1
|
Krasikova A, Kulikova T, Schelkunov M, Makarova N, Fedotova A, Plotnikov V, Berngardt V, Maslova A, Fedorov A. The first chicken oocyte nucleus whole transcriptomic profile defines the spectrum of maternal mRNA and non-coding RNA genes transcribed by the lampbrush chromosomes. Nucleic Acids Res 2024; 52:12850-12877. [PMID: 39494543 PMCID: PMC11602149 DOI: 10.1093/nar/gkae941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Lampbrush chromosomes, with their unusually high rate of nascent RNA synthesis, provide a valuable model for studying mechanisms of global transcriptome up-regulation. Here, we obtained a whole-genomic profile of transcription along the entire length of all lampbrush chromosomes in the chicken karyotype. With nuclear RNA-seq, we obtained information about a wider set of transcripts, including long non-coding RNAs retained in the nucleus and stable intronic sequence RNAs. For a number of protein-coding genes, we visualized their nascent transcripts on the lateral loops of lampbrush chromosomes by RNA-FISH. The set of genes transcribed on the lampbrush chromosomes is required for basic cellular processes and is characterized by a broad expression pattern. We also present the first high-throughput transcriptome characterization of miRNAs and piRNAs in chicken oocytes at the lampbrush chromosome stage. Major targets of predicted piRNAs include CR1 and long terminal repeat (LTR) containing retrotransposable elements. Transcription of tandem repeat arrays was demonstrated by alignment against the whole telomere-to-telomere chromosome assemblies. We show that transcription of telomere-derived RNAs is initiated at adjacent LTR elements. We conclude that hypertranscription on the lateral loops of giant lampbrush chromosomes is required for synthesizing large amounts of transferred to the embryo maternal RNA for thousands of genes.
Collapse
Affiliation(s)
- Alla Krasikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Tatiana Kulikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Mikhail Schelkunov
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Institute for Information Transmission Problems, Moscow, 127051, Russia
| | - Nadezhda Makarova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Fedotova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir Plotnikov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Valeria Berngardt
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Antonina Maslova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Anton Fedorov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| |
Collapse
|
2
|
Krasikova A, Kulikova T, Rodriguez Ramos JS, Maslova A. Assignment of the somatic A/B compartments to chromatin domains in giant transcriptionally active lampbrush chromosomes. Epigenetics Chromatin 2023; 16:24. [PMID: 37322523 DOI: 10.1186/s13072-023-00499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The three-dimensional configuration of the eukaryotic genome is an emerging area of research. Chromosome conformation capture outlined genome segregation into large scale A and B compartments corresponding mainly to transcriptionally active and repressive chromatin. It remains unknown how the compartmentalization of the genome changes in growing oocytes of animals with hypertranscriptional type of oogenesis. Such oocytes are characterized by highly elongated chromosomes, called lampbrush chromosomes, which acquire a typical chromomere-loop appearance, representing one of the classical model systems for exploring the structural and functional organization of chromatin domains. RESULTS Here, we compared the distribution of A/B compartments in chicken somatic cells with chromatin domains in lampbrush chromosomes. We found that in lampbrush chromosomes, the extended chromatin domains, restricted by compartment boundaries in somatic cells, disintegrate into individual chromomeres. Next, we performed FISH-mapping of the genomic loci, which belong to A or B chromatin compartments as well as to A/B compartment transition regions in embryonic fibroblasts on isolated lampbrush chromosomes. We found, that in chicken lampbrush chromosomes, clusters of dense compact chromomeres bearing short lateral loops and enriched with repressive epigenetic modifications generally correspond to constitutive B compartments in somatic cells. A compartments align with lampbrush chromosome segments with smaller, less compact chromomeres, longer lateral loops, and a higher transcriptional status. Clusters of small loose chromomeres with relatively long lateral loops show no obvious correspondence with either A or B compartment identity. Some genes belonging to facultative B (sub-) compartments can be tissue-specifically transcribed during oogenesis, forming distinct lateral loops. CONCLUSIONS Here, we established a correspondence between the A/B compartments in somatic interphase nucleus and chromatin segments in giant lampbrush chromosomes from diplotene stage oocytes. The chromomere-loop structure of the genomic regions corresponding to interphase A and B compartments reveals the difference in how they are organized at the level of chromatin domains. The results obtained also suggest that gene-poor regions tend to be packed into chromomeres.
