1
|
Dias S, Souza RC, Vasconcelos EV, Vasconcelos S, da Silva Oliveira AR, do Vale Martins L, de Oliveira Bustamante F, da Costa VA, Souza G, da Costa AF, Benko-Iseppon AM, Knytl M, Brasileiro-Vidal AC. Cytomolecular diversity among Vigna Savi (Leguminosae) subgenera. PROTOPLASMA 2024; 261:859-875. [PMID: 38467939 DOI: 10.1007/s00709-024-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The genus Vigna (Leguminosae) comprises about 150 species grouped into five subgenera. The present study aimed to improve the understanding of karyotype diversity and evolution in Vigna, using new and previously published data through different cytogenetic and DNA content approaches. In the Vigna subgenera, we observed a random distribution of rDNA patterns. The 35S rDNA varied in position, from terminal to proximal, and in number, ranging from one (V. aconitifolia, V. subg. Ceratotropis) to seven pairs (V. unguiculata subsp. unguiculata, V. subg. Vigna). On the other hand, the number of 5S rDNA was conserved (one or two pairs), except for V. radiata (V. subg. Ceratotropis), which had three pairs. Genome size was relatively conserved within the genus, ranging from 1C = 0.43 to 0.70 pg in V. oblongifolia and V. unguiculata subsp. unguiculata, respectively, both belonging to V. subg. Vigna. However, we observed a positive correlation between DNA content and the number of 35S rDNA sites. In addition, data from chromosome-specific BAC-FISH suggest that the ancestral 35S rDNA locus is conserved on chromosome 6 within Vigna. Considering the rapid diversification in the number and position of rDNA sites, such conservation is surprising and suggests that additional sites may have spread out from this ancestral locus.
Collapse
Affiliation(s)
- Sibelle Dias
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rosilda Cintra Souza
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Lívia do Vale Martins
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Campus Amilcar Ferreira Sobral, Universidade Federal Do Piauí, Floriano, PI, Brazil
| | - Fernanda de Oliveira Bustamante
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade Do Estado de Minas Gerais - Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Victor Alves da Costa
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gustavo Souza
- Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4K1, Canada
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
| | | |
Collapse
|
2
|
Dias S, de Oliveira Bustamante F, do Vale Martins L, da Costa VA, Montenegro C, Oliveira ARDS, de Lima GS, Braz GT, Jiang J, da Costa AF, Benko-Iseppon AM, Brasileiro-Vidal AC. Translocations and inversions: major chromosomal rearrangements during Vigna (Leguminosae) evolution. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:29. [PMID: 38261028 DOI: 10.1007/s00122-024-04546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
KEY MESSAGE Inversions and translocations are the major chromosomal rearrangements involved in Vigna subgenera evolution, being Vigna vexillata the most divergent species. Centromeric repositioning seems to be frequent within the genus. Oligonucleotide-based fluorescence in situ hybridization (Oligo-FISH) provides a powerful chromosome identification system for inferring plant chromosomal evolution. Aiming to understand macrosynteny, chromosomal diversity, and the evolution of bean species from five Vigna subgenera, we constructed cytogenetic maps for eight taxa using oligo-FISH-based chromosome identification. We used oligopainting probes from chromosomes 2 and 3 of Phaseolus vulgaris L. and two barcode probes designed from V. unguiculata (L.) Walp. genome. Additionally, we analyzed genomic blocks among the Ancestral Phaseoleae Karyotype (APK), two V. unguiculata subspecies (V. subg. Vigna), and V. angularis (Willd.) Ohwi & Ohashi (V. subg. Ceratotropis). We observed macrosynteny for chromosomes 2, 3, 4, 6, 7, 8, 9, and 10 in all investigated taxa except for V. vexillata (L.) A. Rich (V. subg. Plectrotropis), in which only chromosomes 4, 7, and 9 were unambiguously identified. Collinearity breaks involved with chromosomes 2 and 3 were revealed. We identified minor differences in the painting pattern among the subgenera, in addition to multiple intra- and interblock inversions and intrachromosomal translocations. Other rearrangements included a pericentric inversion in chromosome 4 (V. subg. Vigna), a reciprocal translocation between chromosomes 1 and 5 (V. subg. Ceratotropis), a potential deletion in chromosome 11 of V. radiata (L.) Wilczek, as well as multiple intrablock inversions and centromere repositioning via genomic blocks. Our study allowed the visualization of karyotypic patterns in each subgenus, revealing important information for understanding intrageneric karyotypic evolution, and suggesting V. vexillata as the most karyotypically divergent species.
Collapse
Affiliation(s)
- Sibelle Dias
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Fernanda de Oliveira Bustamante
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Lívia do Vale Martins
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade Federal do Piauí, Floriano, PI, Brazil
| | | | - Claudio Montenegro
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Geyse Santos de Lima
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Guilherme Tomaz Braz
- Departamento de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
3
|
Tomlekova N, Idziak-Helmcke D, Franke P, Rojek-Jelonek M, Kwasniewska J. Phaseolus vulgaris mutants reveal variation in the nuclear genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1308830. [PMID: 38239224 PMCID: PMC10794375 DOI: 10.3389/fpls.2023.1308830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
Phaseolus vulgaris L. (common bean) is an essential source of proteins in the human diet worldwide. Bean breeding programs to increase genetic diversity based on induced mutagenesis have a long tradition in Bulgaria. Common bean varieties with high productivity, wide environmental adaptability, good nutritional properties, and improved disease resistance have been successfully developed. In this study, we aimed to investigate selected nuclear genome features, such as the genome size, the number and chromosomal distribution of 5S and 35S rDNA loci by using the fluorescence in situ hybridization (FISH), as well as the level of DNA damage in some local Bulgarian accessions and mutants of P. vulgaris. Flow cytometry analyses revealed no significant differences in genome size between analyzed lines except for one of the analyzed mutants, M19. The value of genome size 2C DNA is about 1.37 pg2C -1 for all lines, whereas it is 1.42 pg2C-1 for M19. The chromosome number remains the same (2n=22) for all analyzed lines. Results of FISH analyses showed that the number of 5S rDNA was stable among accessions and mutant lines (four loci), while the number of 35S rDNA loci was shown as highly polymorphic, varying between ten and sixteen, and displaying differences in the size and location of 35S rDNA loci between analyzed genotypes. The cell cycle profile was different for the analyzed genotypes. The results revealed that wide variation in genome organization and size as well as DNA damage characterizes the analyzed genetic resources of the common bean.
Collapse
Affiliation(s)
- Nasya Tomlekova
- Laboratory of Molecular Biology, Department of Breeding, Marisa Vegetable Crops Research Institute, Plovdiv, Agricultural Academy, Sofia, Bulgaria
| | - Dominika Idziak-Helmcke
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paula Franke
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jolanta Kwasniewska
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Kulaz H, Najafi S, Tuncturk R, Tuncturk M, Albalawi MA, Alalawy AI, Oyouni AAA, Alasmari A, Poczai P, Sayyed RZ. Analysis of Nuclear DNA Content and Karyotype of Phaseolus vulgaris L. Genes (Basel) 2022; 14:47. [PMID: 36672787 PMCID: PMC9858422 DOI: 10.3390/genes14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.), whose annual production is 26 million tons worldwide, is one of the main sources of protein and is known as one of the most important food sources. In this study, the karyotype variations and the genome size of four common bean genotypes in Turkey were investigated to determine whether the geographic variables in these regions affected the genome size and the karyotype parameters. In addition, it is known that as that the cytological and chromosomal parameters change under the influence of the climatic conditions of each region, appropriate and stable cytological methods for each plant facilitate and enable the determination of the chromosomal structure and the identification of specific chromosomes in the genotypes of the relevant region. Correct and valuable information such as this enables breeders and researchers to determine the correct shape and actual size of chromosomes. The genome size of the genotypes was measured with a flow cytometer, and chromosome analyses were performed with the squash method. For each genotype, the karyotype parameters, such as the number of somatic chromosomes, the Mean Total Chromosome Length (MTCL), the Mean Centromere Index (MCI), and the Mean Arm Ratio (MAR), were measured. The results showed that the highest and the lowest amounts of DNA per nucleus (3.28 pg and 1.49 pg) were observed in the Bitlis and Elaziğ genotypes. In addition, all genotype chromosome numbers were counted to be 2n = 2x = 22. The Mean Total Chromosome Length varied from 15.65 µm in Elaziğ to 34.24 µm in the Bitlis genotype. The Mean Chromosome Length ranged between 1.42 µm and 3.11 µm in the Elaziğ and Bitlis genotypes. The Hakkari and Van genotypes consist of eleven metacentric chromosomes, while the Bitlis and Elaziğ genotypes consist of ten metacentric chromosomes and one sub-metacentric chromosome. However, the Mean Centromere Index and Arm Ratio differed considerably among the genotypes. The highest (46.88) and the lowest (43.18) values of the Mean Centromere Index were observed in the Hakkari and Elaziğ genotypes, respectively. On the other hand, the lowest (1.15) and the highest (1.36) values of the Mean Arm Ratio were obtained in the Bitlis and Elaziğ genotypes, respectively. Eventually, intraspecies variations in genome size and chromosomal parameters were observed, and it was determined that the changes in nuclear DNA content and different chromosomal parameters among the four Phaseolus genotypes from four different regions of Turkey indicate the effect of climate change in the regions on these parameters. Such information in these areas can be used as useful information for the improvement of this plant and breeding programs.
