1
|
|
2
|
Proskuryakova AA, Kulemzina AI, Perelman PL, Makunin AI, Larkin DM, Farré M, Kukekova AV, Lynn Johnson J, Lemskaya NA, Beklemisheva VR, Roelke-Parker ME, Bellizzi J, Ryder OA, O'Brien SJ, Graphodatsky AS. X Chromosome Evolution in Cetartiodactyla. Genes (Basel) 2017; 8:genes8090216. [PMID: 28858207 PMCID: PMC5615350 DOI: 10.3390/genes8090216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 02/05/2023] Open
Abstract
The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.
Collapse
Affiliation(s)
- Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| | - Anastasia I Kulemzina
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| | - Alexey I Makunin
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Denis M Larkin
- The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Marta Farré
- The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Anna V Kukekova
- Animal Sciences Department, College of ACES, University of Illinois at Urbana-Champaign, IL 61801, USA.
| | - Jennifer Lynn Johnson
- Animal Sciences Department, College of ACES, University of Illinois at Urbana-Champaign, IL 61801, USA.
| | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Violetta R Beklemisheva
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Melody E Roelke-Parker
- Frederick National Laboratory of Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA.
| | - June Bellizzi
- Catoctin Zoo and Wildlife Preserve, Thurmont, MD 21788, USA.
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA.
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Sredniy Av. 41A, Saint-Petersburg 199034, Russia.
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale 3301 College Ave, Fort Lauderdale, FL 33314, USA.
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| |
Collapse
|
3
|
Romanenko SA, Serdyukova NA, Perelman PL, Pavlova SV, Bulatova NS, Golenishchev FN, Stanyon R, Graphodatsky AS. Intrachromosomal Rearrangements in Rodents from the Perspective of Comparative Region-Specific Painting. Genes (Basel) 2017; 8:E215. [PMID: 28867774 PMCID: PMC5615349 DOI: 10.3390/genes8090215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/31/2023] Open
Abstract
It has long been hypothesized that chromosomal rearrangements play a central role in different evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements have been extensively mapped using chromosome painting. However, intrachromosomal rearrangements have only been described using molecular cytogenetics in a limited number of mammals, including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic information. Significant progress in the detection of intrachromosomal rearrangement is now possible, due to recent advances in molecular biology and bioinformatics. We investigated the level of intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus, and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements in the subfamily at a significantly higher level of resolution than previously described. We found a number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements that were not previously detected.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Natalya A Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Svetlana V Pavlova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Nina S Bulatova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia.
| | | | - Roscoe Stanyon
- Department of Biology, Anthropology Laboratories, University of Florence, 50122 Florence, Italy.
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| |
Collapse
|
4
|
Zlotina A, Kulikova T, Kosyakova N, Liehr T, Krasikova A. Microdissection of lampbrush chromosomes as an approach for generation of locus-specific FISH-probes and samples for high-throughput sequencing. BMC Genomics 2016; 17:126. [PMID: 26897606 PMCID: PMC4761191 DOI: 10.1186/s12864-016-2437-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/05/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Over the past two decades, chromosome microdissection has been widely used in diagnostics and research enabling analysis of chromosomes and their regions through probe generation and establishing of chromosome- and chromosome region-specific DNA libraries. However, relatively small physical size of mitotic chromosomes limited the use of the conventional chromosome microdissection for investigation of tiny chromosomal regions. RESULTS In the present study, we developed a workflow for mechanical microdissection of giant transcriptionally active lampbrush chromosomes followed by the preparation of whole-chromosome and locus-specific fluorescent in situ hybridization (FISH)-probes and high-throughput sequencing. In particular, chicken (Gallus g. domesticus) lampbrush chromosome regions as small as single chromomeres, individual lateral loops and marker structures were successfully microdissected. The dissected fragments were mapped with high resolution to target regions of the corresponding lampbrush chromosomes. For investigation of RNA-content of lampbrush chromosome structures, samples retrieved by microdissection were subjected to reverse transcription. Using high-throughput sequencing, the isolated regions were successfully assigned to chicken genome coordinates. As a result, we defined precisely the loci for marker structures formation on chicken lampbrush chromosomes 2 and 3. Additionally, our data suggest that large DAPI-positive chromomeres of chicken lampbrush chromosome arms are characterized by low gene density and high repeat content. CONCLUSIONS The developed technical approach allows to obtain DNA and RNA samples from particular lampbrush chromosome loci, to define precisely the genomic position, extent and sequence content of the dissected regions. The data obtained demonstrate that lampbrush chromosome microdissection provides a unique opportunity to correlate a particular transcriptional domain or a cytological structure with a known DNA sequence. This approach offers great prospects for detailed exploration of functionally significant chromosomal regions.