Collapse
Affiliation(s)
- Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia.
| | | | | | | |
Collapse
|
3
|
Comparison of the somatic TADs and lampbrush chromomere-loop complexes in transcriptionally active prophase I oocytes. Chromosoma 2022; 131:207-223. [PMID: 36031655 DOI: 10.1007/s00412-022-00780-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
In diplotene oocyte nuclei of all vertebrate species, except mammals, chromosomes lack interchromosomal contacts and chromatin is linearly compartmentalized into distinct chromomere-loop complexes forming lampbrush chromosomes. However, the mechanisms underlying the formation of chromomere-loop complexes remain unexplored. Here we aimed to compare somatic topologically associating domains (TADs), recently identified in chicken embryonic fibroblasts, with chromomere-loop complexes in lampbrush meiotic chromosomes. By measuring 3D-distances and colocalization between linear equidistantly located genomic loci, positioned within one TAD or separated by a TAD border, we confirmed the presence of predicted TADs in chicken embryonic fibroblast nuclei. Using three-colored FISH with BAC probes, we mapped equidistant genomic regions included in several sequential somatic TADs on isolated chicken lampbrush chromosomes. Eight genomic regions, each comprising two or three somatic TADs, were mapped to non-overlapping neighboring lampbrush chromatin domains - lateral loops, chromomeres, or chromomere-loop complexes. Genomic loci from the neighboring somatic TADs could localize in one lampbrush chromomere-loop complex, while genomic loci belonging to the same somatic TAD could be localized in neighboring lampbrush chromomere-loop domains. In addition, FISH-mapping of BAC probes to the nascent transcripts on the lateral loops indicates transcription of at least 17 protein-coding genes and 2 non-coding RNA genes during the lampbrush stage of chicken oogenesis, including genes involved in oocyte maturation and early embryo development.
Collapse
|
4
|
Leidescher S, Ribisel J, Ullrich S, Feodorova Y, Hildebrand E, Galitsyna A, Bultmann S, Link S, Thanisch K, Mulholland C, Dekker J, Leonhardt H, Mirny L, Solovei I. Spatial organization of transcribed eukaryotic genes. Nat Cell Biol 2022; 24:327-339. [PMID: 35177821 DOI: 10.1038/s41556-022-00847-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Despite the well-established role of nuclear organization in the regulation of gene expression, little is known about the reverse: how transcription shapes the spatial organization of the genome. Owing to the small sizes of most previously studied genes and the limited resolution of microscopy, the structure and spatial arrangement of a single transcribed gene are still poorly understood. Here we study several long highly expressed genes and demonstrate that they form open-ended transcription loops with polymerases moving along the loops and carrying nascent RNAs. Transcription loops can span across micrometres, resembling lampbrush loops and polytene puffs. The extension and shape of transcription loops suggest their intrinsic stiffness, which we attribute to decoration with multiple voluminous nascent ribonucleoproteins. Our data contradict the model of transcription factories and suggest that although microscopically resolvable transcription loops are specific for long highly expressed genes, the mechanisms underlying their formation could represent a general aspect of eukaryotic transcription.
Collapse
Affiliation(s)
- Susanne Leidescher
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Johannes Ribisel
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Ullrich
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Yana Feodorova
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany.,Department of Medical Biology, Medical University of Plovdiv; Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Erica Hildebrand
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Sebastian Bultmann
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Stephanie Link
- BioMedizinisches Center, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Katharina Thanisch
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christopher Mulholland
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Heinrich Leonhardt
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Leonid Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Irina Solovei
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany.
| |
Collapse
|
5
|
Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int J Mol Sci 2021; 22:ijms22115949. [PMID: 34073089 PMCID: PMC8198692 DOI: 10.3390/ijms22115949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Sox proteins are known as crucial transcription factors for many developmental processes and for a wide range of common diseases. They were believed to specifically bind and bend DNA with other transcription factors and elicit transcriptional activation or repression activities in the early stage of transcription. However, their functions are not limited to transcription initiation. It has been showed that Sox proteins are involved in the regulation of alternative splicing regulatory networks and translational control. In this review, we discuss the current knowledge on how Sox transcription factors such as Sox2, Sry, Sox6, and Sox9 allow the coordination of co-transcriptional splicing and also the mechanism of SOX4-mediated translational control in the context of RNA polymerase III.
