1
|
Peart CR, Williams C, Pophaly SD, Neely BA, Gulland FMD, Adams DJ, Ng BL, Cheng W, Goebel ME, Fedrigo O, Haase B, Mountcastle J, Fungtammasan A, Formenti G, Collins J, Wood J, Sims Y, Torrance J, Tracey A, Howe K, Rhie A, Hoffman JI, Johnson J, Jarvis ED, Breen M, Wolf JBW. Hi-C scaffolded short- and long-read genome assemblies of the California sea lion are broadly consistent for syntenic inference across 45 million years of evolution. Mol Ecol Resour 2021; 21:2455-2470. [PMID: 34097816 PMCID: PMC9732816 DOI: 10.1111/1755-0998.13443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
With the advent of chromatin-interaction maps, chromosome-level genome assemblies have become a reality for a wide range of organisms. Scaffolding quality is, however, difficult to judge. To explore this gap, we generated multiple chromosome-scale genome assemblies of an emerging wild animal model for carcinogenesis, the California sea lion (Zalophus californianus). Short-read assemblies were scaffolded with two independent chromatin interaction mapping data sets (Hi-C and Chicago), and long-read assemblies with three data types (Hi-C, optical maps and 10X linked reads) following the "Vertebrate Genomes Project (VGP)" pipeline. In both approaches, 18 major scaffolds recovered the karyotype (2n = 36), with scaffold N50s of 138 and 147 Mb, respectively. Synteny relationships at the chromosome level with other pinniped genomes (2n = 32-36), ferret (2n = 34), red panda (2n = 36) and domestic dog (2n = 78) were consistent across approaches and recovered known fissions and fusions. Comparative chromosome painting and multicolour chromosome tiling with a panel of 264 genome-integrated single-locus canine bacterial artificial chromosome probes provided independent evaluation of genome organization. Broad-scale discrepancies between the approaches were observed within chromosomes, most commonly in translocations centred around centromeres and telomeres, which were better resolved in the VGP assembly. Genomic and cytological approaches agreed on near-perfect synteny of the X chromosome, and in combination allowed detailed investigation of autosomal rearrangements between dog and sea lion. This study presents high-quality genomes of an emerging cancer model and highlights that even highly fragmented short-read assemblies scaffolded with Hi-C can yield reliable chromosome-level scaffolds suitable for comparative genomic analyses.
Collapse
Affiliation(s)
- Claire R. Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| | - Christina Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Saurabh D. Pophaly
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
- Max Planck institute for Plant Breeding Research, Cologne, Germany
| | - Benjamin A. Neely
- National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina, USA
| | - Frances M. D. Gulland
- Karen Dryer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - David J. Adams
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - William Cheng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Michael E. Goebel
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, California, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | | | | | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, New York, USA
| | - Joanna Collins
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Jonathan Wood
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Ying Sims
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - James Torrance
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Alan Tracey
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Kerstin Howe
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- British Antarctic Survey, Cambridge, UK
| | - Jeremy Johnson
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Erich D. Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| |
Collapse
|
2
|
Karyotype Evolution in 10 Pinniped Species: Variability of Heterochromatin versus High Conservatism of Euchromatin as Revealed by Comparative Molecular Cytogenetics. Genes (Basel) 2020; 11:genes11121485. [PMID: 33321928 PMCID: PMC7763226 DOI: 10.3390/genes11121485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
Pinnipedia karyotype evolution was studied here using human, domestic dog, and stone marten whole-chromosome painting probes to obtain comparative chromosome maps among species of Odobenidae (Odobenus rosmarus), Phocidae (Phoca vitulina, Phoca largha, Phoca hispida, Pusa sibirica, Erignathus barbatus), and Otariidae (Eumetopias jubatus, Callorhinus ursinus, Phocarctos hookeri, and Arctocephalus forsteri). Structural and functional chromosomal features were assessed with telomere repeat and ribosomal-DNA probes and by CBG (C-bands revealed by barium hydroxide treatment followed by Giemsa staining) and CDAG (Chromomycin A3-DAPI after G-banding) methods. We demonstrated diversity of heterochromatin among pinniped karyotypes in terms of localization, size, and nucleotide composition. For the first time, an intrachromosomal rearrangement common for Otariidae and Odobenidae was revealed. We postulate that the order of evolutionarily conserved segments in the analyzed pinnipeds is the same as the order proposed for the ancestral Carnivora karyotype (2n = 38). The evolution of conserved genomes of pinnipeds has been accompanied by few fusion events (less than one rearrangement per 10 million years) and by novel intrachromosomal changes including the emergence of new centromeres and pericentric inversion/centromere repositioning. The observed interspecific diversity of pinniped karyotypes driven by constitutive heterochromatin variation likely has played an important role in karyotype evolution of pinnipeds, thereby contributing to the differences of pinnipeds’ chromosome sets.