Collapse
Affiliation(s)
- Haluk Kulaz
- Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, 65090 Van, Turkey
| | - Solmaz Najafi
- Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, 65090 Van, Turkey
| | - Ruveyde Tuncturk
- Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, 65090 Van, Turkey
| | - Murat Tuncturk
- Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, 65090 Van, Turkey
| | - Marzough Aziz Albalawi
- Department of Chemistry, University College at Alwajh, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Adel I. Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulrahman Alasmari
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, FI-00014 Helsinki, Finland
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada 425409, India
| |
Collapse
|
5
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|
6
|
Lukjanová E, Řepková J. Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:2518. [PMID: 34834880 PMCID: PMC8621578 DOI: 10.3390/plants10112518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Trifolium L. is an economically important genus that is characterized by variable karyotypes relating to its ploidy level and basic chromosome numbers. The advent of genomic resources combined with molecular cytogenetics provides an opportunity to develop our understanding of plant genomes in general. Here, we summarize the current state of knowledge on Trifolium genomes and chromosomes and review methodologies using molecular markers that have contributed to Trifolium research. We discuss possible future applications of cytogenetic methods in research on the Trifolium genome and chromosomes.
Collapse
Affiliation(s)
| | - Jana Řepková
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 611 37 Brno, Czech Republic;
| |
Collapse
|
7
|
Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V. unguiculata), and common bean (Phaseolus vulgaris). Chromosome Res 2020; 28:293-306. [PMID: 32654079 DOI: 10.1007/s10577-020-09635-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Comparative cytogenetic mapping is a powerful approach to gain insights into genome organization of orphan crops, lacking a whole sequenced genome. To investigate the cytogenomic evolution of important Vigna and Phaseolus beans, we built a BAC-FISH (fluorescent in situ hybridization of bacterial artificial chromosome) map of Vigna aconitifolia (Vac, subgenus Ceratotropis), species with no sequenced genome, and compared with V. unguiculata (Vu, subgenus Vigna) and Phaseolus vulgaris (Pv) maps. Seventeen Pv BACs, eight Vu BACs, and 5S and 35S rDNA probes were hybridized in situ on the 11 Vac chromosome pairs. Five Vac chromosomes (Vac6, Vac7, Vac9, Vac10, and Vac11) showed conserved macrosynteny and collinearity between V. unguiculata and P. vulgaris. On the other hand, we observed collinearity breaks, identified by pericentric inversions involving Vac2 (Vu2), Vac4 (Vu4), and Vac3 (Pv3). We also detected macrosynteny breaks of translocation type involving chromosomes 1 and 8 of V. aconitifolia and P. vulgaris; 2 and 3 of V. aconitifolia and P. vulgaris; and 1 and 5 of V. aconitifolia and V. unguiculata. Considering our data and previous BAC-FISH studies, six chromosomes (1, 2, 3, 4, 5, and 8) are involved in major karyotype divergences between genera and five (1, 2, 3, 4, and 5) between Vigna subgenera, including mechanisms such as duplications, inversions, and translocations. Macrosynteny breaks between Vigna and Phaseolus suggest that the major chromosomal rearrangements have occurred within the Vigna clade. Our cytogenomic comparisons bring new light on the degree of shared macrosynteny and mechanisms of karyotype diversification during Vigna and Phaseolus evolution.
Collapse
|
8
|
Souza RCD, Marques DDA, de Carvalho Filho MM, Oliveira ARDS, Siqueira WJ, Benko-Iseppon AM, Brasileiro-Vidal AC. Genome composition and pollen viability of Jatropha (Euphorbiaceae) interspecific hybrids by Genomic In Situ Hybridization (GISH). Genet Mol Biol 2020; 42:e20190112. [PMID: 32059051 PMCID: PMC7198012 DOI: 10.1590/1678-4685-gmb-2019-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/10/2019] [Indexed: 11/24/2022] Open
Abstract
Interspecific hybridization is required for the development of Jatropha
curcas L. improved cultivars, due to its narrow genetic basis. The
present study aimed to analyze the parental genomic composition of F1
and BC1F1 generations derived from interspecific crosses
(J. curcas/J. integerrima and J. curcas/J.
multifida) by GISH (Genomic In Situ
Hybridization), and the meiotic index and pollen viability of F1
hybrids. In F1 cells from both hybrids, 11 chromosomes of each
parental was observed, as expected, but chromosome rearrangement events could be
detected using rDNA chromosome markers, suggesting unbalanced cells. In the
BC1F1, both hybrids had 22 chromosomes, suggesting
that only n = 11 gametes were viable in the next generation.
However, GISH allowed the identification of three and two alien chromosomes in
J. curcas//J. integerrima and J. curcas//J.
multifida BC1F1 hybrids, respectively,
suggesting a preferential transmission of J. curcas chromosomes
for both hybrids. Pollen viability in F1 hybrids derived from
J. curcas/J. integerrima crosses were higher (82-83%) than
those found for J. curcas/J. multifida (68%), showing
post-meiotic problems in these last hybrids, with dyads, triads, polyads, and
micronuclei as post-meiosis results. The here presented cytogenetic
characterization of interspecific hybrids and their backcross progenies can
contribute to the selection of the best genotypes for future assisted breeding
of J. curcas.
Collapse
Affiliation(s)
- Rosilda Cintra de Souza
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil.,Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, Pernambuco, Brazil
| | | | | | | | | | | | - Ana Christina Brasileiro-Vidal
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil.,Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, Pernambuco, Brazil
| |
Collapse
|
9
|
Ribeiro T, Vasconcelos E, Dos Santos KGB, Vaio M, Brasileiro-Vidal AC, Pedrosa-Harand A. Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi. Chromosome Res 2019; 28:139-153. [PMID: 31734754 DOI: 10.1007/s10577-019-09618-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
Abstract
Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within tribe Phaseoleae (Fabaceae), some genera, such as Phaseolus, Vigna, and Cajanus, show small genome and mostly stable chromosome number. Here, we applied a combined computational and cytological approach to study the organization and diversification of repetitive elements in some species of these genera. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons, especially Ogre and Chromovirus elements, making up most of genomes, other than P. acutifolius and Vigna species. Satellite DNAs (SatDNAs) were less representative, but highly diverse among species, showing a clear phylogenetic relationship. In situ localization revealed preferential location at pericentromeres and centromeres for both types of sequences, suggesting a heterogeneous composition, especially for centromeres. Few elements showed subterminal accumulation. Copy number variation among chromosomes within and among species was observed for all nine identified SatDNAs. Altogether, our data pointed two main elements (Ty3/Gypsy retrotransponsons and SatDNAs) to the diversification on the repetitive landscape in Phaseoleae, with a typical set of repeats in each species. The high turnover of these sequences, however, did not affect total genome size.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Integrative Plant Research Laboratory, Department of Botany and Ecology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060900, Brazil.
| | - Emanuelle Vasconcelos
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Recife, PE, Brazil
| | - Karla G B Dos Santos
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, s/n, Cidade Universitária, Recife, PE, 50670420, Brazil
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Ana Christina Brasileiro-Vidal
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, s/n, Cidade Universitária, Recife, PE, 50670420, Brazil.