Collapse
|
6
|
Maiser A, Dillinger S, Längst G, Schermelleh L, Leonhardt H, Németh A. Super-resolution in situ analysis of active ribosomal DNA chromatin organization in the nucleolus. Sci Rep 2020; 10:7462. [PMID: 32366902 PMCID: PMC7198602 DOI: 10.1038/s41598-020-64589-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is the first key step of ribosome biogenesis. While the molecular mechanisms of rRNA transcription regulation have been elucidated in great detail, the functional organization of the multicopy rRNA gene clusters (rDNA) in the nucleolus is less well understood. Here we apply super-resolution 3D structured illumination microscopy (3D-SIM) to investigate the spatial organization of transcriptionally competent active rDNA chromatin at size scales well below the diffraction limit by optical microscopy. We identify active rDNA chromatin units exhibiting uniformly ring-shaped conformations with diameters of ~240 nm in mouse and ~170 nm in human fibroblasts, consistent with rDNA looping. The active rDNA chromatin units are clearly separated from each other and from the surrounding areas of rRNA processing. Simultaneous imaging of all active genes bound by Pol I and the architectural chromatin protein Upstream Binding Transcription Factor (UBF) reveals a random spatial orientation of regular repeats of rDNA coding sequences within the nucleoli. These observations imply rDNA looping and exclude potential formation of systematic spatial assemblies of the well-ordered repetitive arrays of transcription units. Collectively, this study uncovers key features of the 3D organization of active rDNA chromatin units and their nucleolar clusters providing a spatial framework of nucleolar chromatin organization at unprecedented detail.
Collapse
Affiliation(s)
- Andreas Maiser
- Department of Biology II, Ludwig-Maximilians-Universität München, München, Germany
| | - Stefan Dillinger
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig-Maximilians-Universität München, München, Germany
| | - Attila Németh
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany.
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
7
|
Krasikova A, Kulikova T. Identification of Genomic Loci Responsible for the Formation of Nuclear Domains Using Lampbrush Chromosomes. Noncoding RNA 2019; 6:ncrna6010001. [PMID: 31881720 PMCID: PMC7151628 DOI: 10.3390/ncrna6010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
In the cell nuclei, various types of nuclear domains assemble as a result of transcriptional activity at specific chromosomal loci. Giant transcriptionally active lampbrush chromosomes, which form in oocyte nuclei of amphibians and birds enable the mapping of genomic sequences with high resolution and the visualization of individual transcription units. This makes avian and amphibian oocyte nuclei an advantageous model for studying locus-specific nuclear domains. We developed two strategies for identification and comprehensive analysis of the genomic loci involved in nuclear domain formation on lampbrush chromosomes. The first approach was based on the sequential FISH-mapping of BAC clones containing genomic DNA fragments with a known chromosomal position close to the locus of a nuclear domain. The second approach involved mechanical microdissection of the chromosomal region adjacent to the nuclear domain followed by the generation of FISH-probes and DNA sequencing. Furthermore, deciphering the DNA sequences from the dissected material by high throughput sequencing technologies and their mapping to the reference genome helps to identify the genomic region responsible for the formation of the nuclear domain. For those nuclear domains structured by nascent transcripts, identification of genomic loci of their formation is a crucial step in the identification of scaffold RNAs.
