1
|
Hayashi S, Abe T, Igawa T, Katsura Y, Kazama Y, Nozawa M. Sex chromosome cycle as a mechanism of stable sex determination. J Biochem 2024; 176:81-95. [PMID: 38982631 PMCID: PMC11289310 DOI: 10.1093/jb/mvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.
Collapse
Affiliation(s)
- Shun Hayashi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takuya Abe
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yukako Katsura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji, Fukui 910-1195, Japan
| | - Masafumi Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Uno Y, Matsubara K. Unleashing diversity through flexibility: The evolutionary journey of sex chromosomes in amphibians and reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:230-241. [PMID: 38155517 DOI: 10.1002/jez.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Sex determination systems have greatly diversified between amphibians and reptiles, with such as the different sex chromosome compositions within a single species and transition between temperature-dependent sex determination (TSD) and genetic sex determination (GSD). In most sex chromosome studies on amphibians and reptiles, the whole-genome sequence of Xenopous tropicalis and chicken have been used as references to compare the chromosome homology of sex chromosomes among each of these taxonomic groups, respectively. In the present study, we reviewed existing reports on sex chromosomes, including karyotypes, in amphibians and reptiles. Furthermore, we compared the identified genetic linkages of sex chromosomes in amphibians and reptiles with the chicken genome as a reference, which is believed to resemble the ancestral tetrapod karyotype. Our findings revealed that sex chromosomes in amphibians are derived from genetic linkages homologous to various chicken chromosomes, even among several frogs within single families, such as Ranidae and Pipidae. In contrast, sex chromosomes in reptiles exhibit conserved genetic linkages with chicken chromosomes, not only across most species within a single family, but also within closely related families. The diversity of sex chromosomes in amphibians and reptiles may be attributed to the flexibility of their sex determination systems, including the ease of sex reversal in these animals.
Collapse
Affiliation(s)
- Yoshinobu Uno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Matsubara
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
3
|
Schartl M, Georges A, Marshall Graves JA. Polygenic sex determination in vertebrates - is there any such thing? Trends Genet 2023; 39:242-250. [PMID: 36669949 PMCID: PMC10148267 DOI: 10.1016/j.tig.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Genetic sex determination (SD) in most vertebrates is controlled by a single master sex gene, which ensures a 1:1 sex ratio. However, more complex systems abound, and several have been ascribed to polygenic SD (PSD), in which many genes at different loci interact to produce the sexual phenotype. Here we examine claims for PSD in vertebrates, finding that most constitute transient states during sex chromosome turnover, or aberrant systems in species hybrids. To avoid confusion about terminology, we propose a consistent nomenclature for genetic SD systems.
Collapse
Affiliation(s)
- Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA; Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, ACT, 2601, Australia
| | | |
Collapse
|
4
|
Pinto BJ, Keating SE, Nielsen SV, Scantlebury DP, Daza JD, Gamble T. Chromosome-Level Genome Assembly Reveals Dynamic Sex Chromosomes in Neotropical Leaf-Litter Geckos (Sphaerodactylidae: Sphaerodactylus). J Hered 2022; 113:272-287. [PMID: 35363859 PMCID: PMC9270867 DOI: 10.1093/jhered/esac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Sex determination is a critical element of successful vertebrate development, suggesting that sex chromosome systems might be evolutionarily stable across lineages. For example, mammals and birds have maintained conserved sex chromosome systems over long evolutionary time periods. Other vertebrates, in contrast, have undergone frequent sex chromosome transitions, which is even more amazing considering we still know comparatively little across large swaths of their respective phylogenies. One reptile group in particular, the gecko lizards (infraorder Gekkota), shows an exceptional lability with regard to sex chromosome transitions and may possess the majority of transitions within squamates (lizards and snakes). However, detailed genomic and cytogenetic information about sex chromosomes is lacking for most gecko species, leaving large gaps in our understanding of the evolutionary processes at play. To address this, we assembled a chromosome-level genome for a gecko (Sphaerodactylidae: Sphaerodactylus) and used this assembly to search for sex chromosomes among six closely related species using a variety of genomic data, including whole-genome re-sequencing, RADseq, and RNAseq. Previous work has identified XY systems in two species of Sphaerodactylus geckos. We expand upon that work to identify between two and four sex chromosome cis-transitions (XY to a new XY) within the genus. Interestingly, we confirmed two different linkage groups as XY sex chromosome systems that were previously unknown to act as sex chromosomes in tetrapods (syntenic with Gallus chromosome 3 and Gallus chromosomes 18/30/33), further highlighting a unique and fascinating trend that most linkage groups have the potential to act as sex chromosomes in squamates.
Collapse
Affiliation(s)
- Brendan J Pinto
- Address correspondence to B. J. Pinto at the address above, or e-mail:
| | - Shannon E Keating
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Stuart V Nielsen
- Department of Biological Sciences, Louisiana State University in Shreveport, Shreveport, LA 71115, USA,Division of Herpetology, Florida Museum of Natural History, Gainesville, FL 32611, USA
| | | | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Tony Gamble
- Milwaukee Public Museum, Milwaukee, WI 53233, USA,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA,Bell Museum of Natural History, University of Minnesota, St Paul, MN 55455, USA
| |
Collapse
|
5
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
6
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
7
|
Tang Y, Chen JY, Ding GH, Lin ZH. Analyzing the gonadal transcriptome of the frog Hoplobatrachus rugulosus to identify genes involved in sex development. BMC Genomics 2021; 22:552. [PMID: 34281525 PMCID: PMC8290591 DOI: 10.1186/s12864-021-07879-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tiger frog (Hoplobatrachus rugulosus) is listed as a national Class II protected species in China. In the context of global warming, the sex ratio of amphibians will be affected, and the development of the population will be limited. Therefore, considering the potential for a decrease in the number of amphibians, studying sex evolution and molecular regulation of gonadal development in H. rugulosus, phenomenon that are currently unclear, is of great significance. RESULTS Here, H. rugulosus was used to explore the mechanisms regulating gonadal development in amphibians. Illumina HiSeq 3000 was used to sequence the gonadal transcriptome of male and female H. rugulosus at two growth stages to identify genes related to gonadal development and analyze expression differences in the gonads. This analysis indicated that cyp17α, hsd3β, hsd11β1, cyp19α, and hsd17β12 perform vital functions in sex development in amphibians. Specifically, the expression of cyp3α, cyp17α, hsd3β, hsd11β1, sox2, sox9, sox30, soat, cyp19α, hsd17β12, and hspα1s was correlated with gonadal development and differentiation in H. rugulosus, as determined using the quantitative reverse transcriptase-polymerase chain reaction. CONCLUSION Significant differences were found in the gonadal gene expression levels in H. rugulosus of both sexes, and we identified a steroid hormone synthesis pathway in this species and analyzed related gene expression, but the changes during sex differentiation were still unclear. To our knowledge, this report presents the first analysis of the H. rugulosus gonadal transcriptome and lays the foundation for future research.