| |
Collapse
|
10
|
Liu X, Karrenberg S. Genetic architecture of traits associated with reproductive barriers in Silene: Coupling, sex chromosomes and variation. Mol Ecol 2018; 27:3889-3904. [PMID: 29577481 DOI: 10.1111/mec.14562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
The evolution of reproductive barriers and their underlying genetic architecture is of central importance for the formation of new species. Reproductive barriers can be controlled either by few large-effect loci suggesting strong selection on key traits, or by many small-effect loci, consistent with gradual divergence or with selection on polygenic or multiple traits. Genetic coupling between reproductive barrier loci further promotes divergence, particularly divergence with ongoing gene flow. In this study, we investigated the genetic architectures of ten morphological, phenological and life history traits associated with reproductive barriers between the hybridizing sister species Silene dioica and S. latifolia; both are dioecious with XY-sex determination. We used quantitative trait locus (QTL) mapping in two reciprocal F2 crosses. One to six QTLs per trait, including nine major QTLs (PVE > 20%), were detected on 11 of the 12 linkage groups. We found strong evidence for coupling of QTLs for uncorrelated traits and for an important role of sex chromosomes in the genetic architectures of reproductive barrier traits. Unexpectedly, QTLs detected in the two F2 crosses differed largely, despite limited phenotypic differences between them and sufficient statistical power. The widely dispersed genetic architectures of traits associated with reproductive barriers suggest gradual divergence or multifarious selection. Coupling of the underlying QTLs likely promoted divergence with gene flow in this system. The low congruence of QTLs between the two crosses further points to variable and possibly redundant genetic architectures of traits associated with reproductive barriers, with important implications for the evolutionary dynamics of divergence and speciation.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Ribeiro T, Dos Santos KGB, Richard MMS, Sévignac M, Thareau V, Geffroy V, Pedrosa-Harand A. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. PROTOPLASMA 2017; 254:791-801. [PMID: 27335007 DOI: 10.1007/s00709-016-0993-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Common bean (Phaseolus vulgaris) subtelomeres are highly enriched for khipu, the main satellite DNA identified so far in this genome. Here, we comparatively investigate khipu genomic organization in Phaseolus species from different clades. Additionally, we identified and characterized another satellite repeat, named jumper, associated to khipu. A mixture of P. vulgaris khipu clones hybridized in situ confirmed the presence of khipu-like sequences on subterminal chromosome regions in all Phaseolus species, with differences in the number and intensity of signals between species and when species-specific clones were used. Khipu is present as multimers of ∼500 bp and sequence analyses of cloned fragments revealed close relationship among khipu repeats. The new repeat, named jumper, is a 170-bp satellite sequence present in all Phaseolus species and inserted into the nontranscribed spacer (NTS) of the 5S rDNA in the P. vulgaris genome. Nevertheless, jumper was found as a high-copy repeat at subtelomeres and/or pericentromeres in the Phaseolus microcarpus lineage only. Our data argue for khipu as an important subtelomeric satellite DNA in the genus and for a complex satellite repeat composition of P. microcarpus subtelomeres, which also contain jumper. Furthermore, the differential amplification of these repeats in subtelomeres or pericentromeres reinforces the presence of a dynamic satellite DNA library in Phaseolus.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Karla G B Dos Santos
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Mireille Sévignac
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
12
|
Zhang L, Yang X, Tian L, Chen L, Yu W. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation. THE NEW PHYTOLOGIST 2016; 211:1424-39. [PMID: 27176118 DOI: 10.1111/nph.13999] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/31/2016] [Indexed: 05/17/2023]
Abstract
The cultivated peanut Arachis hypogaea (AABB) is thought to have originated from the hybridization of Arachis duranensis (AA) and Arachis ipaënsis (BB) followed by spontaneous chromosome doubling. In this study, we cloned and analyzed chromosome markers from cultivated peanut and its wild relatives. A fluorescence in situ hybridization (FISH)-based karyotyping cocktail was developed with which to study the karyotypes and chromosome evolution of peanut and its wild relatives. Karyotypes were constructed in cultivated peanut and its two putative progenitors using our FISH-based karyotyping system. Comparative karyotyping analysis revealed that chromosome organization was highly conserved in cultivated peanut and its two putative progenitors, especially in the B genome chromosomes. However, variations existed between A. duranensis and the A genome chromosomes in cultivated peanut, especially for the distribution of the interstitial telomere repeats (ITRs). A search of additional A. duranensis varieties from different geographic regions revealed both numeric and positional variations of ITRs, which were similar to the variations in tetraploid peanut varieties. The results provide evidence for the origin of cultivated peanut from the two diploid ancestors, and also suggest that multiple hybridization events of A. ipaënsis with different varieties of A. duranensis may have occurred during the origination of peanut.
Collapse
Affiliation(s)
- Laining Zhang
- School of Life Sciences, Institute of Plant Molecular Biology and Agricultural Biotechnology, State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Xiaoyu Yang
- School of Life Sciences, Institute of Plant Molecular Biology and Agricultural Biotechnology, State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Lei Chen
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Weichang Yu
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
13
|
Wyrwa K, Książkiewicz M, Szczepaniak A, Susek K, Podkowiński J, Naganowska B. Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes. Chromosome Res 2016; 24:355-78. [PMID: 27168155 PMCID: PMC4969343 DOI: 10.1007/s10577-016-9526-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 11/30/2022]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) has recently been considered a reference genome for the Lupinus genus. In the present work, genetic and cytogenetic maps of L. angustifolius were supplemented with 30 new molecular markers representing lupin genome regions, harboring genes involved in nitrogen fixation during the symbiotic interaction of legumes and soil bacteria (Rhizobiaceae). Our studies resulted in the precise localization of bacterial artificial chromosomes (BACs) carrying sequence variants for early nodulin 40, nodulin 26, nodulin 45, aspartate aminotransferase P2, asparagine synthetase, cytosolic glutamine synthetase, and phosphoenolpyruvate carboxylase. Together with previously mapped chromosomes, the integrated L. angustifolius map encompasses 73 chromosome markers, including 5S ribosomal DNA (rDNA) and 45S rDNA, and anchors 20 L. angustifolius linkage groups to corresponding chromosomes. Chromosomal identification using BAC fluorescence in situ hybridization identified two BAC clones as narrow-leafed lupin centromere-specific markers, which served as templates for preliminary studies of centromere composition within the genus. Bioinformatic analysis of these two BACs revealed that centromeric/pericentromeric regions of narrow-leafed lupin chromosomes consisted of simple sequence repeats ordered into tandem repeats containing the trinucleotide and pentanucleotide simple sequence repeats AGG and GATAC, structured into long arrays. Moreover, cross-genus microsynteny analysis revealed syntenic patterns of 31 single-locus BAC clones among several legume species. The gene and chromosome level findings provide evidence of ancient duplication events that must have occurred very early in the divergence of papilionoid lineages. This work provides a strong foundation for future comparative mapping among legumes and may facilitate understanding of mechanisms involved in shaping legume chromosomes.
Collapse
Affiliation(s)
- Katarzyna Wyrwa
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland.
| | - Michał Książkiewicz
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Anna Szczepaniak
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Karolina Susek
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Jan Podkowiński
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Z. Noskowskiego 12/14, Poznań, 61-704, Poland
| | - Barbara Naganowska
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| |
Collapse
|
14
|
Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives. G3-GENES GENOMES GENETICS 2016; 6:1013-22. [PMID: 26865698 PMCID: PMC4825637 DOI: 10.1534/g3.115.024984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fluorescence in situ hybridization (FISH)-based karyotyping is a powerful cytogenetics tool to study chromosome organization, behavior, and chromosome evolution. Here, we developed a FISH-based karyotyping system using a probe mixture comprised of centromeric and subtelomeric satellite repeats, 5S rDNA, and chromosome-specific BAC clones in common bean, which enables one to unambiguously distinguish all 11 chromosome pairs. Furthermore, we applied the karyotyping system to several wild relatives and landraces of common bean from two distinct gene pools, as well as other related Phaseolus species, to investigate repeat evolution in the genus Phaseolus. Comparison of karyotype maps within common bean indicates that chromosomal distribution of the centromeric and subtelomeric satellite repeats is stable, whereas the copy number of the repeats was variable, indicating rapid amplification/reduction of the repeats in specific genomic regions. In Phaseolus species that diverged approximately 2–4 million yr ago, copy numbers of centromeric repeats were largely reduced or diverged, and chromosomal distributions have changed, suggesting rapid evolution of centromeric repeats. We also detected variation in the distribution pattern of subtelomeric repeats in Phaseolus species. The FISH-based karyotyping system revealed that satellite repeats are actively and rapidly evolving, forming genomic features unique to individual common bean accessions and Phaseolus species.