Collapse
Affiliation(s)
- Anna Zlotina
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Tatiana Kulikova
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Alla Krasikova
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
5
|
Romanenko SA, Lemskaya NA, Trifonov VA, Serdyukova NA, O'Brien PCM, Bulatova NS, Golenishchev FN, Ferguson-Smith MA, Yang F, Graphodatsky AS. Genome-wide comparative chromosome maps of Arvicola amphibius, Dicrostonyx torquatus, and Myodes rutilus. Chromosome Res 2015; 24:145-59. [PMID: 26611440 DOI: 10.1007/s10577-015-9504-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022]
Abstract
The subfamily Arvicolinae consists of a great number of species with highly diversified karyotypes. In spite of the wide use of arvicolines in biological and medicine studies, the data on their karyotype structures are limited. Here, we made a set of painting probes from flow-sorted chromosomes of a male Palearctic collared lemming (Dicrostonyx torquatus, DTO). Together with the sets of painting probes made previously from the field vole (Microtus agrestis, MAG) and golden hamster (Mesocricetus auratus, MAU), we carried out a reciprocal chromosome painting between these three species. The three sets of probes were further hybridized onto the chromosomes of the Eurasian water vole (Arvicola amphibius) and northern red-backed vole (Myodes rutilus). We defined the diploid chromosome number in D. torquatus karyotype as 2n = 45 + Bs and showed that the system of sex chromosomes is X1X2Y1. The probes developed here provide a genomic tool-kit, which will help to investigate the evolutionary biology of the Arvicolinae rodents. Our results show that the syntenic association MAG1/17 is present not only in Arvicolinae but also in some species of Cricetinae; and thus, should not be considered as a cytogenetic signature for Arvicolinae. Although cytogenetic signature markers for the genera have not yet been found, our data provides insight into the likely ancestral karyotype of Arvicolinae. We conclude that the karyotypes of modern voles could have evolved from a common ancestral arvicoline karyotype (AAK) with 2n = 56 mainly by centric fusions and fissions.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Natalya A Serdyukova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia
| | - Patricia C M O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - Nina Sh Bulatova
- A. N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | | | - Malcolm A Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
6
|
Tchitchek N, Safronetz D, Rasmussen AL, Martens C, Virtaneva K, Porcella SF, Feldmann H, Ebihara H, Katze MG. Sequencing, annotation and analysis of the Syrian hamster (Mesocricetus auratus) transcriptome. PLoS One 2014; 9:e112617. [PMID: 25398096 PMCID: PMC4232415 DOI: 10.1371/journal.pone.0112617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/06/2014] [Indexed: 11/18/2022] Open
Abstract
Background The Syrian hamster (golden hamster, Mesocricetus auratus) is gaining importance as a new experimental animal model for multiple pathogens, including emerging zoonotic diseases such as Ebola. Nevertheless there are currently no publicly available transcriptome reference sequences or genome for this species. Results A cDNA library derived from mRNA and snRNA isolated and pooled from the brains, lungs, spleens, kidneys, livers, and hearts of three adult female Syrian hamsters was sequenced. Sequence reads were assembled into 62,482 contigs and 111,796 reads remained unassembled (singletons). This combined contig/singleton dataset, designated as the Syrian hamster transcriptome, represents a total of 60,117,204 nucleotides. Our Mesocricetus auratus Syrian hamster transcriptome mapped to 11,648 mouse transcripts representing 9,562 distinct genes, and mapped to a similar number of transcripts and genes in the rat. We identified 214 quasi-complete transcripts based on mouse annotations. Canonical pathways involved in a broad spectrum of fundamental biological processes were significantly represented in the library. The Syrian hamster transcriptome was aligned to the current release of the Chinese hamster ovary (CHO) cell transcriptome and genome to improve the genomic annotation of this species. Finally, our Syrian hamster transcriptome was aligned against 14 other rodents, primate and laurasiatheria species to gain insights about the genetic relatedness and placement of this species. Conclusions This Syrian hamster transcriptome dataset significantly improves our knowledge of the Syrian hamster's transcriptome, especially towards its future use in infectious disease research. Moreover, this library is an important resource for the wider scientific community to help improve genome annotation of the Syrian hamster and other closely related species. Furthermore, these data provide the basis for development of expression microarrays that can be used in functional genomics studies.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Angela L Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Craig Martens
- Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America; Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 2014; 123:529-44. [PMID: 25053180 DOI: 10.1007/s00412-014-0477-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/01/2023]
Abstract
Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.
Collapse
|
8
|
Arslan A, Zima J. Karyotypes of the mammals of Turkey and neighbouring regions: a review. FOLIA ZOOLOGICA 2014. [DOI: 10.25225/fozo.v63.i1.a1.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Atilla Arslan
- Department of Biology, Faculty of Science, Selçuk University, 42031 Konya, Turkey
| | - Jan Zima
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
| |
Collapse
|
9
|
Cazaux B, Catalan J, Justy F, Escudé C, Desmarais E, Britton-Davidian J. Evolution of the structure and composition of house mouse satellite DNA sequences in the subgenus Mus (Rodentia: Muridea): a cytogenomic approach. Chromosoma 2013; 122:209-20. [PMID: 23515652 DOI: 10.1007/s00412-013-0402-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 01/29/2013] [Accepted: 02/23/2013] [Indexed: 12/16/2022]
Abstract
The composition and orientation of the house mouse satellite DNA sequences (minor, major, TLC) were investigated by a FISH and CO-FISH approach in 11 taxa belonging to three clades of the subgenus Mus. Using a phylogenetic framework, our results highlighted two distribution patterns. The TLC satellite, the most recently discovered satellite, was present in all clades but varied quantitatively among species. This distribution supported its appearance in the ancestor of the subgenus followed by independent evolution in species of each clade. In contrast, the minor and major satellites occurred in only two clades of the subgenus indicating the simultaneous and recent amplification of these sequences. In addition, although qualitative differences in the composition and orientation of the satellite sequences were observed among the taxa, none of the features studied were unique to the house mouse and could account for the extensive chromosomal plasticity evidenced in Mus musculus domesticus.
Collapse
Affiliation(s)
- B Cazaux
- Institut des Sciences de l'Evolution, Université Montpellier 2, cc065, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | |
Collapse
|
10
|
Kosyakova N, Hamid AB, Chaveerach A, Pinthong K, Siripiyasing P, Supiwong W, Romanenko S, Trifonov V, Fan X. Generation of multicolor banding probes for chromosomes of different species. Mol Cytogenet 2013; 6:6. [PMID: 23374863 PMCID: PMC3575270 DOI: 10.1186/1755-8166-6-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/14/2012] [Indexed: 02/04/2023] Open
Abstract
Background The multicolor banding (MCB/mBAND) technique provides a unique opportunity to characterize intrachromosomal rearrangements and to determine chromosomal breakpoints. Until recently, MCB probes have only been available for human and some murine chromosomes. Generation of MCB probes for chromosomes of other species, useful and required in many cytogenetics research fields, was limited by technical difficulties. MCB probes are established by chromosome microdissection followed by whole genomic DNA amplification. However, unambiguous identification of the target chromosome is required for MCB-probe establishment. Previously proposed protocols suggested G-banding staining or preliminary FISH with whole chromosome paints (WCP) as methods to identify the chromosome of interest. Results Here we present a complete workflow for MCB probe generation for those cases and species where chromosome morphology is too challenging to recognize target chromosomes by conventional methods and where WCP probes are not available. The workflow was successfully applied for murine chromosomes that are difficult to identify unambiguously. Additionally, we showed that glass-needle based microdissection enables establishment of a whole set of WCP paints by microdissection of individual chromosomes of a single metaphase Conclusions The present method can be applied for generation of whole or region-specific DNA probes for species, where karyotyping of G-banded chromosomes is challenging due to similar chromosome morphology and/or chromosome banding patterns.