Collapse
|
8
|
Wang Y, Wang H, Zhang Y, Du Z, Si W, Fan S, Qin D, Wang M, Duan Y, Li L, Jiao Y, Li Y, Wang Q, Shi Q, Wu X, Xie W. Reprogramming of Meiotic Chromatin Architecture during Spermatogenesis. Mol Cell 2019; 73:547-561.e6. [PMID: 30735655 DOI: 10.1016/j.molcel.2018.11.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/17/2018] [Accepted: 11/15/2018] [Indexed: 02/05/2023]
Abstract
Chromatin organization undergoes drastic reconfiguration during gametogenesis. However, the molecular reprogramming of three-dimensional chromatin structure in this process remains poorly understood for mammals, including primates. Here, we examined three-dimensional chromatin architecture during spermatogenesis in rhesus monkey using low-input Hi-C. Interestingly, we found that topologically associating domains (TADs) undergo dissolution and reestablishment in spermatogenesis. Strikingly, pachytene spermatocytes, where synapsis occurs, are strongly depleted for TADs despite their active transcription state but uniquely show highly refined local compartments that alternate between transcribing and non-transcribing regions (refined-A/B). Importantly, such chromatin organization is conserved in mouse, where it remains largely intact upon transcription inhibition. Instead, it is attenuated in mutant spermatocytes, where the synaptonemal complex failed to be established. Intriguingly, this is accompanied by the restoration of TADs, suggesting that the synaptonemal complex may restrict TADs and promote local compartments. Thus, these data revealed extensive reprogramming of higher-order meiotic chromatin architecture during mammalian gametogenesis.
Collapse
Affiliation(s)
- Yao Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Suixing Fan
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mei Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yanchao Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuying Jiao
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Yuanyuan Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Qinghua Shi
- The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Scherrer K. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Exp Cell Res 2018; 373:1-33. [PMID: 30266658 DOI: 10.1016/j.yexcr.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
The main purpose of this review is to recall for investigators - and in particular students -, some of the early data and concepts in molecular genetics and biology that are rarely cited in the current literature and are thus invariably overlooked. There is a growing tendency among editors and reviewers to consider that only data produced in the last 10-20 years or so are pertinent. However this is not the case. In exact science, sound data and lucid interpretation never become obsolete, and even if forgotten, will resurface sooner or later. In the field of gene expression, covered in the present review, recent post-genomic data have indeed confirmed many of the earlier results and concepts developed in the mid-seventies, well before the start of the recombinant DNA revolution. Human brains and even the most powerful computers, have difficulty in handling and making sense of the overwhelming flow of data generated by recent high-throughput technologies. This was easier when low throughput, more integrative methods based on biochemistry and microscopy dominated biological research. Nowadays, the need for organising concepts is ever more important, otherwise the mass of available data can generate only "building ruins" - the bricks without an architect. Concepts such as pervasive transcription of genomes, large genomic domains, full domain transcripts (FDTs) up to 100 kb long, the prevalence of post-transcriptional events in regulating eukaryotic gene expression, and the 3D-genome architecture, were all developed and discussed before 1990, and are only now coming back into vogue. Thus, to review the impact of earlier concepts on later developments in the field, I will confront former and current data and ideas, including a discussion of old and new methods. Whenever useful, I shall first briefly report post-genomic developments before addressing former results and interpretations. Equally important, some of the terms often used sloppily in scientific discussions will be clearly defined. As a basis for the ensuing discussion, some of the issues and facts related to eukaryotic gene expression will first be introduced. In chapter 2 the evolution in perception of biology over the last 60 years and the impact of the recombinant DNA revolution will be considered. Then, in chapter 3 data and theory concerning the genome, gene expression and genetics will be reviewed. The experimental and theoretical definition of the gene will be discussed before considering the 3 different types of genetic information - the "Triad" - and the importance of post-transcriptional regulation of gene expression in the light of the recent finding that 90% of genomic DNA seems to be transcribed. Some previous attempts to provide a conceptual framework for these observations will be recalled, in particular the "Cascade Regulation Hypothesis" (CRH) developed in 1967-85, and the "Gene and Genon" concept proposed in 2007. A knowledge of the size of primary transcripts is of prime importance, both for experimental and theoretical reasons, since these molecules represent the primary units of the "RNA genome" on which most of the post-transcriptional regulation of gene expression occurs. In chapter 4, I will first discuss some current post-genomic topics before summarising the discovery of the high Mr-RNA transcripts, and the investigation of their processing spanning the last 50 years. Since even today, a consensus concerning the real form of primary transcripts in eukaryotic cells has not yet been reached, I will refer to the viral and specialized cellular models which helped early on to understand the mechanisms of RNA processing and differential splicing which operate in cells and tissues. As a well-studied example of expression and regulation of a specific cellular gene in relation to differentiation and pathology, I will discuss the early and recent work on expression of the globin genes in nucleated avian erythroblasts. An important concept is that the primary transcript not only embodies protein-coding information and regulation of its expression, but also the 3D-structure of the genomic DNA from which it was derived. The wealth of recent post-genomic data published in this field emphasises the importance of a fundamental principle of genome organisation and expression that has been overlooked for years even though it was already discussed in the 1970-80ties. These issues are addressed in chapter 5 which focuses on the involvement of the nuclear matrix and nuclear architecture in DNA and RNA biology. This section will make reference to the Unified Matrix Hypothesis (UMH), which was the first molecular model of the 3D organisation of DNA and RNA. The chapter on the "RNA-genome and peripheral memories" discusses experimental data on the ribonucleoprotein complexes containing pre-mRNA (pre-mRNPs) and mRNA (mRNPs) which are organised in nuclear and cytoplasmic spaces respectively. Finally, "Outlook " will enumerate currently unresolved questions in the field, and will propose some ideas that may encourage further investigation, and comprehension of available experimental data still in need of interpretation. In chapter 8, some propositions and paradigms basic to the authors own analysis are discussed. "In conclusion" the raison d'être of this review is recalled and positioned within the overall framework of scientific endeavour.