Collapse
|
15
|
Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG, Tar'an B, Bett KE. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 2016; 17:239. [PMID: 26979462 PMCID: PMC4793507 DOI: 10.1186/s12864-016-2499-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Common bean (Phaseolus vulgaris) is an important grain legume and there has been a recent resurgence in interest in its relative, tepary bean (P. acutifolius), owing to this species’ ability to better withstand abiotic stresses. Genomic resources are scarce for this minor crop species and a better knowledge of the genome-level relationship between these two species would facilitate improvement in both. High-throughput genotyping has facilitated large-scale single nucleotide polymorphism (SNP) identification leading to the development of molecular markers with associated sequence information that can be used to place them in the context of a full genome assembly. Results Transcript-based SNPs were identified from six common bean and two tepary bean accessions and a subset were used to generate a 768-SNP Illumina GoldenGate assay for each species. The tepary bean assay was used to assess diversity in wild and cultivated tepary bean and to generate the first gene-based map of the tepary bean genome. Genotypic analyses of the diversity panel showed a clear separation between domesticated and cultivated tepary beans, two distinct groups within the domesticated types, and P. parvifolius was confirmed to be distinct. The genetic map of tepary bean was compared to the common bean genome assembly to demonstrate high levels of collinearity between the two species with differences limited to a few intra-chromosomal rearrangements. Conclusions The development of the first set of genomic resources specifically for tepary bean has allowed for greater insight into the structure of this species and its relationship to its agriculturally more prominent relative, common bean. These resources will be helpful in the development of efficient breeding strategies for both species and will facilitate the introgression of agriculturally important traits from one crop into the other. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2499-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Gujaria-Verma
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Lacey-Anne Sanderson
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Daniel G Debouck
- Genetic Resources Program, International Center for Tropical Agriculture, Km 17 recta a Palmira, AA6713, Cali, Colombia
| | - Bunyamin Tar'an
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
16
|
Susek K, Bielski WK, Hasterok R, Naganowska B, Wolko B. A First Glimpse of Wild Lupin Karyotype Variation As Revealed by Comparative Cytogenetic Mapping. FRONTIERS IN PLANT SCIENCE 2016; 7:1152. [PMID: 27516770 PMCID: PMC4964750 DOI: 10.3389/fpls.2016.01152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 05/19/2023]
Abstract
Insight into plant genomes at the cytomolecular level provides useful information about their karyotype structure, enabling inferences about taxonomic relationships and evolutionary origins. The Old World lupins (OWL) demonstrate a high level of genomic diversification involving variation in chromosome numbers (2n = 32-52), basic chromosome numbers (x = 5-7, 9, 13) and in nuclear genome size (2C DNA = 0.97-2.68 pg). Lupins comprise both crop and wild species and provide an intriguing system to study karyotype evolution. In order to investigate lupin chromosome structure, heterologous FISH was used. Sixteen BACs that had been generated as chromosome markers for the reference species, Lupinus angustifolius, were used to identify chromosomes in the wild species and explore karyotype variation. While all "single-locus" in L. angustifolius, in the wild lupins these clones proved to be "single-locus," "single-locus" with additional signals, "repetitive" or had no detectable BAC-FISH signal. The diverse distribution of the clones in the targeted genomes suggests a complex evolution history, which possibly involved multiple chromosomal changes such as fusions/fissions and repetitive sequence amplification. Twelve BACs were sequenced and we found numerous transposable elements including DNA transposons as well as LTR and non-LTR retrotransposons with varying quantity and composition among the different lupin species. However, at this preliminary stage, no correlation was observed between the pattern of BAC-FISH signals and the repeat content in particular BACs. Here, we describe the first BAC-based chromosome-specific markers for the wild species: L. cosentinii, L. cryptanthus, L. pilosus, L. micranthus and one New World lupin, L. multiflorus. These BACs could constitute the basis for an assignment of the chromosomal and genetic maps of other lupins, e.g., L. albus and L. luteus. Moreover, we identified karyotype variation that helps illustrate the relationships between the lupins and the extensive cytological diversity within this group. In this study we premise that lupin genomes underwent at least two rounds of fusion and fission events resulting in the reduction in chromosome number from 2n = 52 through 2n = 40 to 2n = 32, followed by chromosome number increment to 2n = 42.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Karolina Susek
| | - Wojciech K. Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in KatowiceKatowice, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
17
|
Fonsêca A, Ferraz ME, Pedrosa-Harand A. Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy. Chromosoma 2015; 125:413-21. [PMID: 26490170 DOI: 10.1007/s00412-015-0548-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
The genus Phaseolus L. has been subject of extensive cytogenetic studies due to its global economic importance. It is considered karyotypically stable, with most of its ca. 75 species having 2n = 22 chromosomes, and only three species (Phaseolus leptostachyus, Phaseolus macvaughii, and Phaseolus micranthus), which form the Leptostachyus clade, having 2n = 20. To test whether a simple chromosomal fusion was the cause of this descending dysploidy, mitotic chromosomes of P. leptostachyus (2n = 20) were comparatively mapped by fluorescent in situ hybridization (FISH) using bacterial artificial chromosomes (BACs) and ribosomal DNA (rDNA) probes. Our results corroborated the conservation of the 5S and 45S rDNA sites on ancestral chromosomes 10 and 6, respectively. The reduction from x = 11 to x = 10 was the result of the insertion of chromosome 10 into the centromeric region of chromosome 11, supporting a nested chromosome fusion (NCF) as the main cause of this dysploidy. Additionally, the terminal region of the long arm of chromosome 6 was translocated to this larger chromosome. Surprisingly, the NCF was accompanied by several additional translocations and inversions previously unknown for the genus, suggesting that the dysploidy may have been associated to a burst of genome reorganization in this otherwise stable, diploid plant genus.
Collapse
Affiliation(s)
- Artur Fonsêca
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil
| | - Maria Eduarda Ferraz
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
18
|
Younis A, Ramzan F, Hwang YJ, Lim KB. FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. PLANT CELL REPORTS 2015; 34:1477-1488. [PMID: 26123291 DOI: 10.1007/s00299-015-1828-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
The innovations in chromosome engineering have improved the efficiency of interrogation breeding, and the identification and transfer of resistance genes from alien to native species. Recent advances in molecular biology and cytogenetics have brought revolutionary, conceptual developments in mitosis and meiosis research, chromosome structure and manipulation, gene expression and regulation, and gene silencing. Cytogenetic studies offer integrative tools for imaging, genetics, epigenetics, and cytological information that can be employed to enhance chromosome and molecular genomic research in plant taxa. In situ hybridization techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), can identify chromosome morphologies and sequences, amount and distribution of various types of chromatin in chromosomes, and genome organization during the metaphase stage of meiosis. Over the past few decades, various new molecular cytogenetic applications have been developed. The FISH and GISH techniques present an authentic model for analyzing the individual chromosome, chromosomal segments, or the genomes of natural and artificial hybrid plants. These have become the most reliable techniques for studying allopolyploids, because most cultivated plants have been developed through hybridization or polyploidization. Moreover, introgression of the genes and chromatin from the wild types into cultivated species can also be analyzed. Since hybrid derivatives may have variable alien chromosome numbers or chromosome arms, the use of these approaches opens new avenues for accurately identifying genome differences.
Collapse
Affiliation(s)
- Adnan Younis
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, South Korea,
| | | | | | | |
Collapse
|
19
|
Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH. Chromosome Res 2015; 23:253-66. [PMID: 25634499 DOI: 10.1007/s10577-014-9464-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 12/22/2022]
Abstract
Cowpea (Vigna unguiculata) is an annual legume grown in tropical and subtropical regions, which is economically relevant due to high protein content in dried beans, green pods, and leaves. In this work, a comparative cytogenetic study between V. unguiculata and Phaseolus vulgaris (common bean) was conducted using BAC-FISH. Sequences previously mapped in P. vulgaris chromosomes (Pv) were used as probes in V. unguiculata chromosomes (Vu), contributing to the analysis of macrosynteny between both legumes. Thirty-seven clones from P. vulgaris 'BAT93' BAC library, corresponding to its 11 linkage groups, were hybridized in situ. Several chromosomal rearrangements were identified, such as translocations (between BACs from Pv1 and Pv8; Pv2 and Pv3; as well as Pv2 and Pv11), duplications (BAC from Pv3), as well as paracentric and pericentric inversions (BACs from Pv3, and Pv4, respectively). Two BACs (from Pv2 and Pv7), which hybridized at terminal regions in almost all P. vulgaris chromosomes, showed single-copy signal in Vu. Additionally, 17 BACs showed no signal in V. unguiculata chromosomes. The present results demonstrate the feasibility of using BAC libraries in comparative chromosomal mapping and karyotype evolution studies between Phaseolus and Vigna species, and revealed several macrosynteny and collinearity breaks among both legumes.
Collapse
|
20
|
Construction of cytogenetic map of Gossypium herbaceum chromosome 1 and its integration with genetic maps. Mol Cytogenet 2015; 8:2. [PMID: 25628758 PMCID: PMC4307992 DOI: 10.1186/s13039-015-0106-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Background Cytogenetic map can provide not only information of the genome structure, but also can build a solid foundation for genetic research. With the developments of molecular and cytogenetic studies in cotton (Gossypium), the construction of cytogenetic map is becoming more and more imperative. Results A cytogenetic map of chromosome 1 (A101) of Gossypium herbaceum (A1) which includes 10 bacterial artificial chromosome (BAC) clones was constructed by using fluorescent in situ hybridization (FISH). Meanwhile, comparison and analysis were made for the cytogenetic map of chromosome 1 (A101) of G. herbaceum with four genetic linkage maps of chromosome 1 (Ah01) of G. hirsutum ((AD)1) and one genetic linkage map of chromosome 1 of (A101) G. arboreum (A2). The 10 BAC clones were also used to be localized on G. raimondii (D5) chromosome 1 (D501), and 2 of them showed clear unique hybridized signals. Furthermore, these 2 BAC clones were also shown localized on chromosome 1 of both A sub-genome and D sub-genome of G. hirsutum. Conclusion The comparison of the cytogenetic map with genetic linkage maps showed that most of the identified marker-tagged BAC clones appearing same orders in different maps except three markers showing different positions, which might indicate chromosomal segmental rearrangements. The positions of the 2 BAC clones which were localized on Ah01 and Dh01 chromosomes were almost the same as that on A101 and D501 chromosomes. The corresponding anchored SSR markers of these 2 BAC clones were firstly found to be localized on chromosome D501 (Dh01) as they were not seen mapped like this in any genetic map reported.