Collapse
|
3
|
Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes (Basel) 2020; 11:genes11040383. [PMID: 32244767 PMCID: PMC7230465 DOI: 10.3390/genes11040383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/29/2023] Open
Abstract
The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype; in this context, in order to study and verify the conservation of primate chromosomes homologous to human chromosome 13, we mapped a selected set of BAC probes in three platyrrhine species, characterised by a high level of rearrangements, using fluorescence in situ hybridisation (FISH). Our mapping data on Saguinus oedipus, Callithrix argentata and Alouatta belzebul provide insight into synteny of human chromosome 13 evolution in a comparative perspective among primate species, showing rearrangements across taxa. Furthermore, in a wider perspective, we have revised previous cytogenomic literature data on chromosome 13 evolution in eutherian mammals, showing a complex origin of the eutherian mammal ancestral karyotype which has still not been completely clarified. Moreover, we analysed biomedical aspects (the OMIM and Mitelman databases) regarding human chromosome 13, showing that this autosome is characterised by a certain level of plasticity that has been implicated in many human cancers and diseases.
Collapse
|
4
|
Fan H, Wu Q, Wei F, Yang F, Ng BL, Hu Y. Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution. Genome Biol 2019; 20:267. [PMID: 31810476 PMCID: PMC6898958 DOI: 10.1186/s13059-019-1889-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. RESULTS Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. CONCLUSIONS We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.
Collapse
Affiliation(s)
- Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bee Ling Ng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
5
|
Beklemisheva VR, Perelman PL, Lemskaya NA, Kulemzina AI, Proskuryakova AA, Burkanov VN, Graphodatsky AS. The Ancestral Carnivore Karyotype As Substantiated by Comparative Chromosome Painting of Three Pinnipeds, the Walrus, the Steller Sea Lion and the Baikal Seal (Pinnipedia, Carnivora). PLoS One 2016; 11:e0147647. [PMID: 26821159 PMCID: PMC4731086 DOI: 10.1371/journal.pone.0147647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022] Open
Abstract
Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae–monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular.
Collapse
Affiliation(s)
- Violetta R. Beklemisheva
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| | - Polina L. Perelman
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Natalya A. Lemskaya
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia I. Kulemzina
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia A. Proskuryakova
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir N. Burkanov
- Department of Higher Vertebrates Ecology, Kamchatka Branch of Pacific Geographical Institute of Far East Branch of Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia
- National Marine Mammal Laboratory, Alaska Fisheries Science Centre, National Marine Fisheries Service, Seattle, Washington, United States of America
| | - Alexander S. Graphodatsky
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Zurano JP, Ojeda DS, Bidau CJ, Molina WF, Ledesma MA, Martinez PA. A comparison of heterochromatic regions in three species of neotropical canids. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Taufik E, Sekii N, Senda A, Fukuda K, Saito T, Eisert R, Oftedal OT, Urashima T. Neutral and acidic milk oligosaccharides of the striped skunk (Mephitidae: Mephitis mephitis). Anim Sci J 2013; 84:569-78. [PMID: 23607515 DOI: 10.1111/asj.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/14/2012] [Indexed: 11/29/2022]
Abstract
The biological significance of the tremendous variation in proportions of oligosaccharides and lactose among mammalian milks is poorly understood. We investigated milk oligosaccharides of the striped skunk (Mephitis mephitis) and compared these results to other species of the clade Mustelida. Individual oligosaccharides were identified by proton nuclear magnetic resonance spectroscopy. In the striped skunk, six oligosaccharides were identified: isoglobotriose, 2'-fucosyllactose, A-tetrasaccharide, Galili pentasaccharide, 3'-sialyllactose and monosialyl monogalactosyl lacto-N-neohexaose. Four of these have been found in related Mustelida and the other two in more distantly related carnivorans. The neutral and acidic oligosaccharides derive from three core structures: lactose (Gal(β1-4)Glc), lacto-N-neotetraose (Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc) and lacto-N-neohexaose (Gal(β1-4)GlcNAc(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc).