Collapse
Affiliation(s)
- Klaus Scherrer
- Institute Jacques Monod, CNRS, University Paris Diderot, Paris, France.
| |
Collapse
|
10
|
A role for SOX9 in post-transcriptional processes: insights from the amphibian oocyte. Sci Rep 2018; 8:7191. [PMID: 29740094 PMCID: PMC5940923 DOI: 10.1038/s41598-018-25356-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Sox9 is a member of the gene family of SOX transcription factors, which is highly conserved among vertebrates. It is involved in different developmental processes including gonadogenesis. In all amniote species examined thus far, Sox9 is expressed in the Sertoli cells of the male gonad, suggesting an evolutionarily conserved role in testis development. However, in the anamniotes, fishes and amphibians, it is also expressed in the oocyte but the significance of such an expression remains to be elucidated. Here, we have investigated the nuclear localization of the SOX9 protein in the oocyte of three amphibian species, the urodelan Pleurodeles waltl, and two anurans, Xenopus laevis and Xenopus tropicalis. We demonstrate that SOX9 is associated with ribonucleoprotein (RNP) transcripts of lampbrush chromosomes in an RNA-dependent manner. This association can be visualized by Super-resolution Structured Illumination Microscopy (SIM). Our results suggest that SOX9, known to bind DNA, also carries an additional function in the posttranscriptional processes. We also discuss the significance of the acquisition or loss of Sox9 expression in the oocyte during evolution at the transition between anamniotes and amniotes.
Collapse
|
11
|
Morgan GT. Imaging the dynamics of transcription loops in living chromosomes. Chromosoma 2018; 127:361-374. [PMID: 29610944 PMCID: PMC6096578 DOI: 10.1007/s00412-018-0667-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
When in the lampbrush configuration, chromosomes display thousands of visible DNA loops that are transcribed at exceptionally high rates by RNA polymerase II (pol II). These transcription loops provide unique opportunities to investigate not only the detailed architecture of pol II transcription sites but also the structural dynamics of chromosome looping, which is receiving fresh attention as the organizational principle underpinning the higher-order structure of all chromosome states. The approach described here allows for extended imaging of individual transcription loops and transcription units under conditions in which loop RNA synthesis continues. In intact nuclei from lampbrush-stage Xenopus oocytes isolated under mineral oil, highly specific targeting of fluorescent fusions of the RNA-binding protein CELF1 to nascent transcripts allowed functional transcription loops to be observed and their longevity assessed over time. Some individual loops remained extended and essentially static structures over time courses of up to an hour. However, others were less stable and shrank markedly over periods of 30-60 min in a manner that suggested that loop extension requires continued dense coverage with nascent transcripts. In stable loops and loop-derived structures, the molecular dynamics of the visible nascent RNP component were addressed using photokinetic approaches. The results suggested that CELF1 exchanges freely between the accumulated nascent RNP and the surrounding nucleoplasm, and that it exits RNP with similar kinetics to its entrance. Overall, it appears that on transcription loops, nascent transcripts contribute to a dynamic self-organizing structure that exemplifies a phase-separated nuclear compartment.