Collapse
|
21
|
Blair MW, Córdoba JM, Muñóz C, Yuyó DK. BAC-end microsatellites from intra and inter-genic regions of the common bean genome and their correlation with cytogenetic features. PLoS One 2014; 9:e101873. [PMID: 25254501 PMCID: PMC4177843 DOI: 10.1371/journal.pone.0101873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Highly polymorphic markers such as simple sequence repeats (SSRs) or microsatellites are very useful for genetic mapping. In this study novel SSRs were identified in BAC-end sequences (BES) from non-contigged, non-overlapping bacterial artificial clones (BACs) in common bean (Phaseolus vulgaris L.). These so called "singleton" BACs were from the G19833 Andean gene pool physical map and the new BES-SSR markers were used for the saturation of the inter-gene pool, DOR364×G19833 genetic map. A total of 899 SSR loci were found among the singleton BES, but only 346 loci corresponded to the single di- or tri-nucleotide motifs that were likely to be polymorphic (ATT or AG motifs, principally) and useful for primer design and individual marker mapping. When these novel SSR markers were evaluated in the DOR364×G19833 population parents, 136 markers revealed polymorphism and 106 were mapped. Genetic mapping resulted in a map length of 2291 cM with an average distance between markers of 5.2 cM. The new genetic map was compared to the most recent cytogenetic analysis of common bean chromosomes. We found that the new singleton BES-SSR were helpful in filling peri-centromeric spaces on the cytogenetic map. Short genetic distances between some new singleton-derived BES-SSR markers was common showing suppressed recombination in these regions compared to other parts of the genome. The correlation of singleton-derived SSR marker distribution with other cytogenetic features of the bean genome is discussed.
Collapse
Affiliation(s)
- Matthew Wohlgemuth Blair
- Departamento de Agronomía y Ciencias Agricolas, Universidad Nacional de Colombia, Km 12 via Chapinero, Palmira, Colombia
- Department of Agriculture and Natural Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| | | | - Claritza Muñóz
- Generation Challenge Program, Tropical Legumes I, c/o CIAT, Cali, Colombia
| | - Deissy K. Yuyó
- Departamento de Agronomía Universidad Nacional de Colombia, Facultad de Agronomía, Bogotá, Colombia
| |
Collapse
|
22
|
Fonsêca A, Richard MM, Geffroy V, Pedrosa-Harand A. Epigenetic Analyses and the Distribution of Repetitive DNA and Resistance Genes Reveal the Complexity of Common Bean ( Phaseolus vulgaris L., Fabaceae) Heterochromatin. Cytogenet Genome Res 2014; 143:168-78. [DOI: 10.1159/000360572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Richard MMS, Chen NWG, Thareau V, Pflieger S, Blanchet S, Pedrosa-Harand A, Iwata A, Chavarro C, Jackson SA, Geffroy V. The Subtelomeric khipu Satellite Repeat from Phaseolus vulgaris: Lessons Learned from the Genome Analysis of the Andean Genotype G19833. FRONTIERS IN PLANT SCIENCE 2013; 4:109. [PMID: 24137164 PMCID: PMC3797529 DOI: 10.3389/fpls.2013.00109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/09/2013] [Indexed: 05/10/2023]
Abstract
Subtelomeric regions in eukaryotic organisms are known for harboring species-specific tandemly repeated satellite sequences. However, studies on the molecular organization and evolution of subtelomeric repeats are scarce, especially in plants. Khipu is a satellite DNA of 528-bp repeat unit, specific of the Phaseolus genus, with a subtelomeric distribution in common bean, P. vulgaris. To investigate the genomic organization and the evolution of khipu, we performed genome-wide analysis on the complete genome sequence of the common bean genotype G19833. We identified 2,460 khipu units located at most distal ends of the sequenced regions. Khipu units are arranged in discrete blocks of 2-55 copies and are heterogeneously distributed among the different chromosome ends of G19833 (from 0 to 555 khipus units per chromosome arm). Phylogenetically related khipu units are spread between numerous chromosome ends, suggesting frequent exchanges between non-homologous subtelomeres. However, most subclades contain numerous khipu units from only one or few chromosome ends indicating that local duplication is also driving khipu expansion. Unexpectedly, we also identified 81 khipu units located at centromeres. All the centromeric khipu units belong to a single divergent clade also comprised of a few units from several subtelomeres, suggesting that a few sequence exchanges between centromeres and subtelomeres took place in the common bean genome. The divergence and low copy number of these centromeric units from the subtelomeric units could explain why they were not detected by FISH (Fluorescence in situ Hybridization) although it can not be excluded that these centromeric units may have resulted from errors in the pseudomolecule assembly. Altogether our data highlight extensive sequence exchanges in subtelomeres between non-homologous chromosomes in common bean and confirm that subtelomeres represent one of the most dynamic and rapidly evolving regions in eukaryotic genomes.
Collapse
Affiliation(s)
- Manon M. S. Richard
- UMR-CNRS 8618, Saclay Plant Sciences, Institut de Biologie des Plantes, Université Paris SudOrsay Cedex, France
| | - Nicolas W. G. Chen
- UMR-CNRS 8618, Saclay Plant Sciences, Institut de Biologie des Plantes, Université Paris SudOrsay Cedex, France
| | - Vincent Thareau
- UMR-CNRS 8618, Saclay Plant Sciences, Institut de Biologie des Plantes, Université Paris SudOrsay Cedex, France
| | - Stéphanie Pflieger
- UMR-CNRS 8618, Saclay Plant Sciences, Institut de Biologie des Plantes, Université Paris SudOrsay Cedex, France
- Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Sophie Blanchet
- UMR-CNRS 8618, Saclay Plant Sciences, Institut de Biologie des Plantes, Université Paris SudOrsay Cedex, France
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Universidade Federal de Pernambuco, Rua Nelson Chaves s/nRecife, Pernambuco, Brazil
| | - Aiko Iwata
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics, and Genomics, University of GeorgiaAthens, GA, USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics, and Genomics, University of GeorgiaAthens, GA, USA
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics, and Genomics, University of GeorgiaAthens, GA, USA
| | - Valérie Geffroy
- UMR-CNRS 8618, Saclay Plant Sciences, Institut de Biologie des Plantes, Université Paris SudOrsay Cedex, France
- Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche AgronomiqueGif-sur-Yvette, France
| |
Collapse
|
24
|
Fonsêca A, Pedrosa-Harand A. Karyotype stability in the genus Phaseolus evidenced by the comparative mapping of the wild species Phaseolus microcarpus. Genome 2013; 56:335-43. [PMID: 23957673 DOI: 10.1139/gen-2013-0025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The genus Phaseolus L. (Fabaceae) is monophyletic and comprises approximately 75 species distributed into two principal clades. The five cultivated species, including the common bean (Phaseolus vulgaris), were placed in clade B. Clade A comprises only wild species, with more limited distribution. In the present work, bacterial artificial chromosomes (BACs) previously mapped in common bean (2n = 22) were used as probes in fluorescent in situ hybridization (FISH) in this comparative study of Phaseolus microcarpus (2n = 22), a species from clade A. We also analyzed the chromomycin A3 (CMA)/4',6-diamidino-2-phenylindole (DAPI) banding pattern and the localization of rDNA and telomeric DNA sites. The single 45S rDNA site from P. microcarpus was mapped to chromosome 6, showing conservation to the P. vulgaris homeolog. Of the two 5S rDNA sites identified in both species, only the site on chromosome 10 appeared conserved. In spite of the phylogenetic distance between the two species, all of the single-copy BACs demonstrated conservation of synteny. However, four collinearity breaks were observed, probably caused by para- and pericentric inversions. Some variation in the repetitive fraction of the genome was also observed. Thus, a broader analysis of the genus confirms that few, rare inversions seem to represent the main karyotype changes during the evolution of this genus.
Collapse
Affiliation(s)
- Artur Fonsêca
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil, 50670-420
| | | |
Collapse
|
25
|
Sun J, Zhang Z, Zong X, Huang S, Li Z, Han Y. A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics 2013; 14:461. [PMID: 23834562 PMCID: PMC3710503 DOI: 10.1186/1471-2164-14-461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 01/05/2023] Open
Abstract
Background High-resolution cytogenetic map can provide not only important biological information on genome organization but also solid foundation for genetic and genomic research. The progress in the molecular and cytogenetic studies has created the basis for developing the cytogenetic map in cucumber (Cucumis sativus L.). Results Here, the cytogenetic maps of four cucumber chromosomes (chromosomes 1, 3–5) were constructed by fluorescence in situ hybridization (FISH) analysis on cucumber pachytene chromosomes. Together with our previously constructed cytogenetic maps of three cucumber chromosomes (chromosomes 2, 6–7), cucumber has a complete cytogenetic map with 76 anchoring points between the genetic, the cytogenetic and the draft genome assembly maps. To compare our pachytene FISH map directly to the genetic linkage and draft genome assembly maps, we used a standardized map unit—relative map position (RMP) to produce the comparative map alignments. The alignments allowed a global view of the relationship of genetic and physical distances along each cucumber chromosome, and accuracy and coverage of the draft genome assembly map. Conclusions We demonstrated a good correlation between positions of the markers in the linkage and physical maps, and essentially complete coverage of chromosome arms by the draft genome assembly. Our study not only provides essential information for the improvement of sequence assembly but also offers molecular tools for cucumber genomics research, comparative genomics and evolutionary study.