Collapse
Affiliation(s)
- Yun Tang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China.,College of Life Sciences, Nanjing Normal University, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jing-Yi Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China.
| | - Zhi-Hua Lin
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Xu Y, DU Z, Liu J, Su H, Ning F, Cui S, Wang L, Liu J, Ren C, DI S, Bai X. Male heterogametic sex determination in Rana dybowskii based on sex-linked molecular markers. Integr Zool 2021; 17:105-114. [PMID: 34254736 PMCID: PMC9290989 DOI: 10.1111/1749-4877.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying the mechanism for sex determination in amphibians is challenging. Very little is known about sex determination mechanisms of Rana dybowskii, a species of importance to evolutionary and conservation biology. We screened for sex‐linked molecular markers in R. dybowskii in China using target region amplification polymorphism with 2 fixed primers against the sequences of Dmrt1. We found 2 male‐linked molecular markers in R. dybowskii, which were 222 bp and 261 bp long. The detection rates of 222 bp marker in males form Xinglong, Huadian, and Dandong were 93.79%, 69.64%, and 13.64%, respectively, while the rate in females from Huadian was 27.50%. Besides, the detection rates of 261 bp marker in the above 3 regions were only observed in males at the rate of 93.79%, 87.50%, and 32.73%, respectively. The inheritance patterns of sex‐linked molecular markers showed that the 2 sex‐linked molecular markers were heterozygous. Compared to the XY‐male parent, progeny from XX‐pseudo‐male parent possessed lower sex reversal ratio at the same rearing temperature, and the proportion of female froglets from an XX‐pseudo‐male parent was more than 95% at low rearing temperature (15°C). Our findings suggest that R. dybowskii displays male heterogamety, and the 2 sex‐linked molecular markers may have a guiding significance for the protection and utilization of R. dybowskii.
Collapse
Affiliation(s)
- Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Zhiheng DU
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiayu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hang Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fangyong Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shiquan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lijuan Wang
- College of Agricultural, Eastern Liaoning University, Dandong, China
| | - Jianming Liu
- Yili Animal Science Research Institute, Yining, China
| | - Chuanshuai Ren
- Animal Husbandry Administration of Huadian, Huadian, China
| | - Shengwei DI
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiujuan Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Ruiz-García A, Roco ÁS, Bullejos M. Sex Differentiation in Amphibians: Effect of Temperature and Its Influence on Sex Reversal. Sex Dev 2021; 15:157-167. [PMID: 34000727 DOI: 10.1159/000515220] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/20/2020] [Indexed: 11/19/2022] Open
Abstract
The role of environmental factors in sexual differentiation in amphibians is not new. The effect of hormones or hormone-like compounds is widely demonstrated. However, the effect of temperature has traditionally been regarded as something anecdotal that occurs in extreme situations and not as a factor to be considered. The data currently available reveal a different situation. Sexual differentiation in some amphibian species can be altered even by small changes in temperature. On the other hand, although not proven, it is possible that temperature is related to the appearance of sex-reversed individuals in natural populations under conditions unrelated to environmental contaminants. According to this, temperature, through sex reversal (phenotypic sex opposed to genetic sex), could play an important role in the turnover of sex-determining genes and in the maintenance of homomorphic sex chromosomes in this group. Accordingly, and given the expected increase in global temperatures, growth and sexual differentiation in amphibians could easily be affected, altering the sex ratio in natural populations and posing major conservation challenges for a group in worldwide decline. It is therefore particularly urgent to understand the mechanism by which temperature affects sexual differentiation in amphibians.
Collapse
Affiliation(s)
- Adrián Ruiz-García
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Álvaro S Roco
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Mónica Bullejos
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
10
|
Roco ÁS, Ruiz-García A, Bullejos M. Testis Development and Differentiation in Amphibians. Genes (Basel) 2021; 12:578. [PMID: 33923451 PMCID: PMC8072878 DOI: 10.3390/genes12040578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Sex is determined genetically in amphibians; however, little is known about the sex chromosomes, testis-determining genes, and the genes involved in testis differentiation in this class. Certain inherent characteristics of the species of this group, like the homomorphic sex chromosomes, the high diversity of the sex-determining mechanisms, or the existence of polyploids, may hinder the design of experiments when studying how the gonads can differentiate. Even so, other features, like their external development or the possibility of inducing sex reversal by external treatments, can be helpful. This review summarizes the current knowledge on amphibian sex determination, gonadal development, and testis differentiation. The analysis of this information, compared with the information available for other vertebrate groups, allows us to identify the evolutionarily conserved and divergent pathways involved in testis differentiation. Overall, the data confirm the previous observations in other vertebrates-the morphology of the adult testis is similar across different groups; however, the male-determining signal and the genetic networks involved in testis differentiation are not evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Mónica Bullejos
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Las Lagunillas S/N, Universidad de Jaén, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.)
| |
Collapse
|
11
|
Miura I, Shams F, Lin SM, de Bello Cioffi M, Liehr T, Al-Rikabi A, Kuwana C, Srikulnath K, Higaki Y, Ezaz T. Evolution of a Multiple Sex-Chromosome System by Three-Sequential Translocations among Potential Sex-Chromosomes in the Taiwanese Frog Odorrana swinhoana. Cells 2021; 10:cells10030661. [PMID: 33809726 PMCID: PMC8002213 DOI: 10.3390/cells10030661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Translocation between sex-chromosomes and autosomes generates multiple sex-chromosome systems. It happens unexpectedly, and therefore, the evolutionary meaning is not clear. The current study shows a multiple sex chromosome system comprising three different chromosome pairs in a Taiwanese brown frog (Odorrana swinhoana). The male-specific three translocations created a system of six sex-chromosomes, ♂X1Y1X2Y2X3Y3-♀X1X1X2X2X3X3. It is unique in that the translocations occurred among three out of the six members of potential sex-determining chromosomes, which are known to be involved in sex-chromosome turnover in frogs, and the two out of three include orthologs of the sex-determining genes in mammals, birds and fishes. This rare case suggests sex-specific, nonrandom translocations and thus provides a new viewpoint for the evolutionary meaning of the multiple sex chromosome system.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
- Correspondence: ; Tel.: +81-(82)-424-7323
| | - Foyez Shams
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
| | - Si-Min Lin
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- School of Life Sciences, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Road, Tapei 116, Taiwan
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-090, SP, Brazil;
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (T.L.); (A.A.-R.)