Collapse
Affiliation(s)
- Epi Taufik
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Perelman P, Beklemisheva V, Yudkin D, Petrina T, Rozhnov V, Nie W, Graphodatsky A. Comparative Chromosome Painting in Carnivora and Pholidota. Cytogenet Genome Res 2012; 137:174-93. [DOI: 10.1159/000341389] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
9
|
Nie W, Wang J, Su W, Wang D, Tanomtong A, Perelman PL, Graphodatsky AS, Yang F. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting. Heredity (Edinb) 2011; 108:17-27. [PMID: 22086079 PMCID: PMC3238119 DOI: 10.1038/hdy.2011.107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families: Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet (Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda (Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison and to integrate comparative maps between stone marten and other carnivores with such maps between human and other species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species.
Collapse
Affiliation(s)
- W Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, PR
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kulemzina I, Biltueva LS, Trifonov VA, Perelman PL, Staroselec YY, Beklemisheva VR, Vorobieva NV, Serdukova NA, Graphodatsky AS. Comparative cytogenetics of main Laurasiatheria taxa. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O'Brien SJ. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 2010; 56:49-63. [PMID: 20138220 PMCID: PMC7034395 DOI: 10.1016/j.ympev.2010.01.033] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 01/21/2010] [Accepted: 01/29/2010] [Indexed: 11/19/2022]
Abstract
The mammalian order Carnivora has attracted the attention of scientists of various disciplines for decades, leading to intense interest in defining its supra-familial relationships. In the last few years, major changes to the topological structure of the carnivoran tree have been proposed and supported by various molecular data sets, radically changing the traditional view of family composition in this order. Although a sequence of molecular studies have established a growing consensus with respect to most inter-familial relationships, no analysis so far has included all carnivoran lineages (both feliform and caniform) in an integrated data set, so as to determine comparative patterns of diversification. Moreover, no study conducted thus far has estimated divergence dates among all carnivoran families, which is an important requirement in the attempt to understand the patterns and tempo of diversification in this group. In this study, we have investigated the phylogenetic relationships among carnivoran families, and performed molecular dating analyses of the inferred nodes. We assembled a molecular supermatrix containing 14 genes (7765 bp), most of which have not been previously used in supra-familial carnivoran phylogenetics, for 50 different genera representing all carnivoran families. Analysis of this data set led to consistent and robust resolution of all supra-familial nodes in the carnivoran tree, and allowed the construction of a molecular timescale for the evolution of this mammalian order.
Collapse
|
12
|
Abstract
Skunks are an integral part of the environment and a fascinating component of the earth's biodiversity. Their behavioral idiosyncrasies, made possible by their unique method of defense, make them entertaining to watch in the wild, and their beneficial habits far outweigh any potential negative attributes. Striped skunks can be a benefit in urban and agricultural areas because they prey on harmful and damaging insects and rodents that plague gardens and crops. The general public should be encouraged to live in harmony with skunks, as opposed to viewing them as nuisances. Keeping captive or pet skunks should be considered only after feeding, care, disease, and legal information has been investigated.
Collapse
Affiliation(s)
- Jerry W Dragoo
- Museum of Southwestern Biology, Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
13
|
|