Collapse
Affiliation(s)
- Garry T Morgan
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
12
|
Ryabichko SS, Ibragimov AN, Lebedeva LA, Kozlov EN, Shidlovskii YV. Super-Resolution Microscopy in Studying the Structure and Function of the Cell Nucleus. Acta Naturae 2017; 9:42-51. [PMID: 29340216 PMCID: PMC5762827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Indexed: 11/21/2022] Open
Abstract
In recent decades, novel microscopic methods commonly referred to as super- resolution microscopy have been developed. These methods enable the visualization of a cell with a resolution of up to 10 nm. The application of these methods is of great interest in studying the structure and function of the cell nucleus. The review describes the main achievements in this field.
Collapse
Affiliation(s)
- S. S. Ryabichko
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - A. N. Ibragimov
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - L. A. Lebedeva
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - E. N. Kozlov
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - Y. V. Shidlovskii
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8, bldg. 2, Moscow, 119048 , Russia
| |
Collapse
|
13
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Trofimova I, Krasikova A. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts. RNA Biol 2016; 13:1246-1257. [PMID: 27763817 PMCID: PMC5207375 DOI: 10.1080/15476286.2016.1240142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022] Open
Abstract
Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.
Collapse
Affiliation(s)
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
15
|
Kulikova T, Khodyuchenko T, Petrov Y, Krasikova A. Low-voltage scanning electron microscopy study of lampbrush chromosomes and nuclear bodies in avian and amphibian oocytes. Sci Rep 2016; 6:36878. [PMID: 27857188 PMCID: PMC5114574 DOI: 10.1038/srep36878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022] Open
Abstract
Nucleus is a highly compartmentalized part of the cell where the key processes of genome functionality are realized through the formation of non-membranous nuclear domains. Physically nuclear domains appear as liquid droplets with different viscosity stably maintained throughout the interphase or during the long diplotene stage of meiosis. Since nuclear body surface represents boundary between two liquid phases, the ultrastructural surface topography of nuclear domains is of an outstanding interest. The aim of this study was to examine ultrathin surface topography of the amphibian and avian oocyte nuclear structures such as lampbrush chromosomes, nucleoli, histone-locus bodies, Cajal body-like bodies, and the interchromatin granule clusters via low-voltage scanning electron microscopy. Our results demonstrate that nuclear bodies with similar molecular composition may differ dramatically in the surface topography and vice versa, nuclear bodies that do not share common molecular components may possess similar topographical characteristics. We also have analyzed surface distribution of particular nuclear antigens (double stranded DNA, coilin and splicing snRNA) using indirect immunogold labeling with subsequent secondary electron detection of gold nanoparticles. We suggest that ultrastructural surface morphology reflects functional status of a nuclear body.
Collapse
Affiliation(s)
| | | | - Yuri Petrov
- Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
16
|
Żurek-Biesiada D, Szczurek AT, Prakash K, Best G, Mohana GK, Lee HK, Roignant JY, Dobrucki JW, Cremer C, Birk U. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe. Data Brief 2016; 7:157-71. [PMID: 27054149 PMCID: PMC4802433 DOI: 10.1016/j.dib.2016.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/07/2016] [Accepted: 01/20/2016] [Indexed: 02/02/2023] Open
Abstract
Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.
Collapse
Affiliation(s)
- Dominika Żurek-Biesiada
- Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | - Kirti Prakash
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Gerrit Best
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Giriram K Mohana
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Hyun-Keun Lee
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz, Germany
| | - Jean-Yves Roignant
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Jurek W Dobrucki
- Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany; Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany; Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz, Germany
| | - Udo Birk
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany; Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
17
|
Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C. The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 2015; 589:2931-43. [PMID: 26028501 DOI: 10.1016/j.febslet.2015.05.037] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Recent methodological advancements in microscopy and DNA sequencing-based methods provide unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear machineries. We discuss a model of the underlying functional nuclear organization derived mostly from electron and super-resolved fluorescence microscopy studies. It is based on two spatially co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the compact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the interchromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and export functions. The ANC is the major site of RNA synthesis. It is highly enriched in epigenetic marks for transcriptionally competent chromatin and RNA Polymerase II. Marks for silent chromatin are enriched in the INC. Multi-scale cross-correlation spectroscopy suggests that nuclear architecture resembles a random obstacle network for diffusing proteins. An increased dwell time of proteins and protein complexes within the ANC may help to limit genome scanning by factors or factor complexes to DNA exposed within the ANC.