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (T.L.); (A.A.-R.)
| | - Chiao Kuwana
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (C.K.); (Y.H.)
| | - Kornsorn Srikulnath
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Yuya Higaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (C.K.); (Y.H.)
| | - Tariq Ezaz
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
| |
Collapse
|
12
|
Ogata M, Lambert M, Ezaz T, Miura I. Reconstruction of female heterogamety from admixture of
XX
‐
XY
and
ZZ
‐
ZW
sex‐chromosome systems within a frog species. Mol Ecol 2018; 27:4078-4089. [DOI: 10.1111/mec.14831] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 01/03/2023]
Affiliation(s)
| | - Max Lambert
- Greeley Memorial Lab School of Forestry and Environmental Studies Yale University New Haven Connecticut
| | - Tariq Ezaz
- Institute for Applied Ecology University of Canberra Canberra Australian Capital Territory Australia
| | - Ikuo Miura
- Institute for Applied Ecology University of Canberra Canberra Australian Capital Territory Australia
- Amphibian Research Center Hiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
13
|
Putative Independent Evolutionary Reversals from Genotypic to Temperature-Dependent Sex Determination are Associated with Accelerated Evolution of Sex-Determining Genes in Turtles. J Mol Evol 2017; 86:11-26. [DOI: 10.1007/s00239-017-9820-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/18/2017] [Indexed: 12/14/2022]
|
14
|
Veller C, Muralidhar P, Constable GWA, Nowak MA. Drift-Induced Selection Between Male and Female Heterogamety. Genetics 2017; 207:711-727. [PMID: 28821587 PMCID: PMC5629334 DOI: 10.1534/genetics.117.300151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
Evolutionary transitions between male and female heterogamety are common in both vertebrates and invertebrates. Theoretical studies of these transitions have found that, when all genotypes are equally fit, continuous paths of intermediate equilibria link the two sex chromosome systems. This observation has led to a belief that neutral evolution along these paths can drive transitions, and that arbitrarily small fitness differences among sex chromosome genotypes can determine the system to which evolution leads. Here, we study stochastic evolutionary dynamics along these equilibrium paths. We find non-neutrality, both in transitions retaining the ancestral pair of sex chromosomes, and in those creating a new pair. In fact, substitution rates are biased in favor of dominant sex determining chromosomes, which fix with higher probabilities than mutations of no effect. Using diffusion approximations, we show that this non-neutrality is a result of "drift-induced selection" operating at every point along the equilibrium paths: stochastic jumps off the paths return with, on average, a directional bias in favor of the dominant segregating sex chromosome. Our results offer a novel explanation for the observed preponderance of dominant sex determining genes, and hint that drift-induced selection may be a common force in standard population genetic systems.
Collapse
Affiliation(s)
- Carl Veller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138
| | - Pavitra Muralidhar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - George W A Constable
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057, Switzerland
- Department of Mathematical Sciences, University of Bath, BA2 7AY, United Kingdom
| | - Martin A Nowak
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
15
|
Participation of androgen and its receptor in sex determination of an amphibian species. PLoS One 2017; 12:e0178067. [PMID: 28582396 PMCID: PMC5459561 DOI: 10.1371/journal.pone.0178067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In the Japanese frog Rana (R.) rugosa the androgen receptor (AR) gene on the W chromosome (W-AR) is barely expressed. Previously we showed that incomplete female-to-male sex-reversal occurred in Z-AR transgenic female frogs. To date, however, there is no report showing that AR with androgens can determine genetically programed male sex fate in any vertebrate species. Here, we examined whether AR together with androgens functions as a sex determinant in an amphibian species. METHODS To examine whether complete female-to-male sex-reversal occurs in R. rugosa frogs, we produced AR-transgenic (Tg) and -knockdown (KD) female R. rugosa frogs by the I-SceI meganuclease-mediated gene trap and CRISPR/Cas9 system, respectively. AR-Tg and -KD tadpoles were reared in water containing testosterone (T) at 0 to 7.1 ng/ml. Frozen sections were prepared from the gonads of metamorphosed frogs and immunostained for laminin, Vasa, Pat1a, CYP17 and AR. We also employed PCR analysis to examine Dmrt1, Pat1a and CYP17 expression in the gonads of KD and placebo-KD female frogs. RESULTS Complete female-to-male sex-reversal occurred in the AR-Tg ZW female frogs when a low dosage of T was supplied in the rearing water of tadpoles. However, no sex-reversal was observed in AR-KD ZW female frogs when the gonads were treated with dosages of T high enough to induce complete female-to-male sex-reversal even in wild type frogs. DISCUSSION These results suggest that AR with its androgen ligand functions as a male sex-determinant in the ZW type R. rugosa frogs.
Collapse
|
16
|
Sequential Turnovers of Sex Chromosomes in African Clawed Frogs ( Xenopus) Suggest Some Genomic Regions Are Good at Sex Determination. G3-GENES GENOMES GENETICS 2016; 6:3625-3633. [PMID: 27605520 PMCID: PMC5100861 DOI: 10.1534/g3.116.033423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis. This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles.
