1
|
Kasap EY, Parfenova ОK, Kurkin RV, Grishin DV. Bioinformatic analysis of the coding region of the melatonin receptor 1b gene as a reliable DNA marker to resolve interspecific mammal phylogenetic relationships. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:5430-5447. [PMID: 36896552 DOI: 10.3934/mbe.2023251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This research looks into the main DNA markers and the limits of their application in molecular phylogenetic analysis. Melatonin 1B (MTNR1B) receptor genes were analyzed from various biological sources. Based on the coding sequences of this gene, using the class Mammalia as example, phylogenetic reconstructions were made to study the potential of mtnr1b as a DNA marker for phylogenetic relationships investigating. The phylogenetic trees were constructed using NJ, ME and ML methods that establish the evolutionary relationships between different groups of mammals. The resulting topologies were generally in good agreement with topologies established on the basis of morphological and archaeological data as well as with other molecular markers. The present divergences provided a unique opportunity for evolutionary analysis. These results suggest that the coding sequence of the MTNR1B gene can be used as a marker to study the relationships of lower evolutionary levels (order, species) as well as to resolve deeper branches of the phylogenetic tree at the infraclass level.
Collapse
Affiliation(s)
- Ekaterina Y Kasap
- Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya St, Moscow, 119121, Russia
| | - Оlga K Parfenova
- Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya St, Moscow, 119121, Russia
| | - Roman V Kurkin
- Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya St, Moscow, 119121, Russia
| | - Dmitry V Grishin
- Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya St, Moscow, 119121, Russia
| |
Collapse
|
2
|
Winter S, Coimbra RTF, Helsen P, Janke A. A chromosome-scale genome assembly of the okapi (Okapia johnstoni). J Hered 2022; 113:568-576. [PMID: 35788365 PMCID: PMC9584810 DOI: 10.1093/jhered/esac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
The okapi (Okapia johnstoni), or forest giraffe, is the only species in its genus and the only extant sister group of the giraffe within the family Giraffidae. The species is one of the remaining large vertebrates surrounded by mystery because of its elusive behavior as well as the armed conflicts in the region where it occurs, making it difficult to study. Deforestation puts the okapi under constant anthropogenic pressure, and it is currently listed as “Endangered” on the IUCN Red List. Here, we present the first annotated de novo okapi genome assembly based on PacBio continuous long reads, polished with short reads, and anchored into chromosome-scale scaffolds using Hi-C proximity ligation sequencing. The final assembly (TBG_Okapi_asm_v1) has a length of 2.39 Gbp, of which 98% are represented by 28 scaffolds > 3.9 Mbp. The contig N50 of 61 Mbp and scaffold N50 of 102 Mbp, together with a BUSCO score of 94.7%, and 23 412 annotated genes, underline the high quality of the assembly. This chromosome-scale genome assembly is a valuable resource for future conservation of the species and comparative genomic studies among the giraffids and other ruminants.
Collapse
Affiliation(s)
- Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany.,Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße, Vienna, Austria
| | - Raphael T F Coimbra
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße, Frankfurt am Main, Germany
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein, Antwerp, Belgium
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Rubes J. Anchoring the CerEla1.0 Genome Assembly to Red Deer ( Cervus elaphus) and Cattle ( Bos taurus) Chromosomes and Specification of Evolutionary Chromosome Rearrangements in Cervidae. Animals (Basel) 2021; 11:ani11092614. [PMID: 34573579 PMCID: PMC8465983 DOI: 10.3390/ani11092614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The red deer (Cervus elaphus) de novo genome assembly (CerEla1.0) has provided a great resource for genetic studies in various deer species. In this study, we used gene order comparisons between C. elaphus CerEla1.0 and B. taurus ARS-UCD1.2 genome assemblies and fluorescence in situ hybridization (FISH) with bovine BAC probes to verify the red deer-bovine chromosome relationships and anchor the CerEla1.0 C-scaffolds to karyotypes of both species. We showed the homology between bovine and deer chromosomes and determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds. Using a set of BAC probes, we were able to narrow the positions of evolutionary chromosome breakpoints defining the family Cervidae. In addition, we revealed several errors in the current CerEla1.0 genome assembly. Finally, we expanded our analysis to other Cervidae and confirmed the locations of the cervid evolutionary fissions and orientation of the fused chromosomes in eight cervid species. Our results can serve as a basis for necessary improvements of the red deer genome assembly and provide support to other genetic studies in Cervidae. Abstract The family Cervidae groups a range of species with an increasing economic significance. Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus). Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC probes to verify the homology between bovine and deer chromosomes, determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary chromosome breakpoints. In addition, we revealed several incongruences between the current deer and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly. Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in seven additional deer species, giving a support to previous studies on their chromosome evolution.
