicines, and functional foods to enhance brain function and prevent diseases. However, additional research is required to clarify the mechanisms by which it works, enhance its bioavailability, and evaluate its long-term safety for broad use.
Collapse
Affiliation(s)
- Apeksha Rana
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| | - Ashutosh Katiyar
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| | - Alok Arun
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR, United States
- Department of Biological Sciences, California State University, Turlock, CA, United States
| | - Juan Negron Berrios
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR, United States
| | - Gaurav Kumar
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| |
Collapse
|
3
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Li Y, Gao YN, Zhu YB, Lu WF, Yu JY, Dong YY, Xu MY, Peng B, Wu JZ, Su Q, Bai J, Shi XL, Kang YM, Li HB, Xu ML. Taurocholic acid ameliorates hypertension through the activation of TGR5 in the hypothalamic paraventricular nucleus. Food Funct 2024; 15:5088-5102. [PMID: 38666497 DOI: 10.1039/d4fo00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.
Collapse
Affiliation(s)
- Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Ya-Nan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Ying-Bao Zhu
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Wen-Fang Lu
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yuan-Yuan Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Meng-Yue Xu
- The Second Clinical College of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Bo Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Jun-Zhe Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Juan Bai
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Meng-Lu Xu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China.
| |
Collapse
|
6
|
Tamman AJF, Abdallah CG. Ultrahigh-Field Magnetic Resonance Spectroscopy Findings Do Not Support Previous Brain Metabolite Findings in Major Depressive Disorder. Biol Psychiatry 2024; 95:385-386. [PMID: 38325915 DOI: 10.1016/j.biopsych.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Affiliation(s)
- Amanda J F Tamman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Chadi G Abdallah
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas; Yale School of Medicine, New Haven, Connecticut; Michael E. DeBakey VA Medical Center, Houston, Texas; U.S. Department of Veterans Affairs, National Center for PTSD - Clinical Neurosciences Division, West Haven, Connecticut; Core for Advanced Magnetic Resonance Imaging, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
7
|
Li Y, Li L, Wei S, Yao J, Liang B, Chu X, Wang L, Liu H, Liao D, Liu D, Jiang P. Integrating transcriptomics and metabolomics to elucidate the mechanism by which taurine protects against DOX-induced depression. Sci Rep 2024; 14:2686. [PMID: 38302509 PMCID: PMC10834502 DOI: 10.1038/s41598-023-51138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Doxorubicin (DOX) is an effective anticancer drug with potent antitumour activity. However, the application of DOX is limited by its adverse reactions, such as depression. Taurine can alleviate depression induced by multiple factors. However, it is still unclear whether and how taurine improves DOX-induced depression. To address this question, the aim of this study was to explore the potential mechanism by which taurine protects against DOX-induced depression. Mice were randomly divided into three groups (n = 8): (1) the control group, (2) the DOX group, and (3) the DOX + taurine group. The open field test (OFT), elevated plus maze test, and forced swim test (FST) were first performed to assess the effects of DOX and taurine on the behaviour of mice. Next, a combined transcriptomic and metabolomic analysis was performed to analyse the possible antidepressive effect of taurine. Taurine pretreatment increased the total distance travelled and speed of mice in the OFT, increased the number of entries into the open arm and the time spent in the open arm, and reduced the immobility time in the FST. In addition, 179 differential genes and 51 differentially abundant metabolites were detected in the DOX + taurine group compared to the DOX group. Furthermore, differential genes and differentially abundant metabolites were found to be jointly involved in 21 pathways, which may be closely related to the antidepressant effect of taurine. Taurine alleviated DOX-induced depressive behaviour. The various pathways identified in this study, such as the serotonergic synapse and the inflammatory mediator regulation of TRP channels, may be key regulatory pathways related to depression and antidepressant effects.
Collapse
Affiliation(s)
- Yanan Li
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Luxi Li
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Jia Yao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Lei Wang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Hui Liu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Daotong Liu
- Department of Breast and Thyroid Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, China.
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China.
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China.