Collapse
|
17
|
Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics 2016; 17:844. [PMID: 27793086 PMCID: PMC5084323 DOI: 10.1186/s12864-016-3209-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extent to which sex reversal is associated with transitions in sex determining systems (XX-XY, ZZ-ZW, etc.) or abnormal sexual differentiation is predominantly unexplored in amphibians. This is in large part because most amphibian taxa have homomorphic sex chromosomes, which has traditionally made it challenging to identify discordance between phenotypic and genetic sex in amphibians, despite all amphibians having a genetic component to sex determination. Recent advances in molecular techniques such as genome complexity reduction and high throughput sequencing present a valuable avenue for furthering our understanding of sex determination in amphibians and other taxa with homomorphic sex chromosomes like many fish and reptiles. RESULTS We use DArTseq as a novel approach to identify sex-linked markers in the North American green frog (Rana clamitans melanota) using lab-reared tadpoles as well as wild-caught adults from seven ponds either in undeveloped, forested habitats or suburban ponds known to be subject to contamination by anthropogenic chemicals. The DArTseq methodology identified 13 sex-linked SNP loci and eight presence-absence loci associated with males, indicating an XX-XY system. Both alleles from a single locus show partial high sequence homology to Dmrt1, a gene linked to sex determination and differentiation throughout Metazoa. Two other loci have sequence similarities to regions of the chimpanzee and human X-chromosome as well as the chicken Z-chromosome. Several loci also show geographic variation in sex-linkage, possibly indicating sex chromosome recombination. While all loci are statistically sex-linked, they show varying degrees of female heterozygosity and male homozygosity, providing further evidence that some markers are on regions of the sex chromosomes undergoing higher rates of recombination and therefore further apart from the putative sex determining locus. CONCLUSION The ease of the DArTseq platform provides a useful avenue for future research on sex reversal and sex chromosome evolution in vertebrates, particularly for non-model species with homomorphic or cryptic or nascent sex chromosomes.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA.
| | - David K Skelly
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
18
|
Abstract
Amphibians have been widely used to study developmental biology due to the fact that embryo development takes place independently of the maternal organism and that observations and experimental approaches are easy. Some amphibians like Xenopus became model organisms in this field. In the first part of this article, the differentiation of the gonads in amphibians and the mechanisms governing this process are reviewed. In the second part, the state of the art about sex reversal, which can be induced by steroid hormones in general and by temperature in some species, is presented. Also information about pollutants found in the environment that could interfere with the development of the amphibian reproductive apparatus or with their reproductive physiology is given. Such compounds could play a part in the amphibian decline, since in the wild, many amphibians are endangered species.
Collapse
Affiliation(s)
- Stéphane Flament
- Université de Lorraine, CRAN, UMR 7039, and CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, France
| |
Collapse
|
19
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
20
|
Unraveling the Sex Chromosome Heteromorphism of the Paradoxical Frog Pseudis tocantins. PLoS One 2016; 11:e0156176. [PMID: 27214234 PMCID: PMC4877019 DOI: 10.1371/journal.pone.0156176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
The paradoxical frog Pseudis tocantins is the only species in the Hylidae family with known heteromorphic Z and W sex chromosomes. The Z chromosome is metacentric and presents an interstitial nucleolar organizer region (NOR) on the long arm that is adjacent to a pericentromeric heterochromatic band. In contrast, the submetacentric W chromosome carries a pericentromeric NOR on the long arm, which is adjacent to a clearly evident heterochromatic band that is larger than the band found on the Z chromosome and justify the size difference observed between these chromosomes. Here, we provide evidence that the non-centromeric heterochromatic bands in Zq and Wq differ not only in size and location but also in composition, based on comparative genomic hybridization (CGH) and an analysis of the anuran PcP190 satellite DNA. The finding of PcP190 sequences in P. tocantins extends the presence of this satellite DNA, which was previously detected among Leptodactylidae and Hylodidae, suggesting that this family of repetitive DNA is even older than it was formerly considered. Seven groups of PcP190 sequences were recognized in the genome of P. tocantins. PcP190 probes mapped to the heterochromatic band in Wq, and a Southern blot analysis indicated the accumulation of PcP190 in the female genome of P. tocantins, which suggests the involvement of this satellite DNA in the evolution of the sex chromosomes of this species.
Collapse
|
21
|
Miura I, Ohtani H, Ogata M, Ezaz T. Evolutionary Changes in Sensitivity to Hormonally Induced Gonadal Sex Reversal in a Frog Species. Sex Dev 2016; 10:79-90. [DOI: 10.1159/000445848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/19/2022] Open
|
22
|
Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 2015; 125:553-71. [DOI: 10.1007/s00412-015-0569-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/26/2022]
|
23
|
Charlesworth D. Plant contributions to our understanding of sex chromosome evolution. THE NEW PHYTOLOGIST 2015; 208:52-65. [PMID: 26053356 DOI: 10.1111/nph.13497] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/01/2015] [Indexed: 05/06/2023]
Abstract
A minority of angiosperms have male and female flowers separated in distinct individuals (dioecy), and most dioecious plants do not have cytologically different (heteromorphic) sex chromosomes. Plants nevertheless have several advantages for the study of sex chromosome evolution, as genetic sex determination has evolved repeatedly and is often absent in close relatives. I review sex-determining regions in non-model plant species, which may help us to understand when and how (and, potentially, test hypotheses about why) recombination suppression evolves within young sex chromosomes. I emphasize high-throughput sequencing approaches that are increasingly being applied to plants to test for non-recombining regions. These data are particularly illuminating when combined with sequence data that allow phylogenetic analyses, and estimates of when these regions evolved. Together with comparative genetic mapping, this has revealed that sex-determining loci and sex-linked regions evolved independently in many plant lineages, sometimes in closely related dioecious species, and often within the past few million years. In reviewing recent progress, I suggest areas for future work, such as the use of phylogenies to allow the informed choice of outgroup species suitable for inferring the directions of changes, including testing whether Y chromosome-like regions are undergoing genetic degeneration, a predicted consequence of losing recombination.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Lab, King's Buildings, W. Mains Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
24
|
Nakamura Y, Iwasaki T, Umei Y, Saotome K, Nakajima Y, Kitahara S, Uno Y, Matsuda Y, Oike A, Kodama M, Nakamura M. Molecular cloning and characterization of oocyte-specific Pat1a in Rana rugosa frogs. ACTA ACUST UNITED AC 2015; 323:516-26. [PMID: 26136381 DOI: 10.1002/jez.1938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/07/2022]
Abstract
The Pat1 gene is expressed in the immature oocytes of Xenopus, and is reportedly involved in regulating the translation of maternal mRNAs required for oocyte-maturation. However, it is still unknown when Pat1a first appears in the differentiating ovary of amphibians. To address this issue, we isolated the full-length Pat1a cDNA from the frog Rana rugosa and examined its expression in the differentiating ovary of this frog. Among eight different tissues examined, the Pat1a mRNA was detectable in only the ovary. When frozen sections from the ovaries of tadpoles at various stages of development were immunostained for Vasa-a germ cell-specific protein-and Pat1a, Vasa-immunopositive signals were observed in all of the germ cells, whereas Pat1a signals were confined to the growing oocytes (50-200 μm in diameter), and absent from small germ cells (<50 μm in diameter). Forty days after testosterone injection into tadpoles to induce female-to-male sex-reversal, Pat1a-immunoreactive oocytes had disappeared completely from the sex-reversed gonad, but Vasa-positive small germ cells persisted. Thus, Pat1a would be a good marker for identifying the sexual status of the sex-reversing gonad in amphibians. In addition, fluorescence in situ hybridization analysis showed Pat1a to have an autosomal locus, suggesting that Pat1a transcription is probably regulated by a tissue-specific transcription factor in R. rugosa.