Collapse
Affiliation(s)
- Jianying Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | | | | | | | | | | |
Collapse
|
26
|
Almeida C, Pedrosa-Harand A. High macro-collinearity between lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.) as revealed by comparative cytogenetic mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1909-1916. [PMID: 23649647 DOI: 10.1007/s00122-013-2106-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/20/2013] [Indexed: 06/02/2023]
Abstract
Common bean (P. vulgaris) and lima bean (P. lunatus) are the most important crop species from the genus Phaseolus. Both species have the same chromosome number (2n = 22) and previous cytogenetic mapping of BAC clones suggested conserved synteny. Nevertheless, karyotype differences were observed, suggesting structural rearrangements. In this study, comparative cytogenetic maps for chromosomes 3, 4 and 7 were built and the collinearity between the common bean and lima bean chromosomes was investigated. Thirty-two markers (30 BACs and 2 bacteriophages) from P. vulgaris were hybridized in situ on mitotic chromosomes from P. lunatus. Nine BACs revealed a repetitive DNA pattern with pericentromeric distribution and 23 markers showed unique signals. Nine of these markers were mapped on chromosome 3, eight on chromosome 4 and six on chromosome 7. The order and position of all analyzed BACs were similar between the two species, indicating a high level of macro-collinearity. Thus, although few inversions have probably altered centromere position in other chromosomes, the main karyotypic differences were associated with the repetitive DNA fraction.
Collapse
Affiliation(s)
- Cícero Almeida
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Universidade Federal de Pernambuco, Recife, PE 50670-420, Brazil
| | | |
Collapse
|
27
|
Książkiewicz M, Wyrwa K, Szczepaniak A, Rychel S, Majcherkiewicz K, Przysiecka Ł, Karlowski W, Wolko B, Naganowska B. Comparative genomics of Lupinus angustifolius gene-rich regions: BAC library exploration, genetic mapping and cytogenetics. BMC Genomics 2013; 14:79. [PMID: 23379841 PMCID: PMC3618312 DOI: 10.1186/1471-2164-14-79] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 02/01/2013] [Indexed: 01/06/2023] Open
Abstract
Background The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. Results The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. Conclusions In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that not only was the gene nucleotide sequence conserved between soybean and lupin GRRs, but the order and orientation of particular genes in syntenic blocks was homologous, as well. These findings will be valuable to the forthcoming sequencing of the lupin genome.
Collapse
Affiliation(s)
- Michał Książkiewicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Almeida C, Fonsêca A, dos Santos KGB, Mosiolek M, Pedrosa-Harand A. Contrasting evolution of a satellite DNA and its ancestral IGS rDNA in Phaseolus (Fabaceae). Genome 2012; 55:683-9. [PMID: 23050694 DOI: 10.1139/g2012-059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CC4 is a satellite DNA from common bean (Phaseolus vulgaris L.) that is similar to its intergenic spacer (IGS) rDNA. CC4 was originally hypothesized to be an old, fast evolving satellite family that has invaded common bean rDNA. To test this hypothesis and contribute to the understanding of IGS-like satellite DNA evolution, we have investigated its distribution in the genus Phaseolus and related species. CC4 was cloned and used as probe for Southern blot and FISH experiments. CC4 was observed as an independent satellite in common bean, forming two to three major and a few minor pericentromeric clusters. In Phaseolus coccineus, CC4 was present in four major clusters, also not co-localized with the 45S rDNA sites. Remarkably, in the less related species of the genus, signals were detected co-localized with the 45S rDNA sites, but co-localization was not observed in the species where CC4 is present as an independent satellite. No signal was detected in species from related genera. Altogether, the data suggest that CC4 has originated from the IGS rDNA in the P. vulgaris-P. coccineus lineage and has evolved slower than the IGS rDNA from this lineage.
Collapse
Affiliation(s)
- Cícero Almeida
- Laboratory of Plant Cytogenetics and Molecular Biology, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil, 50670-420
| | | | | | | | | |
Collapse
|
29
|
An integrated cytogenetic and physical map reveals unevenly distributed recombination spots along the papaya sex chromosomes. Chromosome Res 2012; 20:753-67. [PMID: 23007683 DOI: 10.1007/s10577-012-9312-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 01/02/2023]
Abstract
Papaya is a model system for the study of sex chromosome evolution in plants. However, the cytological structures of the papaya chromosomes remain largely unknown and chromosomal features have not been linked with any genetic or genomic data. We constructed a cytogenetic map of the papaya sex chromosome (chromosome 1) by hybridizing 16 microsatellite markers and 2 cytological feature-associated markers on pachytene chromosomes using fluorescence in situ hybridization (FISH). Except for three markers, the order of the markers was concordant to that of marker loci along the linkage map. This discrepancy was likely caused by skewed segregation in the highly heterochromatic or centromeric regions. The papaya sex chromosome is largely euchromatic, its heterochromatin spans about 15 % of the Y chromosome and is mostly restricted to the centromeric and pericentromeric regions. Analysis of the recombination frequency along the papaya sex chromosome revealed a complete suppression of recombination in the centromere and pericentromere region and 60 % higher recombination rate in the long arm than in the short arm. The uneven distribution of recombination events might be caused by differences in sequence composition. Sequence analysis of 18 scaffolds in total length of 15 Mb revealed higher gene density towards the telomeres and lower gene density towards the centromere, and a relatively higher gene density in the long arm than in the short arm. In an opposite trend, the centromeric and pericentromeric region contained the highest repetitive sequences and the long arm showed the lowest repetitive sequences. This cytogenetic map provides essential information for evolutionary study of sex chromosomes in Caricaceae and will facilitate the analysis of papaya sex chromosomes.
Collapse
|
30
|
Viana AJC, Souza MM. Comparative cytogenetics between the species Passiflora edulis and Passiflora cacaoensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:820-827. [PMID: 22404746 DOI: 10.1111/j.1438-8677.2011.00557.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Passiflora edulis Sims is the most economically important species of the genus Passiflora. A new species was described recently, Passiflora cacaoensis Bernacci & Souza, which displayed morphologic characteristics very similar to P. edulis. Due to the need for delimitation of the two species, karyomorphological and banding analyses were carried out. Both species have 2n = 18, with the same karyotype formula 16 m + 2sm. There was variation between the species regarding the location of satellites and the width of chromosome pairs 2, 4 and 8. C banding revealed the presence of constitutive heterochromatin in the centromeric and telomeric regions of all chromosomes in both species. However, only in P. cacaoensis did chromosomes 3 and 9 have a large quantity of heterochromatin. Fluorochrome banding revealed CMA(+) bands only in the satellites, but no DAPI(+) bands. Fluorescence in situ hybridisation (FISH) showed that in P. cacaoensis the rDNA 5S probe is located in a single site in the subterminal position of the long arm of chromosome 5. However, for the rDNA 45S probe, two sites were detected in terminal positions of the long arms of chromosome 7, with a bigger and stronger signal, and of chromosome 9. According to the asymmetry index and the quantity of heterochromatin, P. cacaoensis is a more basal species than P. edulis. The cytogenetic data indicate that P. cacaoensis is closely related to P. edulis, but is a different species.
Collapse
Affiliation(s)
- A J C Viana
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - M M Souza
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| |
Collapse
|
31
|
Belarmino LC, da S Oliveira AR, Brasileiro-Vidal AC, de A Bortoleti KC, Bezerra-Neto JP, Abdelnoor RV, Benko-Iseppon AM. Mining plant genome browsers as a means for efficient connection of physical, genetic and cytogenetic mapping: An example using soybean. Genet Mol Biol 2012; 35:335-47. [PMID: 22802719 PMCID: PMC3392886 DOI: 10.1590/s1415-47572012000200015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physical maps are important tools to uncover general chromosome structure as well as to compare different plant lineages and species, helping to elucidate genome structure, evolution and possibilities regarding synteny and colinearity. The increasing production of sequence data has opened an opportunity to link information from mapping studies to the underlying sequences. Genome browsers are invaluable platforms that provide access to these sequences, including tools for genome analysis, allowing the integration of multivariate information, and thus aiding to explain the emergence of complex genomes. The present work presents a tutorial regarding the use of genome browsers to develop targeted physical mapping, providing also a general overview and examples about the possibilities regarding the use of Fluorescent In Situ Hybridization (FISH) using bacterial artificial chromosomes (BAC), simple sequence repeats (SSR) and rDNA probes, highlighting the potential of such studies for map integration and comparative genetics. As a case study, the available genome of soybean was accessed to show how the physical and in silico distribution of such sequences may be compared at different levels. Such evaluations may also be complemented by the identification of sequences beyond the detection level of cytological methods, here using members of the aquaporin gene family as an example. The proposed approach highlights the complementation power of the combination of molecular cytogenetics and computational approaches for the anchoring of coding or repetitive sequences in plant genomes using available genome browsers, helping in the determination of sequence location, arrangement and number of repeats, and also filling gaps found in computational pseudochromosome assemblies.