| |
Collapse
|
8
|
Jangra A, Gola P, Singh J, Gond P, Ghosh S, Rachamalla M, Dey A, Iqbal D, Kamal M, Sachdeva P, Jha SK, Ojha S, Kumar D, Jha NK, Chopra H, Tan SC. Emergence of taurine as a therapeutic agent for neurological disorders. Neural Regen Res 2024; 19:62-68. [PMID: 37488845 PMCID: PMC10479846 DOI: 10.4103/1673-5374.374139] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
Taurine is a sulfur-containing, semi-essential amino acid that occurs naturally in the body. It alternates between inflammation and oxidative stress-mediated injury in various disease models. As part of its limiting functions, taurine also modulates endoplasmic reticulum stress, Ca2+ homeostasis, and neuronal activity at the molecular level. Taurine effectively protects against a number of neurological disorders, including stroke, epilepsy, cerebral ischemia, memory dysfunction, and spinal cord injury. Although various therapies are available, effective management of these disorders remains a global challenge. Approximately 30 million people are affected worldwide. The design of taurine formation could lead to potential drugs/supplements for the health maintenance and treatment of central nervous system disorders. The general neuroprotective effects of taurine and the various possible underlying mechanisms are discussed in this review. This article is a good resource for understanding the general effects of taurine on various diseases. Given the strong evidence for the neuropharmacological efficacy of taurine in various experimental paradigms, it is concluded that this molecule should be considered and further investigated as a potential candidate for neurotherapeutics, with emphasis on mechanism and clinical studies to determine efficacy.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Priyanka Gola
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Jiten Singh
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Pooja Gond
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Swarnabha Ghosh
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Ho KM, Lee A, Wu W, Chan MT, Ling L, Lipman J, Roberts J, Litton E, Joynt GM, Wong M. Flattening the biological age curve by improving metabolic health: to taurine or not to taurine, that' s the question. J Geriatr Cardiol 2023; 20:813-823. [PMID: 38098466 PMCID: PMC10716614 DOI: 10.26599/1671-5411.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
The aging population is an important issue around the world especially in developed countries. Although medical advances have substantially extended life span, the same cannot be said for the duration of health span. We are seeing increasing numbers of elderly people who are frail and/or have multiple chronic conditions; all of these can affect the quality of life of the elderly population as well as increase the burden on the healthcare system. Aging is mechanistically related to common medical conditions such as diabetes mellitus, ischemic heart disease, cognitive decline, and frailty. A recently accepted concept termed 'Accelerated Biological Aging' can be diagnosed when a person's biological age-as measured by biomarkers of DNA methylation-is older than their corresponding chronological age. Taurine, a conditionally essential amino acid, has received much attention in the past few years. A substantial number of animal studies have provided a strong scientific foundation suggesting that this amino acid can improve cellular and metabolic health, including blood glucose control, so much that it has been labelled one of the 'longevity amino acids'. In this review article, we propose the rationale that an adequately powered randomized-controlled-trial (RCT) is needed to confirm whether taurine can meaningfully improve metabolic and microbiome health, and biological age. This trial should incorporate certain elements in order to provide the much-needed evidence to guide doctors, and also the community at large, to determine whether this promising and inexpensive amino acid is useful in improving human metabolic health.
Collapse
Affiliation(s)
- Kwok M. Ho
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
- School of Veterinary & Life Sciences, Murdoch University, Perth, Australia
| | - Anna Lee
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - William Wu
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T.V. Chan
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Lowell Ling
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jeffrey Lipman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Jason Roberts
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Edward Litton
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Gavin M. Joynt
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Martin Wong
- JC School of Public Health and Primary Care, Centre for Health Education and Health Promotion, Chinese University of Hong Kong, Hong Kong, China
- School of Public Health, Peking University, Beijing, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Li X, Sun H, Zhu Y, Wang F, Wang X, Han L, Cui D, Luo D, Zhai Y, Zhuo L, Xu X, Yang J, Li Y. Dysregulation of prefrontal parvalbumin interneurons leads to adult aggression induced by social isolation stress during adolescence. Front Mol Neurosci 2022; 15:1010152. [PMID: 36267698 PMCID: PMC9577330 DOI: 10.3389/fnmol.2022.1010152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Social isolation during the juvenile stage results in structural and functional impairment of the brain and deviant adult aggression. However, the specific subregions and cell types that underpin this deviant behavior are still largely unknown. Here, we found that adolescent social isolation led to a shortened latency to attack onset and extended the average attack time, accompanied by anxiety-like behavior and deficits in social preference in adult mice. However, when exposed to social isolation during adulthood, the mice did not show these phenotypes. We also found that the structural plasticity of prefrontal pyramidal neurons, including the dendritic complexity and spine ratio, was impaired in mice exposed to adolescent social isolation. The parvalbumin (PV) interneurons in the prefrontal infralimbic cortex (IL) are highly vulnerable to juvenile social isolation and exhibit decreased cell numbers and reduced activation in adulthood. Moreover, chemogenetic inactivation of IL-PV interneurons can mimic juvenile social isolation-induced deviant aggression and social preference. Conversely, artificial activation of IL-PV interneurons significantly attenuated deviant aggression and rescued social preference during adulthood in mice exposed to adolescent social isolation. These findings implicate juvenile social isolation-induced damage to IL-PV interneurons in long-term aggressive behavior in adulthood.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huan Sun
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuanyuan Zhu
- Department of Neurobiology, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Feidi Wang
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaodan Wang
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Han
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dongqi Cui
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Danlei Luo
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lixia Zhuo
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiangzhao Xu
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jian Yang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Jian Yang,
| | - Yan Li
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li,
| |
Collapse
|