Collapse
Affiliation(s)
- Yoriko Nakamura
- Department of Science Education, Faculty of Education, Ehime University, Matsuyama, Ehime, Japan.,Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| | - Takehiro Iwasaki
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| | - Yosuke Umei
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| | - Kazuhiro Saotome
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| | - Yukiko Nakajima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| | - Shoichi Kitahara
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| | - Yoshinobu Uno
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Furo-cho, Nagoya, Japan
| | - Yoichi Matsuda
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Furo-cho, Nagoya, Japan
| | - Akira Oike
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| | - Maho Kodama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| | - Masahisa Nakamura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsu-cho, Tokyo, Japan
| |
Collapse
|
25
|
Kodama M, Suda M, Sakamoto D, Iwasaki T, Matsuo Y, Uno Y, Matsuda Y, Nakamura Y, Maekawa S, Katsu Y, Nakamura M. Molecular cloning and characterization of anti-Müllerian hormone (AMH) from the Japanese wrinkled frog, Rana rugosa. Endocrinology 2015; 156:1914-23. [PMID: 25714810 DOI: 10.1210/en.2013-2053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of anti-Müllerian hormone (AMH) during gonad development has been studied extensively in many species of mammal, bird, reptile, and fish but remains unresolved in amphibians. In male mammalian embryos, Sox9 activates AMH expression, which initiates regression of the Müllerian ducts. However, Sox9 (Sry-related HMG box 9) is unlikely to initiate AMH in chicken, because AMH precedes Sox9 expression in this species. To clarify whether AMH is involved in testicular differentiation in amphibians, we cloned the full-length AMH cDNA from the Japanese wrinkled frog, Rana rugosa. The AMH gene, which appears to be autosomal, is exclusively expressed in the testis of adult frog among 8 different tissues examined; Sertoli cells are probably responsible for its expression. AMH expression was found in the undifferentiated gonad of both male and female tadpoles, increasing in the differentiating testis. Moreover, we observed consensus binding sites for Sox9 in the 5'-flanking region of the AMH gene. Sox9 stimulated statistically significant AMH expression in luciferase reporter assays when coexpressed in Xenopus kidney-derived A6 cells. However, Sox9 expression showed no sexual dimorphism when AMH expression was up-regulated in the developing testis. These results, taken together, suggest that AMH is probably involved in testicular differentiation in R. rugosa, although an additional, perhaps tissue-specific, transcription factor may be required for the regulation of AMH transcription.
Collapse
Affiliation(s)
- Maho Kodama
- Department of Biology (M.K., M.S., D.S., T.I., Y.Matsuo, S.M., M.N.), Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Laboratory of Animal Genetics (Y.U., Y.Matsud.), Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan; Department of Science Education (Y.N.), Faculty of Education, Ehime University, Matsuyama, Ehime 790-8577, Japan; and Laboratory of Reproductive and Developmental Biology (Y.K.), Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang C, Tang X, Xin Y, Yue F, Yan X, Liu B, An B, Wang X, Chen Q. Identification of Sex Chromosomes by Means of Comparative Genomic Hybridization in a Lizard, Eremias multiocellata. Zoolog Sci 2015; 32:151-6. [DOI: 10.2108/zs130246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Cui Wang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Tang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Ying Xin
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Feng Yue
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xuefeng Yan
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Bingbing Liu
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Bei An
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xi Wang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
Tamschick S, Rozenblut-Kościsty B, Bonato L, Dufresnes C, Lymberakis P, Kloas W, Ogielska M, Stöck M. Sex Chromosome Conservation, DMRT1 Phylogeny and Gonad Morphology in Diploid Palearctic Green Toads ( Bufo viridis Subgroup). Cytogenet Genome Res 2015; 144:315-24. [DOI: 10.1159/000380841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
|
28
|
Sassone AG, Regueira E, Scaia MF, Volonteri MC, Ceballos NR. Development and steroidogenic properties of the Bidder's organ of the tadpole ofRhinella arenarum(Amphibia, Anura). ACTA ACUST UNITED AC 2014; 323:137-45. [DOI: 10.1002/jez.1897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/30/2014] [Accepted: 09/08/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Alina Grisel Sassone
- Laboratorio de Endocrinolog; í; a Comparada; Departamento de Biodiversidad y Biología Experimental; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
| | - Eleonora Regueira
- Laboratorio de Endocrinolog; í; a Comparada; Departamento de Biodiversidad y Biología Experimental; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
| | - Maria Florencia Scaia
- Laboratorio de Endocrinolog; í; a Comparada; Departamento de Biodiversidad y Biología Experimental; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
| | - Maria Clara Volonteri
- Laboratorio de Endocrinolog; í; a Comparada; Departamento de Biodiversidad y Biología Experimental; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
| | - Nora Raquel Ceballos
- Laboratorio de Endocrinolog; í; a Comparada; Departamento de Biodiversidad y Biología Experimental; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires Argentina
| |
Collapse
|
29
|
Fujii J, Kodama M, Oike A, Matsuo Y, Min MS, Hasebe T, Ishizuya-Oka A, Kawakami K, Nakamura M. Involvement of androgen receptor in sex determination in an amphibian species. PLoS One 2014; 9:e93655. [PMID: 24826887 PMCID: PMC4020753 DOI: 10.1371/journal.pone.0093655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/05/2014] [Indexed: 12/02/2022] Open
Abstract
In mice and humans, the androgen receptor (AR) gene, located on the X chromosome, is not known to be involved in sex determination. In the Japanese frog Rana rugosa the AR is located on the sex chromosomes (X, Y, Z and W). Phylogenetic analysis shows that the AR on the X chromosome (X-AR) of the Korean R. rugosa is basal and segregates into two clusters: one containing W-AR of Japanese R. rugosa, the other containing Y-AR. AR expression is twice as high in ZZ (male) compared to ZW (female) embryos in which the W-AR is barely expressed. Higher AR-expression may be associated with male sex determination in this species. To examine whether the Z-AR is involved in sex determination in R. rugosa, we produced transgenic (Tg) frogs carrying an exogenous Z-AR. Analysis of ZW Tg frogs revealed development of masculinized gonads or 'ovotestes'. Expression of CYP17 and Dmrt1, genes known to be activated during normal male gonadal development, were up-regulated in the ZW ovotestis. Testosterone, supplied to the rearing water, completed the female-to-male sex-reversal in the AR-Tg ZW frogs. Here we report that Z-AR is involved in male sex-determination in an amphibian species.