Collapse
Affiliation(s)
- Luis C Belarmino
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Bonifácio EM, Fonsêca A, Almeida C, Dos Santos KGB, Pedrosa-Harand A. Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1513-20. [PMID: 22331139 DOI: 10.1007/s00122-012-1806-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/28/2012] [Indexed: 05/07/2023]
Abstract
The common bean (Phaseolus vulgaris) and lima bean (P. lunatus) are among the most important legumes in terms of direct human consumption. The present work establishes a comparative cytogenetic map of P. lunatus, using previously mapped markers from P. vulgaris, in association with analyses of heterochromatin distribution using the fluorochromes chromomycin A3 (CMA) and 4',6-diamidino-2-phenylindole (DAPI) and localization of the 5S and 45S ribosomal DNA (rDNA) probes. Seven BACs selected from different common bean chromosomes demonstrated a repetitive pericentromeric pattern corresponding to the heterochromatic regions revealed by CMA/DAPI and could not be mapped. The subtelomeric repetitive pattern observed for BAC 63H6 in most of the chromosome ends of common bean was not detected in lima bean, indicating lack of conservation of this subtelomeric repeat. All chromosomes could be identified and 16 single-copy clones were mapped. These results showed a significant conservation of synteny between species, although change in centromere position suggested the occurrence of pericentric inversions on chromosomes 2, 9 and 10. The low number of structural rearrangements reflects the karyotypic stability of the genus.
Collapse
Affiliation(s)
- Eliene Mariano Bonifácio
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves, Recife, PE 50670-420, Brazil
| | | | | | | | | |
Collapse
|
33
|
Sadeghi MB, Khialparast F, Sabokdast M, Omidi M, Naghavi MR. Cytogenetic Evaluation of Some Genera of Persian <i>Phaseolus</i>. CYTOLOGIA 2012. [DOI: 10.1508/cytologia.77.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- M. B. Sadeghi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran
| | - F. Khialparast
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran
| | - M. Sabokdast
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran
| | - M. Omidi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran
| | - M. R. Naghavi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University of Tehran
| |
Collapse
|
34
|
Ribeiro T, dos Santos KGB, Fonsêca A, Pedrosa-Harand A. Isolation and characterization of a new repetitive DNA family recently amplified in the Mesoamerican gene pool of the common bean (Phaseolus vulgaris L., Fabaceae). Genetica 2011; 139:1135-42. [PMID: 22086374 DOI: 10.1007/s10709-011-9615-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 11/07/2011] [Indexed: 12/21/2022]
Abstract
The common bean (Phaseolus vulgaris) is one of the most important crop plants. About 50% of its genome is composed of repetitive sequences, but only a little fraction was isolated and characterized so far. In this paper, a new repetitive DNA family from the species, named PvMeso, was isolated and characterized in both gene pools of P. vulgaris (Andean and Mesoamerican) and related species. Two fragments, 1.7 and 2.3 kb long, were cloned from BAC 255F18, which has previously shown a repetitive pattern. The subclone PvMeso-31 showed a terminal block in chromosome 7. This subclone contains a 1,705 bp long, AT-rich repeat with small internal repeats and shares a 1.2 kb region with PvMeso-47, derived from the 2.3 kb fragment. The presence of this repetitive block was restricted to Mesoamerican accessions of the common bean. In P. acutifolius, P. leptostachyus and Andean P. vulgaris, only a faint, 2.3 kb fragment was visualized in Southern experiments. Moreover, in Mesoamerican accessions, two other fragments (1.7 kb and 3.4 kb) were strongly labelled as well. Taken together, our results indicate that PvMeso is a recently emerged, repeat family initially duplicated in chromosome 11, on ancestral Mesoamerican accession, and later amplified in chromosome 7, after the split of the two major gene pools of the common bean.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Department of Botany, Laboratory of Plant Cytogenetics, Federal University of Pernambuco, Recife, PE 50670-420, Brazil
| | | | | | | |
Collapse
|
35
|
Idziak D, Betekhtin A, Wolny E, Lesniewska K, Wright J, Febrer M, Bevan MW, Jenkins G, Hasterok R. Painting the chromosomes of Brachypodium: current status and future prospects. Chromosoma 2011; 120:469-79. [PMID: 21667205 PMCID: PMC3174371 DOI: 10.1007/s00412-011-0326-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 12/19/2022]
Abstract
Chromosome painting is one of the most powerful and spectacular tools of modern molecular cytogenetics, enabling complex analyses of nuclear genome structure and evolution. For many years, this technique was restricted to the study of mammalian chromosomes, as it failed to work in plant genomes due mainly to the presence of large amounts of repetitive DNA common to all the chromosomes of the complement. The availability of ordered, chromosome-specific BAC clones of Arabidopsis thaliana containing relatively little repetitive genomic DNA enabled the first chromosome painting in dicotyledonous plants. Here, we show for the first time chromosome painting in three different cytotypes of a monocotyledonous plant-the model grass, Brachypodium distachyon. Possible directions of further detailed studies are proposed, such as the evolution of grass karyotypes, the behaviour of meiotic chromosomes, and the analysis of chromosome distribution at interphase.
Collapse
Affiliation(s)
- Dominika Idziak
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska, Katowice, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bacterial artificial chromosome libraries of pulse crops: characteristics and applications. J Biomed Biotechnol 2011; 2012:493186. [PMID: 21811383 PMCID: PMC3144660 DOI: 10.1155/2012/493186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 12/01/2022] Open
Abstract
Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops.
Collapse
|
37
|
Altrock S, Fonsêca A, Pedrosa-Harand A. Chromosome identification in the Andean common bean accession G19833 (Phaseolus vulgaris L., Fabaceae). Genet Mol Biol 2011; 34:459-63. [PMID: 21931520 PMCID: PMC3168188 DOI: 10.1590/s1415-47572011005000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/28/2011] [Indexed: 12/01/2022] Open
Abstract
Characterization of all chromosomes of the Andean G19833 bean genotype was carried out by fluorescent in situ hybridization. Eleven single-copy genomic sequences, one for each chromosome, two BACs containing subtelomeric and pericentromeric repeats and the 5S and 45S ribosomal DNA (rDNA) were used as probes. Comparison to the Mesoamerican accession BAT93 showed little divergence, except for additional 45S rDNA sites in four chromosome pairs. Altogether, the results indicated a relative karyotypic stability during the evolution of the Andean and Mesoamerican gene pools of P. vulgaris.
Collapse
Affiliation(s)
- Sarah Altrock
- Laboratório de Citogenética Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | |
Collapse
|
38
|
Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res 2011; 19:493-506. [DOI: 10.1007/s10577-011-9202-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/10/2011] [Accepted: 03/13/2011] [Indexed: 10/18/2022]
|
39
|
Souza MM, Urdampilleta JD, Forni-Martins ER. Improvements in cytological preparations for fluorescent in situ hybridization in Passiflora. GENETICS AND MOLECULAR RESEARCH 2010; 9:2148-55. [PMID: 21053178 DOI: 10.4238/vol9-4gmr951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytological preparations for the fluorescent in situ hybridization (FISH) technique require cytoplasm-free metaphases, with well-spread chromosomes, for the localization of DNA sequences and chromosome mapping. We tested various procedures for FISH analysis of Passiflora cacaoensis, P. gardneri and hybrid F₁ progeny of P. gardneri x P. gibertii. Two treatments with four enzymes and three incubation times were compared. The material was treated with 1.0 M HCl before enzymatic digestion. The following criteria were used to determine the quality of the metaphases: a) lack or presence of cytoplasm; b) well-spread chromosomes or with overlap; c) complete or incomplete chromosome number (2n). The enzyme Pectinex(®) SP ULTRA gave the best performance, with the shortest incubation time. The best results were observed after 30 min of incubation; more than 70% of the metaphases did not have large amounts of cytoplasm or overlapping chromosomes, and about 75% maintained the chromosome number. FISH was carried out using a 45S rDNA probe (pTa71) labeled with biotin and detected with fluorescein isothiocyanate. Sites with strong staining and without nonspecific signals were observed. Our methodological adaptations allowed the preparation of metaphase slides of high quality for the FISH technique, with less time required for the preparation of samples.
Collapse
Affiliation(s)
- M M Souza
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil.