Collapse
Affiliation(s)
- Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, Jena, D-07743, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Leibiger C, Kosyakova N, Mkrtchyan H, Glei M, Trifonov V, Liehr T. First molecular cytogenetic high resolution characterization of the NIH 3T3 cell line by murine multicolor banding. J Histochem Cytochem 2013; 61:306-12. [PMID: 23321776 PMCID: PMC3621507 DOI: 10.1369/0022155413476868] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since being established in 1963, the murine fibroblast cell line NIH 3T3 has been used in thousands of studies. NIH 3T3 immortalized spontaneously and became tetraploid shortly after its establishment. Here we report the first molecular cytogenetic characterization of NIH 3T3 using fluorescence in situ hybridization based multicolor banding (mcb). Overall, a complex rearranged karyotype presenting 16 breakpoints was characterized. Also it was possible to deduce the resulting gains and losses of copy numbers in NIH 3T3. Overall, only 1.8% of the NIH 3T3 genome is disome, 26.2% tri-, 60% tetra-, 10.8% quinta-, and 1.2% hexasome. Strikingly, the cell line gained only 4 derivative chromosomes since its first cytogenetic description in 1989. An attempt to align the observed imbalances of the studied cell line with their homologous regions in humans gave the following surprising result: NIH 3T3 shows imbalances as typically seen in human solid cancers of ectodermal origin.
Collapse
Affiliation(s)
- Christine Leibiger
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Romanenko SA, Volobouev V. Non-Sciuromorph rodent karyotypes in evolution. Cytogenet Genome Res 2012; 137:233-45. [PMID: 22699115 DOI: 10.1159/000339294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rodents are, taxonomically, the most species-rich mammalian order. They display a series of special genomic features including the highest karyotypic diversity, frequent occurrence of complex intraspecies chromosome variability, and a variety of unusual chromosomal sex determination mechanisms not encountered in other mammalian taxa. Rodents also have an abundance of cytochemically heterogeneous heterochromatin. There are also instances of extremely rapid karyotype reorganization and speciation not accompanied by significant genetic differentiation. All these peculiarities make it clear that a detailed study of rodent genomic evolution is indispensable to understand the mode and tempo of mammalian evolution. The aim of this review is to update the data obtained by classical and molecular cytogenetics as well as comparative genomics in order to outline the range of old and emerging problems that remain to be resolved.
Collapse
Affiliation(s)
- S A Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.