Collapse
Affiliation(s)
- Jun Fujii
- Department of Biology, Waseda University, Tokyo, Japan
| | - Maho Kodama
- Department of Biology, Waseda University, Tokyo, Japan
| | - Akira Oike
- Department of Biology, Waseda University, Tokyo, Japan
| | - Yasuki Matsuo
- Department of Biology, Waseda University, Tokyo, Japan
| | - Mi-Sook Min
- Laboratory of Wildlife Conservation Genetics, Seoul National University, Seoul, South Korea
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | | | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | |
Collapse
|
30
|
Saunders PA, Perez J, Rahmoun M, Ronce O, Crochet PA, Veyrunes F. XY females do better than the XX in the African pygmy mouse, Mus minutoides. Evolution 2014; 68:2119-27. [PMID: 24611447 DOI: 10.1111/evo.12387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/08/2014] [Indexed: 12/11/2022]
Abstract
All therian mammals have a similar XY/XX sex-determination system except for a dozen species. The African pygmy mouse, Mus minutoides, harbors an unconventional system in which all males are XY, and there are three types of females: the usual XX but also XX* and X*Y ones (the asterisk designates a sex-reversal mutation on the X chromosome). The long-term evolution of such a system is a paradox, because X*Y females are expected to face high reproductive costs (e.g., meiotic disruption and loss of unviable YY embryos), which should prevent invasion and maintenance of a sex-reversal mutation. Hence, mechanisms for compensating for the costs could have evolved in M. minutoides. Data gathered from our laboratory colony revealed that X*Y females do compensate and even show enhanced reproductive performance in comparison to the XX and XX*; they produce significantly more offspring due to (i) a higher probability of breeding, (ii) an earlier first litter, and (iii) a larger litter size, linked to (iv) a greater ovulation rate. These findings confirm that rare conditions are needed for an atypical sex-determination mechanism to evolve in mammals, and provide valuable insight into understanding modifications of systems with highly heteromorphic sex chromosomes.
Collapse
Affiliation(s)
- Paul A Saunders
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554, Université Montpellier II, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
31
|
Malcom JW, Kudra RS, Malone JH. The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J Genomics 2014; 2:68-76. [PMID: 25031658 PMCID: PMC4091447 DOI: 10.7150/jgen.8044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution.
Collapse
Affiliation(s)
- Jacob W Malcom
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| | - Randal S Kudra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| | - John H Malone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| |
Collapse
|
32
|
|
33
|
Brelsford A, Stöck M, Betto-Colliard C, Dubey S, Dufresnes C, Jourdan-Pineau H, Rodrigues N, Savary R, Sermier R, Perrin N. HOMOLOGOUS SEX CHROMOSOMES IN THREE DEEPLY DIVERGENT ANURAN SPECIES. Evolution 2013; 67:2434-40. [DOI: 10.1111/evo.12151] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Matthias Stöck
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB); Müggelseedamm; 310, D-12587 Berlin Germany
| | | | - Sylvain Dubey
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Christophe Dufresnes
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Hélène Jourdan-Pineau
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Nicolas Rodrigues
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Romain Savary
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| |
Collapse
|
34
|
Nakamura M. Is a Sex-Determining Gene(s) Necessary for Sex-Determination in Amphibians? Steroid Hormones May Be the Key Factor. Sex Dev 2013; 7:104-14. [DOI: 10.1159/000339661] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
|
36
|
Sarre SD, Ezaz T, Georges A. Transitions between sex-determining systems in reptiles and amphibians. Annu Rev Genomics Hum Genet 2011; 12:391-406. [PMID: 21801024 DOI: 10.1146/annurev-genom-082410-101518] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Important technological advances in genomics are driving a new understanding of the evolution of sex determination in vertebrates. In particular, comparative chromosome mapping in reptiles has shown an intriguing distribution of homology in sex chromosomes across reptile groups. When this new understanding is combined with the widespread distribution of genetic and temperature-dependent sex-determination mechanisms among reptiles, it is apparent that transitions between modes have occurred many times, as they have for amphibians (particularly between male and female heterogamety). It is also likely that thermosensitivity in sex determination is a key factor in those transitions in reptiles, and possibly in amphibians too. New models of sex determination involving temperature thresholds are providing the framework for the investigation of transitions and making possible key predictions about the homologies and sex-determination patterns expected among taxa in these groups. Molecular cytogenetics and other genomic approaches are essential to providing the fundamental material necessary to make advances in this field.
Collapse
Affiliation(s)
- Stephen D Sarre
- Wildlife Genetics Laboratory, Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| | | | | |
Collapse
|
37
|
Suda M, Uno Y, Fujii J, Matsuda Y, Nakamura M. Isolation and characterization of the CYP17A1 gene and its processed pseudogene in Rana rugosa. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:54-61. [PMID: 21664481 DOI: 10.1016/j.cbpb.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/18/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
Abstract
CYP17A1 expression is up-regulated in the gonad in Rana (Glandirana) rugosa tadpoles treated with androgens to induce female-to-male sex-reversal. In this study, we isolated the CYP17A1 gene and its processed pseudogene from R. rugosa. The former was found to consist of 8 exons, and the latter a single-exon gene, designated CYP17A1P. The sequence of the promoter region of CYP17A1 differed from that of CYP17A1P. We found several consensus binding-sites for candidate transcription factors including androgen receptor (AR), Sox and FoxL2 in the CYP17A1 promoter region, but an AR-binding site was absent from CYP17A1P. When AR was over-expressed in Xenopus A6 cells, it did not increase CYP17A1 transcription in luciferase assays. CYP17A1 was strongly expressed in indifferent male gonads during sex determination and exclusively in testis, among eight adult tissues of R. rugosa. By contrast, CYP17A1P was expressed at very low, and similar levels in the adult tissues of both sexes. Fluorescent In-Situ Hybridization (FISH) analysis showed that CYP17A1P is localized to chromosome 4, while CYP17A1 is on chromosome 9. These results collectively suggest that CYP17A1, but not CYP17A1P is involved in male sex-determination in R. rugosa, and that androgens may not have a direct effect on the CYP17A1 transcription.