Collapse
Affiliation(s)
- Thomas Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany.
| | - Marion Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Barbara Hübner
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Hilmar Strickfaden
- University of Alberta, Cross Cancer Institute Dept. of Oncology, Edmonton, AB, Canada
| | - Daniel Smeets
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Jens Popken
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Michael Sterr
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Yolanda Markaki
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) & BioQuant Center, Research Group Genome Organization & Function, Heidelberg, Germany.
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Mainz and Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany.
| |
Collapse
|
18
|
Abstract
Regeneration is studied in a few model species of salamanders, but the ten families of salamanders show considerable variation, and this has implications for our understanding of salamander biology. The most recent classification of the families identifies the cryptobranchoidea as the basal group which diverged in the early Jurassic. Variation in the sizes of genomes is particularly obvious, and reflects a major contribution from transposable elements which is already present in the basal group.Limb development has been a focus for evodevo studies, in part because of the variable property of pre-axial dominance which distinguishes salamanders from other tetrapods. This is thought to reflect the selective pressures that operate on a free-living aquatic larva, and might also be relevant for the evolution of limb regeneration. Recent fossil evidence suggests that both pre-axial dominance and limb regeneration were present 300 million years ago in larval temnospondyl amphibians that lived in mountain lakes. A satisfying account of regeneration in salamanders may need to address all these different aspects in the future.
Collapse
|
19
|
Björk P, Wieslander L. Mechanisms of mRNA export. Semin Cell Dev Biol 2014; 32:47-54. [PMID: 24813364 DOI: 10.1016/j.semcdb.2014.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 02/02/2023]
Abstract
Release of properly processed and assembled mRNPs from the actively transcribing genes, movement of the mRNPs through the interchromatin and interaction with the Nuclear Pore Complexes, leading to cytoplasmic export, are essential steps of eukaryotic gene expression. Here, we review these intranuclear gene expression steps.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
20
|
Precocious detection on amphibian oocyte lampbrush chromosomes of subtle changes in the cellular localisation of the Ro52 protein induced by in vitro culture. Chromosome Res 2013; 20:1033-44. [PMID: 23149575 DOI: 10.1007/s10577-012-9325-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Subterminal lampbrush loops of one of the 12 bivalents of the oocyte karyotype of Pleurodeles waltl (Amphibian, Urodele) underwent prominent morphological changes upon in vitro culture. These loops exhibited a fine ribonucleoprotein (RNP) granular matrix, which evolved during culture into huge structures that we have named 'chaussons' (slippers). This phenomenon involved progressive accumulation of proteins in the RNP matrix without protein neosynthesis. One of these proteins, which translocated into the nucleus during the culture, was identified as a homolog of the human Ro52 E3 ubiquitin ligase. RNA polymerase III was also found to accumulate on the same loops. These results suggest that the subterminal loops of bivalent XII act as a storage site for the components of a nuclear machinery involved in the quality control of RNA synthesis and maturation in response to cellular stress. They also emphasise the considerable value of the lampbrush chromosome system for a direct visualisation of modifications in gene expression and open the question of a nuclear accumulation of Ro52 in human or animal oocytes cultured in vitro for assisted reproductive technologies (ART).
Collapse
|
21
|
A remarkable career in science-Joseph G. Gall. Chromosome Res 2013; 21:339-43. [PMID: 23828690 DOI: 10.1007/s10577-013-9369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
A festive group of ∼150 current and former students, postdoctoral and other associates, and colleagues gathered during the weekend of April 12-14, 2013 to celebrate Joe Gall's 85th birthday. The gathering, hosted by the Carnegie Institution for Science, Department of Embryology (Allan Spradling, Director) and organized by a group of Joe's current and former students (Zehra Nizami, Alison Singer, Ji-Long Liu, Virginia Zakian, Susan Gerbi), was held in Baltimore, MD. Dinners and symposia extending over 3 days celebrated Joe's scientific findings over the years, together with those of his former students, postdoctoral fellows, and other associates (see program at https://sites.google.com/site/gallsymposium2013/ ).
Collapse
|