1
|
da Silva CP, Camuzi D, Reis AHDO, Gonçalves AP, Dos Santos JM, Machado FB, Medina-Acosta E, Soares-Lima SC, Santos-Rebouças CB. Identification of a novel epigenetic marker for typical and mosaic presentations of Fragile X syndrome. Expert Rev Mol Diagn 2023; 23:1273-1281. [PMID: 37970883 DOI: 10.1080/14737159.2023.2284782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) is primarily due to CGG repeat expansions in the FMR1 gene. FMR1 alleles are classified as normal (N), intermediate (I), premutation (PM), and full mutation (FM). FXS patients often carry an FM, but size mosaicism can occur. Additionally, loss of methylation boundary upstream of repeats results in de novo methylation spreading to FMR1 promoter in FXS patients. RESEARCH DESIGN AND METHODS This pilot study investigated the methylation boundary and adjacent regions in 66 males with typical and atypical FXS aged 1 to 30 years (10.86 ± 6.48 years). AmplideX FMR1 mPCR kit was used to discriminate allele profiles and methylation levels. CpG sites were assessed by pyrosequencing. RESULTS 40 out of 66 FXS patients (60.6%) showed an exclusive FM (n = 40), whereas the remaining (n = 26) exhibited size mosaicism [10 PM_FM (15.15%); 10 N_FM (15.15%); 2 N_PM_FM (3%)]. Four patients (6.1%) had deletions near repeats. Noteworthy, a CpG within FMR1 intron 2 displayed hypomethylation in FXS patients and hypermethylation in controls, demonstrating remarkable specificity, sensitivity, and accuracy when a methylation threshold of 69.5% was applied. CONCLUSIONS Since intragenic methylation is pivotal in gene regulation, the intronic CpG might be a novel epigenetic biomarker for FXS diagnosis.
Collapse
Affiliation(s)
- Camilla Pereira da Silva
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Camuzi
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Adriana Helena de Oliveira Reis
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jussara Mendonça Dos Santos
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Brum Machado
- Department of Biological Sciences, Minas Gerais State University, Minas Gerais, Brazil
| | - Enrique Medina-Acosta
- Biotechnology Laboratory, Molecular Diagnostic, and Research Center, State University of the North Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Katsumata K, Ichikawa Y, Fuse T, Kurumizaka H, Yanagida A, Urano T, Kato H, Shimizu M. Sequence-dependent nucleosome formation in trinucleotide repeats evaluated by in vivo chemical mapping. Biochem Biophys Res Commun 2021; 556:179-184. [PMID: 33839413 DOI: 10.1016/j.bbrc.2021.03.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 11/18/2022]
Abstract
Trinucleotide repeat sequences (TRSs), consisting of 10 unique classes of repeats in DNA, are members of microsatellites and abundantly and non-randomly distributed in many eukaryotic genomes. The lengths of TRSs are mutable, and the expansions of several TRSs are implicated in hereditary neurological diseases. However, the underlying causes of the biased distribution and the dynamic properties of TRSs in the genome remain elusive. Here, we examined the effects of TRSs on nucleosome formation in vivo by histone H4-S47C site-directed chemical cleavages, using well-defined yeast minichromosomes in which each of the ten TRS classes resided in the central region of a positioned nucleosome. We showed that (AAT)12 and (ACT)12 act as strong nucleosome-promoting sequences, while (AGG)12 and (CCG)12 act as nucleosome-excluding sequences in vivo. The local histone binding affinity scores support the idea that nucleosome formation in TRSs, except for (AGG)12, is mainly determined by the affinity for the histone octamers. Overall, our study presents a framework for understanding the nucleosome-forming abilities of TRSs.
Collapse
Affiliation(s)
- Koji Katsumata
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo, 191-8506, Japan
| | - Yuichi Ichikawa
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Tomohiro Fuse
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo, 191-8506, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo, 191-8506, Japan.
| |
Collapse
|
3
|
Chen L, Pan X, Hu X, Zhang YH, Wang S, Huang T, Cai YD. Gene expression differences among different MSI statuses in colorectal cancer. Int J Cancer 2018; 143:1731-1740. [PMID: 29696646 DOI: 10.1002/ijc.31554] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022]
Abstract
Colorectal cancer is the third most common cancer in males and second in females. This disease can be caused by genetic and acquired/environmental factors. Microsatellite instability (MSI) is one of the major mechanisms in colorectal cancer. This mechanism is a specific condition of genetic hyper mutability that results from incompetent DNA mismatch repair. MSI has been applied to classify different colorectal cancer subtypes. However, the effects of MSI status on gene expression are largely unknown. In our study, we integrated the gene expression profile and MSI status of all CRC samples from the TCGA database, and then categorized the CRC samples into three subgroups, namely, MSI-stable, MSI-low, and MSI-high, according to the MSI status. We applied a novel computational method based on machine learning and screened the genes specifically expressed for the different colorectal cancer subtypes. The results showed the distinct mechanisms of the different colorectal cancer subtypes with MSI status and provided the genes that may be the optimal standards to further classify the various molecular subtypes of colorectal cancer with distinct MSI status.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China.,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands
| | - XiaoHua Hu
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - ShaoPeng Wang
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China
| |
Collapse
|
4
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Essebier A, Vera Wolf P, Cao MD, Carroll BJ, Balasubramanian S, Bodén M. Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions. Front Neurosci 2016; 10:92. [PMID: 27013954 PMCID: PMC4782033 DOI: 10.3389/fnins.2016.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions.