Collapse
Affiliation(s)
- Mari Suda
- Department of Biology, Waseda University, Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
38
|
Cano JM, Li MH, Laurila A, Vilkki J, Merilä J. First-generation linkage map for the common frog Rana temporaria reveals sex-linkage group. Heredity (Edinb) 2011; 107:530-6. [PMID: 21587305 DOI: 10.1038/hdy.2011.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The common frog (Rana temporaria) has become a model species in the fields of ecology and evolutionary biology. However, lack of genomic resources has been limiting utility of this species for detailed evolutionary genetic studies. Using a set of 107 informative microsatellite markers genotyped in a large full-sib family (800 F1 offspring), we created the first linkage map for this species. This partial map-distributed over 15 linkage groups-has a total length of 1698.8 cM. In line with the fact that males are the heterogametic sex in this species and a reduction of recombination is expected, we observed a lower recombination rate in the males (map length: 1371.5 cM) as compared with females (2089.8 cM). Furthermore, three loci previously documented to be sex-linked (that is, carrying male-specific alleles) in adults from the wild mapped to the same linkage group. The linkage map described in this study is one of the densest ones available for amphibians. The discovery of a sex linkage group in Rana temporaria, as well as other regions with strongly reduced male recombination rates, should help to uncover the genetic underpinnings of the sex-determination system in this species. As the number of linkage groups found (n=15) is quite close to the actual number of chromosomes (n=13), the map should provide a useful resource for further evolutionary, ecological and conservation genetic work in this and other closely related species.
Collapse
Affiliation(s)
- J M Cano
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
39
|
Suda M, Uno Y, Mori Y, Matsuda Y, Nakamura M. Molecular cytogenetic characterization of telomere-specific repetitive DNA sequences in Rana rugosa. ACTA ACUST UNITED AC 2011; 315:222-31. [DOI: 10.1002/jez.668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 12/08/2010] [Accepted: 01/06/2011] [Indexed: 11/08/2022]
|
40
|
Comparative genetic mapping points to different sex chromosomes in sibling species of wild strawberry (Fragaria). Genetics 2010; 186:1425-33. [PMID: 20923978 DOI: 10.1534/genetics.110.122911] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Separate sexes have evolved repeatedly from hermaphroditic ancestors in flowering plants, and thus select taxa can provide unparalleled insight into the evolutionary dynamics of sex chromosomes that are thought to be shared by plants and animals alike. Here we ask whether two octoploid sibling species of wild strawberry--one almost exclusively dioecious (males and females), Fragaria chiloensis, and one subdioecious (males, females, and hermaphrodites), F. virginiana--share the same sex-determining chromosome. We created a genetic map of the sex chromosome and its homeologs in F. chiloensis and assessed macrosynteny between it and published maps of the proto-sex chromosome of F. virginiana and the homeologous autosome of hermaphroditic diploid species. Segregation of male and female function in our F. chiloensis mapping population confirmed that linkage and dominance relations are similar to those in F. virginiana. However, identification of the molecular markers most tightly linked to the sex-determining locus in the two octoploid species shows that, in both, this region maps to homeologues of chromosome 6 in diploid congeners, but is located at opposite ends of their respective chromosomes.
Collapse
|
41
|
Nascimento J, Quinderé YRSD, Recco-Pimentel SM, Lima JRF, Lourenço LB. Heteromorphic Z and W sex chromosomes in Physalaemus ephippifer (Steindachner, 1864) (Anura, Leiuperidae). Genetica 2010; 138:1127-32. [DOI: 10.1007/s10709-010-9501-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
|
42
|
Saotome K, Isomura T, Seki T, Nakamura Y, Nakamura M. Structural changes in gonadal basement membranes during sex differentiation in the frog Rana rugosa. ACTA ACUST UNITED AC 2010; 313:369-80. [PMID: 20535767 DOI: 10.1002/jez.607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here we report that structural changes in gonadal basement membranes during sex differentiation in the frog Rana rugosa are revealed using an antibody to its laminin component. Immunohistochemical staining indicated that the first sexual dimorphism appeared in testicular cords and ovarian cavities in differentiating gonads of tadpoles at St. 25-3W, three weeks after they reached St. 25. During development, as the testis enlarged, testicular cord partitions appeared to form by invagination of the testicular epithelium. Ovarian cavities also increased in volume. Laminin-positive basement membranes initially surrounded a partial surface of oocytes close to the ovarian cavity, fully covering growing oocytes by St. X. Laminin-reactive signals were present in somatic cells outside seminiferous tubules in the testis and outside oocytes in one-year-old frogs. BrdU-labeling showed that the number of dividing germ cells increased continuously in male gonads but increased in females only up to St. V, declining at St. X and thereafter. The number of dividing germ cells declined when the basement membranes had fully covered the oocytes. Together, these findings suggest that the first sexual dimorphism in the gonad of R. rugosa first appears as a structural change in the basement membranes. Finally, we speculate that the basement membrane on the surface of oocytes may affect their proliferation in this species.
Collapse
Affiliation(s)
- Kazuhiro Saotome
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
43
|
Charlesworth D, Mank JE. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 2010; 186:9-31. [PMID: 20855574 PMCID: PMC2940314 DOI: 10.1534/genetics.110.117697] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability to identify genetic markers in nonmodel systems has allowed geneticists to construct linkage maps for a diversity of species, and the sex-determining locus is often among the first to be mapped. Sex determination is an important area of study in developmental and evolutionary biology, as well as ecology. Its importance for organisms might suggest that sex determination is highly conserved. However, genetic studies have shown that sex determination mechanisms, and the genes involved, are surprisingly labile. We review studies using genetic mapping and phylogenetic inferences, which can help reveal evolutionary pattern within this lability and potentially identify the changes that have occurred among different sex determination systems. We define some of the terminology, particularly where confusion arises in writing about such a diverse range of organisms, and highlight some major differences between plants and animals, and some important similarities. We stress the importance of studying taxa suitable for testing hypotheses, and the need for phylogenetic studies directed to taxa where the patterns of changes can be most reliably inferred, if the ultimate goal of testing hypotheses regarding the selective forces that have led to changes in such an essential trait is to become feasible.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
44
|
Marshall Graves JA, Peichel CL. Are homologies in vertebrate sex determination due to shared ancestry or to limited options? Genome Biol 2010; 11:205. [PMID: 20441602 PMCID: PMC2884537 DOI: 10.1186/gb-2010-11-4-205] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The same candidate genes and the same autosomes are repeatedly used as sex chromosomes in vertebrates. Are these systems identical by descent, or are some genes or chromosomes intrinsically better at triggering the first steps of sex determination?