| | | |
Collapse
|
13
|
Bakloushinskaya IY, Matveevsky SN, Romanenko SA, Serdukova NA, Kolomiets OL, Spangenberg VE, Lyapunova EA, Graphodatsky AS. A comparative analysis of the mole vole sibling species Ellobius tancrei and E. talpinus (Cricetidae, Rodentia) through chromosome painting and examination of synaptonemal complex structures in hybrids. Cytogenet Genome Res 2012; 136:199-207. [PMID: 22343488 DOI: 10.1159/000336459] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 12/27/2022] Open
Abstract
A comparative genomic analysis was carried out in the mole vole sibling species Ellobius tancrei and E. talpinus. Performing fluorescent in situ hybridisation (Zoo-FISH) using chromosome paints from the field vole Microtus agrestis showed no differences in the allocation of syntenic groups in the karyotypes of these sibling species. The only difference between their karyotypes was the position of the centromere in one pair of chromosomes, which is assumed to be the result of an inversion. To verify this hypothesis, we analysed chromosome synapsis in prophase I of meiosis. We utilised a synaptonemal complex (SC) surface-spreading technique to visualise the process of chromosome synapsis in the spermatocytes and oocytes of first-generation hybrids and back-crosses of these sibling species. In prophase I of meiosis, immunocytochemical and electron microscopy analyses revealed that all bivalents had been fully adjusted. Even in the case of a submetacentric-acrocentric bivalent with different centromere locations, synapsis of SC lateral elements was fulfilled along the entire length of the chromosomes and the formation of an inversion loop was not observed. We hypothesise that a possible mechanism leading to the change in centromere position is the repositioning and/or generation of a neocentromere. Despite the great similarity in the karyotypes of these sibling species, they exhibited significant genomic diversification, which manifested as hybrid sterility and parous female death.
Collapse
Affiliation(s)
- I Yu Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Romanenko SA, Perelman PL, Trifonov VA, Graphodatsky AS. Chromosomal evolution in Rodentia. Heredity (Edinb) 2012; 108:4-16. [PMID: 22086076 PMCID: PMC3238120 DOI: 10.1038/hdy.2011.110] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 11/08/2022] Open
Abstract
Rodentia is the most species-rich mammalian order and includes several important laboratory model species. The amount of new information on karyotypic and phylogenetic relations within and among rodent taxa is rapidly increasing, but a synthesis of these data is currently lacking. Here, we have integrated information drawn from conventional banding studies, recent comparative painting investigations and molecular phylogenetic reconstructions of different rodent taxa. This permitted a revision of several ancestral karyotypic reconstructions, and a more accurate depiction of rodent chromosomal evolution.
Collapse
Affiliation(s)
- S A Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
15
|
Graphodatsky AS, Trifonov VA, Stanyon R. The genome diversity and karyotype evolution of mammals. Mol Cytogenet 2011; 4:22. [PMID: 21992653 PMCID: PMC3204295 DOI: 10.1186/1755-8166-4-22] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/12/2011] [Indexed: 01/30/2023] Open
Abstract
The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.
Collapse
|
16
|
McGraw LA, Davis JK, Young LJ, Thomas JW. A genetic linkage map and comparative mapping of the prairie vole (Microtus ochrogaster) genome. BMC Genet 2011; 12:60. [PMID: 21736755 PMCID: PMC3143096 DOI: 10.1186/1471-2156-12-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 07/07/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The prairie vole (Microtus ochrogaster) is an emerging rodent model for investigating the genetics, evolution and molecular mechanisms of social behavior. Though a karyotype for the prairie vole has been reported and low-resolution comparative cytogenetic analyses have been done in this species, other basic genetic resources for this species, such as a genetic linkage map, are lacking. RESULTS Here we report the construction of a genome-wide linkage map of the prairie vole. The linkage map consists of 406 markers that are spaced on average every 7 Mb and span an estimated ~90% of the genome. The sex average length of the linkage map is 1707 cM, which, like other Muroid rodent linkage maps, is on the lower end of the length distribution of linkage maps reported to date for placental mammals. Linkage groups were assigned to 19 out of the 26 prairie vole autosomes as well as the X chromosome. Comparative analyses of the prairie vole linkage map based on the location of 387 Type I markers identified 61 large blocks of synteny with the mouse genome. In addition, the results of the comparative analyses revealed a potential elevated rate of inversions in the prairie vole lineage compared to the laboratory mouse and rat. CONCLUSIONS A genetic linkage map of the prairie vole has been constructed and represents the fourth genome-wide high-resolution linkage map reported for Muroid rodents and the first for a member of the Arvicolinae sub-family. This resource will advance studies designed to dissect the genetic basis of a variety of social behaviors and other traits in the prairie vole as well as our understanding of genome evolution in the genus Microtus.
Collapse
Affiliation(s)
- Lisa A McGraw
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|