| | | | | |
Collapse
|
40
|
Lesniewska K, Książkiewicz M, Nelson MN, Mahé F, Aïnouche A, Wolko B, Naganowska B. Assignment of 3 Genetic Linkage Groups to 3 Chromosomes of Narrow-Leafed Lupin. J Hered 2010; 102:228-36. [DOI: 10.1093/jhered/esq107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P, Ashfield T, Innes RW, Geffroy V. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 187:941-956. [PMID: 20561214 PMCID: PMC2922445 DOI: 10.1111/j.1469-8137.2010.03337.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
*In plants, the evolution of specific resistance is poorly understood. Pseudomonas syringae effectors AvrB and AvrRpm1 are recognized by phylogenetically distinct resistance (R) proteins in Arabidopsis thaliana (Brassicaceae) and soybean (Glycine max, Fabaceae). In soybean, these resistances are encoded by two tightly linked R genes, Rpg1-b and Rpg1-r. To study the evolution of these specific resistances, we investigated AvrB- and AvrRpm1-induced responses in common bean (Phaseolus vulgaris, Fabaceae). *Common bean genotypes of various geographical origins were inoculated with P. syringae strains expressing AvrB or AvrRpm1. A common bean recombinant inbred line (RIL) population was used to map R genes to AvrRpm1. *No common bean genotypes recognized AvrB. By contrast, multiple genotypes responded to AvrRpm1, and two independent R genes conferring AvrRpm1-specific resistance were mapped to the ends of linkage group B11 (Rpsar-1, for resistance to Pseudomonas syringae effector AvrRpm1 number 1) and B8 (Rpsar-2). Rpsar-1 is located in a region syntenic with the soybean Rpg1 cluster. However, mapping of specific Rpg1 homologous genes suggests that AvrRpm1 recognition evolved independently in common bean and soybean. *The conservation of the genomic position of AvrRpm1-specific genes between soybean and common bean suggests a model whereby specific clusters of R genes are predisposed to evolve recognition of the same effector molecules.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Mireille Sévignac
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Vincent Thareau
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Ghislaine Magdelenat
- Genoscope/Commissariat à l’Energie Atomique-Centre National de Séquençage, 2 rue Gaston Crémieux CP5706 91057 Evry cedex, France
| | - Perrine David
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Tom Ashfield
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Valérie Geffroy
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
- Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Agronomique, 91190 Gif-sur-Yvette, France
| |
Collapse
|
42
|
Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW. Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 2010. [PMID: 20637113 DOI: 10.1186/1471‐2164‐11‐436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is the most important legume for direct human consumption and the goal of this study was to integrate a recently constructed physical map for the species with a microsatellite based genetic map using a BAC library from the genotype G19833 and the recombinant inbred line population DOR364 x G19833. RESULTS We searched for simple sequence repeats (SSRs) in the 89,017 BAC-end sequences (BES) from the physical map and genetically mapped any polymorphic BES-SSRs onto the genetic map. Among the BES it was possible to identify 623 contig-linked SSRs, most of which were highly AT-rich. A subgroup of 230 di-nucleotide and tri-nucleotide based SSR primer pairs from these BACs was tested on the mapping parents with 176 single copy loci and 114 found to be polymorphic markers. Of these, 99 were successfully integrated into the genetic map. The 99 linkages between the genetic and physical maps corresponded to an equal number of contigs containing a total of 5,055 BAC clones. CONCLUSIONS Class II microsatellites were more common in the BES than longer class I microsatellites. Both types of markers proved to be valuable for linking BAC clones to the genetic map and were successfully placed across all 11 linkage groups. The integration of common bean physical and genetic maps is an important part of comparative genome analysis and a prelude to positional cloning of agronomically important genes for this crop.
Collapse
Affiliation(s)
- Juana M Córdoba
- International Center for Tropical Agriculture (CIAT) Bean Project; A.A. 6713, Cali, Colombia
| | | | | | | | | |
Collapse
|
43
|
Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW. Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 2010; 11:436. [PMID: 20637113 PMCID: PMC3091635 DOI: 10.1186/1471-2164-11-436] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background Common bean (Phaseolus vulgaris L.) is the most important legume for direct human consumption and the goal of this study was to integrate a recently constructed physical map for the species with a microsatellite based genetic map using a BAC library from the genotype G19833 and the recombinant inbred line population DOR364 × G19833. Results We searched for simple sequence repeats (SSRs) in the 89,017 BAC-end sequences (BES) from the physical map and genetically mapped any polymorphic BES-SSRs onto the genetic map. Among the BES it was possible to identify 623 contig-linked SSRs, most of which were highly AT-rich. A subgroup of 230 di-nucleotide and tri-nucleotide based SSR primer pairs from these BACs was tested on the mapping parents with 176 single copy loci and 114 found to be polymorphic markers. Of these, 99 were successfully integrated into the genetic map. The 99 linkages between the genetic and physical maps corresponded to an equal number of contigs containing a total of 5,055 BAC clones. Conclusions Class II microsatellites were more common in the BES than longer class I microsatellites. Both types of markers proved to be valuable for linking BAC clones to the genetic map and were successfully placed across all 11 linkage groups. The integration of common bean physical and genetic maps is an important part of comparative genome analysis and a prelude to positional cloning of agronomically important genes for this crop.
Collapse
Affiliation(s)
- Juana M Córdoba
- International Center for Tropical Agriculture (CIAT) Bean Project; A.A. 6713, Cali, Colombia
| | | | | | | | | |
Collapse
|
44
|
Fonsêca A, Ferreira J, dos Santos TRB, Mosiolek M, Bellucci E, Kami J, Gepts P, Geffroy V, Schweizer D, dos Santos KGB, Pedrosa-Harand A. Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosome Res 2010; 18:487-502. [PMID: 20449646 PMCID: PMC2886897 DOI: 10.1007/s10577-010-9129-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/12/2010] [Accepted: 03/28/2010] [Indexed: 01/01/2023]
Abstract
A cytogenetic map of common bean was built by in situ hybridization of 35 bacterial artificial chromosomes (BACs) selected with markers mapping to eight linkage groups, plus two plasmids for 5S and 45S ribosomal DNA and one bacteriophage. Together with three previously mapped chromosomes (chromosomes 3, 4, and 7), 43 anchoring points between the genetic map and the cytogenetic map of the species are now available. Furthermore, a subset of four BAC clones was proposed to identify the 11 chromosome pairs of the standard cultivar BAT93. Three of these BACs labelled more than a single chromosome pair, indicating the presence of repetitive DNA in their inserts. A repetitive distribution pattern was observed for most of the BACs; for 38% of them, highly repetitive pericentromeric or subtelomeric signals were observed. These distribution patterns corresponded to pericentromeric and subtelomeric heterochromatin blocks observed with other staining methods. Altogether, the results indicate that around half of the common bean genome is heterochromatic and that genes and repetitive sequences are intermingled in the euchromatin and heterochromatin of the species.
Collapse
Affiliation(s)
- Artur Fonsêca
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
| | - Joana Ferreira
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
| | | | - Magdalena Mosiolek
- Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Elisa Bellucci
- Dipartimento di Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche, 60131 Ancona, Italy
- National Institute of Agricultural Botany, Cambridge, CB3 0LE UK
| | - James Kami
- Department of Plant Sciences/MS1, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780 USA
| | - Paul Gepts
- Department of Plant Sciences/MS1, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780 USA
| | - Valérie Geffroy
- Institut de Biotechnologie des Plantes, UMR-CNRS 8618, INRA, Université Paris Sud, 91405 Orsay, France
- Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Agronomique, 91190 Gif-sur-Yvette, France
| | - Dieter Schweizer
- Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Karla G. B. dos Santos
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
- Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
45
|
Gaeta ML, Yuyama PM, Sartori D, Fungaro MHP, Vanzela ALL. Occurrence and chromosome distribution of retroelements and NUPT sequences in Copaifera langsdorffii Desf. (Caesalpinioideae). Chromosome Res 2010; 18:515-24. [DOI: 10.1007/s10577-010-9131-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
|
46
|
David P, Chen NW, Pedrosa-Harand A, Thareau V, Sévignac M, Cannon SB, Debouck D, Langin T, Geffroy V. A nomadic subtelomeric disease resistance gene cluster in common bean. PLANT PHYSIOLOGY 2009; 151:1048-65. [PMID: 19776165 PMCID: PMC2773105 DOI: 10.1104/pp.109.142109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/17/2009] [Indexed: 05/18/2023]
Abstract
The B4 resistance (R) gene cluster is one of the largest clusters known in common bean (Phaseolus vulgaris [Pv]). It is located in a peculiar genomic environment in the subtelomeric region of the short arm of chromosome 4, adjacent to two heterochromatic blocks (knobs). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-Coil-Nucleotide-Binding-Site-Leucine-Rich-Repeat (CNL). Conserved microsynteny was observed between the Pv B4 locus and corresponding regions of Medicago truncatula and Lotus japonicus in chromosomes Mt6 and Lj2, respectively. The notable exception was the CNL sequences, which were completely absent in these regions. The origin of the Pv B4-CNL sequences was investigated through phylogenetic analysis, which reveals that, in the Pv genome, paralogous CNL genes are shared among nonhomologous chromosomes (4 and 11). Together, our results suggest that Pv B4-CNL was derived from CNL sequences from another cluster, the Co-2 cluster, through an ectopic recombination event. Integration of the soybean (Glycine max) genome data enables us to date more precisely this event and also to infer that a single CNL moved from the Co-2 to the B4 cluster. Moreover, we identified a new 528-bp satellite repeat, referred to as khipu, specific to the Phaseolus genus, present both between B4-CNL sequences and in the two knobs identified at the B4 R gene cluster. The khipu repeat is present on most chromosomal termini, indicating the existence of frequent ectopic recombination events in Pv subtelomeric regions. Our results highlight the importance of ectopic recombination in R gene evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Valérie Geffroy
- Institut de Biotechnologie des Plantes, UMR-CNRS 8618, Université Paris-Sud, 91405 Orsay cedex, France (P.D., N.W.G.C., V.T., M.S., T.L., V.G.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Agronomique, 91190 Gif-sur-Yvette, France (V.G.); Laboratório de Citogenética Vegetal, Departamento de Botânica-Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife-Pernambuco 50670–420, Brazil (A.P.-H.); United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011 (S.B.C.); and Genetic Resources Unit, Centro Internacional de Agricultura Tropical, AA 6713 Cali, Colombia (D.D.)
| |
Collapse
|