Collapse
|
45
|
Yokoyama S, Oshima Y, Tokita J, Suda M, Shinozuka T, Nakamura M. Androgen receptor of the frog Rana rugosa: molecular cloning and its characterization. ACTA ACUST UNITED AC 2010; 311:796-812. [PMID: 19722274 DOI: 10.1002/jez.568] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The androgen receptor(AR) gene is located on the Z and W sex chromosomes in the frog Rana rugosa, designated Z- and W-AR, respectively. Among various tissues of an adult frog, AR expression levels were highest in the testis and brain. In the testis, AR was expressed in germ cells. AR expression occured in developing embryos from stage 21 and was very high in the gonad of a male tadpole before the onset of sex determination. When Z- and W-AR were expressed in Xenopus A6 cells, they activated androgen-dependent transcription of a luciferase reporter gene. By contrast, estrogen receptor (ER) alpha and beta showed no sexually dimorphic expression during sex determination, but their expressions became much higher in the gonad of a female tadpole after sex determination. In addition, AR transcripts in the ZZ-tadpoles were twice as abundant as in the ZW genotype. In contrast, W-AR expression was extremely low although when W-AR was expressed in A6 cells, it activated transcription in the luciferase assay. In this regard it is worth noting that the promoter regions of Z- and W-AR are not identical. The results suggest that Z-AR plays an important role in the testis formation in a R. rugosa tadpole, whereas ERbeta is involved in ovary differentiation. Very low expression of W-AR may be due to its promoter region having mutations in key transcription factor binding sites, although these remain to be identified. Thus, it is proposed that AR could be a candidate for a male-determining gene in R. rugosa.
Collapse
Affiliation(s)
- Satoshi Yokoyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Sex chromosomes have evolved multiple times in many taxa. The recent explosion in the availability of whole genome sequences from a variety of organisms makes it possible to investigate sex chromosome evolution within and across genomes. Comparative genomic studies have shown that quite distant species may share fundamental properties of sex chromosome evolution, while very similar species can evolve unique sex chromosome systems. Furthermore, within-species genomic analyses can illuminate chromosome-wide sequence and expression polymorphisms. Here, we explore recent advances in the study of vertebrate sex chromosomes achieved using genomic analyses.
Collapse
Affiliation(s)
- Melissa A Wilson
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
47
|
Oshima Y, Naruse K, Nakamura Y, Nakamura M. Sox3: a transcription factor for Cyp19 expression in the frog Rana rugosa. Gene 2009; 445:38-48. [PMID: 19481139 DOI: 10.1016/j.gene.2009.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 05/11/2009] [Accepted: 05/21/2009] [Indexed: 11/27/2022]
Abstract
Cyp19 is expressed at a high level in the gonad of the female tadpole of the frog Rana rugosa during sex determination. To identify sequence elements important for expression of Cyp19, we isolated a genomic clone (approximately 40 kbp) carrying R. rugosa Cyp19 and analyzed the nucleotide sequence of the 5'-flanking region to search for potential transcription factor binding sites. Sox (SRY-related HMG box) protein and Sf1 binding sites were found in the ovary-specific promoter region of Cyp19. Because Sox3 is located on the sex chromosome in R. rugosa, we conducted the luciferase reporter assay in Xenopus A6 cells using the promoter region. Sox3 drove the reporter gene in the cells, but Sf1 did not. When sequential deletion of the 2.7 kbp Cyp19-promoter region was undertaken, a fragment spanning nucleotides -191 to +48 was sufficient to drive the transcription of the reporter gene. In site-directed mutagenesis, the binding site at -57 in the region was critical for Sox3 responsiveness. Sox3 lacking the HMG box had no ability to promote Cyp19 transcription. In addition, a chromatin immunoprecipitation (ChIP) assay showed that DNA fragments were enriched 8-fold, as determined by real-time PCR, when chromatin was immunoprecipitated with the anti-His antibody against His-tagged Sox3. The results, taken together, suggest that Sox3 activates Cyp19 transcription by its direct binding to the binding site of the Cyp19 promoter region. Sox3 appears to be a factor that directs indifferent gonads to develop into an ovary in R. rugosa.
Collapse
Affiliation(s)
- Yuki Oshima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | |
Collapse
|
48
|
The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 2009; 24:94-102. [DOI: 10.1016/j.tree.2008.09.010] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/30/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
|
49
|
|
50
|
Oshima Y, Uno Y, Matsuda Y, Kobayashi T, Nakamura M. Molecular cloning and gene expression of Foxl2 in the frog Rana rugosa. Gen Comp Endocrinol 2008; 159:170-7. [PMID: 18805419 DOI: 10.1016/j.ygcen.2008.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/08/2008] [Accepted: 08/22/2008] [Indexed: 11/17/2022]
Abstract
Foxl2 is a transcription factor that plays a crucial role in the regulation of the early development of the female gonad in mammals and fish. However, little is known regarding its role in ovarian differentiation in amphibians. In this study, we isolated a Foxl2 cDNA from the ovary of the frog Rana rugosa and Xenopuslaevis and examined its expression during gonadal sex differentiation in R. rugosa. Alignment of known Foxl2 sequences from vertebrates showed high identity of the Foxl2 open reading frame and protein sequences, in particular the forkhead domain and C-terminal region, with other vertebrate sequences. Among different adult tissues, Foxl2 was expressed at its highest level in the ovary. Real-time RT-PCR analysis showed that Foxl2 expression was sexually dimorphic during gonadal sex differentiation in R. rugosa. In addition, Foxl2, which was detected immunochemically in somatic cells surrounding oocytes in the ovary, promoted R. rugosaCYP19 transcription in luciferase promoter assays conducted in A6 cells. We also found by FISH analysis that Foxl2 was an autosomal gene. Altogether, these results suggest that Foxl2 probably plays a very important role in ovarian differentiation of R. rugosa by possibly regulating CYP19 expression. The factor that up-regulates Foxl2 expression in female gonads still remains to be identified.
Collapse
Affiliation(s)
- Yuki Oshima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | |
Collapse
|