Collapse
Affiliation(s)
- Alexandra Essebier
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Patricia Vera Wolf
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Minh Duc Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | | | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| |
Collapse
|
6
|
GAA triplet-repeats cause nucleosome depletion in the human genome. Genomics 2015; 106:88-95. [DOI: 10.1016/j.ygeno.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022]
|
7
|
Naumann A, Kraus C, Hoogeveen A, Ramirez CM, Doerfler W. Stable DNA methylation boundaries and expanded trinucleotide repeats: role of DNA insertions. J Mol Biol 2014; 426:2554-66. [PMID: 24816393 DOI: 10.1016/j.jmb.2014.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/15/2022]
Abstract
The human genome segment upstream of the FMR1 (fragile X mental retardation 1) gene (Xq27.3) contains several genetic signals, among them is a DNA methylation boundary that is located 65-70 CpGs upstream of the CGG repeat. In fragile X syndrome (FXS), the boundary is lost, and the promoter is inactivated by methylation spreading. Here we document boundary stability in spite of critical expansions of the CGG trinucleotide repeat in male or female premutation carriers and in high functioning males (HFMs). HFMs carry a full CGG repeat expansion but exhibit an unmethylated promoter and lack the FXS phenotype. The boundary is also stable in Turner (45, X) females. A CTCF-binding site is located slightly upstream of the methylation boundary and carries a unique G-to-A polymorphism (single nucleotide polymorphism), which occurs 3.6 times more frequently in genomes with CGG expansions. The increased frequency of this single nucleotide polymorphism might have functional significance. In CGG expansions, the CTCF region does not harbor additional mutations. In FXS individuals and often in cells transgenomic for EBV (Epstein Barr Virus) DNA or for the telomerase gene, the large number of normally methylated CpGs in the far-upstream region of the boundary is decreased about 4-fold. A methylation boundary is also present in the human genome segment upstream of the HTT (huntingtin) promoter (4p16.3) and is stable both in normal and Huntington disease chromosomes. Hence, the vicinity of an expanded repeat does not per se compromise methylation boundaries. Methylation boundaries exert an important function as promoter safeguards.
Collapse
Affiliation(s)
- Anja Naumann
- Institute for Clinical and Molecular Virology, Erlangen University Medical School, D-91054 Erlangen, Germany
| | - Cornelia Kraus
- Institute for Human Genetics, Erlangen University Medical School, D-91054 Erlangen, Germany
| | - André Hoogeveen
- Department of Clinical Genetics, Erasmus University Medical School, 3000 DR Rotterdam, The Netherlands
| | - Christina M Ramirez
- Department of Biostatistics and Statistics, University of California, Los Angeles, CA 90095, USA
| | - Walter Doerfler
- Institute for Clinical and Molecular Virology, Erlangen University Medical School, D-91054 Erlangen, Germany; Institute of Genetics, University of Cologne, D-50674 Cologne, Germany.
| |
Collapse
|
8
|
Volle CB, Delaney S. AGG/CCT interruptions affect nucleosome formation and positioning of healthy-length CGG/CCG triplet repeats. BMC BIOCHEMISTRY 2013; 14:33. [PMID: 24261641 PMCID: PMC3870987 DOI: 10.1186/1471-2091-14-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/19/2013] [Indexed: 11/16/2022]
Abstract
Background Fragile X Syndrome (FXS), the most common inherited form of mental retardation, is caused by expansion of a CGG/CCG repeat tract in the 5′-untranslated region of the fragile X mental retardation (FMR1) gene, which changes the functional organization of the gene from euchromatin to heterochromatin. Interestingly, healthy-length repeat tracts possess AGG/CCT interruptions every 9–10 repeats, and clinical data shows that loss of these interruptions is linked to expansion of the repeat tract to disease-length. Thus, it is important to understand how these interruptions alter the behavior of the repeat tract in the packaged gene. Results To investigate how uninterrupted and interrupted CGG/CCG repeat tracts interact with the histone core, we designed experiments using the nucleosome core particle, the most basic unit of chromatin packaging. Using DNA containing 19 CGG/CCG repeats, flanked by either a nucleosome positioning sequence or the FMR1 gene sequence, we determined that the addition of a single AGG/CCT interruption modulates both the ability of the CGG/CCG repeat DNA to incorporate into a nucleosome and the rotational and translational position of the repeat DNA around the histone core when flanked by the nucleosome positioning sequence. The presence of these interruptions also alters the periodicity of the DNA in the nucleosome; interrupted repeat tracts have a greater periodicity than uninterrupted repeats. Conclusions This work defines the ability of AGG/CCT interruptions to modulate the behavior of the repeat tract in the packaged gene and contributes to our understanding of the role that AGG/CCT interruptions play in suppressing expansion and maintaining the correct functional organization of the FMR1 gene, highlighting a protective role played by the interruptions in genomic packaging.
Collapse
Affiliation(s)
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
9
|
Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 2011; 6:e26203. [PMID: 22022567 PMCID: PMC3192166 DOI: 10.1371/journal.pone.0026203] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5′ untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP). Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC) lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid in the discovery of novel therapeutics for FXS and other autism-spectrum disorders sharing common pathophysiology.
Collapse
|