Collapse
|
4
|
Liu C, Gao J, Cui X, Li Z, Chen L, Yuan Y, Zhang Y, Mei L, Zhao L, Cai D, Hu M, Zhou B, Li Z, Qin T, Si H, Li G, Lin Z, Xu Y, Zhu C, Yin Y, Zhang C, Xu W, Li Q, Wang K, Gilbert MTP, Heller R, Wang W, Huang J, Qiu Q. A towering genome: Experimentally validated adaptations to high blood pressure and extreme stature in the giraffe. SCIENCE ADVANCES 2021; 7:7/12/eabe9459. [PMID: 33731352 PMCID: PMC7968835 DOI: 10.1126/sciadv.abe9459] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/02/2021] [Indexed: 05/02/2023]
Abstract
The suite of adaptations associated with the extreme stature of the giraffe has long interested biologists and physiologists. By generating a high-quality chromosome-level giraffe genome and a comprehensive comparison with other ruminant genomes, we identified a robust catalog of giraffe-specific mutations. These are primarily related to cardiovascular, bone growth, vision, hearing, and circadian functions. Among them, the giraffe FGFRL1 gene is an outlier with seven unique amino acid substitutions not found in any other ruminant. Gene-edited mice with the giraffe-type FGFRL1 show exceptional hypertension resistance and higher bone mineral density, both of which are tightly connected with giraffe adaptations to high stature. Our results facilitate a deeper understanding of the molecular mechanism underpinning distinct giraffe traits, and may provide insights into the study of hypertension in humans.
Collapse
Affiliation(s)
- Chang Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xinxin Cui
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Liangwei Mei
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Xi'an 710069, China
| | - Dan Cai
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Mingliang Hu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zihe Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Guangyu Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yicheng Xu
- Jiaxing SynBioLab. Co. Ltd., Jiaxing 314000, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenzhou Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qingjie Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350, Denmark
- Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
5
|
Moyano S, Morales M, Giannini N. Skull ontogeny of the pronghorn (Antilocapraamericana) in the comparative context of native North American ungulates. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The pronghorn (Antilocapra americana (Ord, 1815)) is the single survivor of a largely extinct, isolated pecoran lineage (Antilocapridae) native to North America. We describe postnatal ontogeny of its skull in a comparative framework inclusive of representatives of other typical North American ungulate linages, all of which partially overlap in geographic distribution and share habitat with A. americana. To describe allometric growth, we took 23 linear cranial measurements in 30 specimens of A. americana and applied bi- and multi-variate statistics. The skull of A. americana generally grew with negative rates in width and height dimensions, and with positive rates in length, including an elongation of rostrum, particularly the nasals, and a relative narrowing of the braincase. We compared skull development in A. americana with development in two cervids (white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) and wapiti (Cervus canadensis Erxleben, 1777)) and two bovids (bighorn sheep (Ovis canadensis Shaw, 1804) and American bison (Bison bison (Linnaeus, 1758))). The multivariate ontogenetic trajectory of A. americana overlapped greatly with that of Odocoileus virginianus, and differed from the other species in varying degrees. These results indicated an essentially convergent pattern of skull growth with species showing important functional similarities, such as cervids of comparable size and feeding habits.
Collapse
Affiliation(s)
- S.R. Moyano
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy – Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Bolivia 1239, San Salvador de Jujuy, C.P. 4600, Jujuy, Argentina; Centro de Estudios Territoriales Ambientales y Sociales (CETAS), Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, San Salvador de Jujuy, C.P. 4600, Jujuy, Argentina
| | - M.M. Morales
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy – Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Bolivia 1239, San Salvador de Jujuy, C.P. 4600, Jujuy, Argentina; Centro de Estudios Territoriales Ambientales y Sociales (CETAS), Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, San Salvador de Jujuy, C.P. 4600, Jujuy, Argentina
| | - N.P. Giannini
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas, Miguel Lillo 251, C.P. 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, C.P. 4000, Tucumán, Argentina; American Museum of Natural History, Department of Mammalogy, 200 Central Park West, New York, NY 10024-5192, USA
| |
Collapse
|
6
|
Farré M, Li Q, Darolti I, Zhou Y, Damas J, Proskuryakova AA, Kulemzina AI, Chemnick LG, Kim J, Ryder OA, Ma J, Graphodatsky AS, Zhang G, Larkin DM, Lewin HA. An integrated chromosome-scale genome assembly of the Masai giraffe (Giraffa camelopardalis tippelskirchi). Gigascience 2020; 8:5542321. [PMID: 31367745 PMCID: PMC6669057 DOI: 10.1093/gigascience/giz090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Masai giraffe (Giraffa camelopardalis tippelskirchi) is the largest-bodied giraffe and the world's tallest terrestrial animal. With its extreme size and height, the giraffe's unique anatomical and physiological adaptations have long been of interest to diverse research fields. Giraffes are also critical to ecosystems of sub-Saharan Africa, with their long neck serving as a conduit to food sources not shared by other herbivores. Although the genome of a Masai giraffe has been sequenced, the assembly was highly fragmented and suboptimal for genome analysis. Herein we report an improved giraffe genome assembly to facilitate evolutionary analysis of the giraffe and other ruminant genomes. FINDINGS Using SOAPdenovo2 and 170 Gbp of Illumina paired-end and mate-pair reads, we generated a 2.6-Gbp male Masai giraffe genome assembly, with a scaffold N50 of 3 Mbp. The incorporation of 114.6 Gbp of Chicago library sequencing data resulted in a HiRise SOAPdenovo + Chicago assembly with an N50 of 48 Mbp and containing 95% of expected genes according to BUSCO analysis. Using the Reference-Assisted Chromosome Assembly tool, we were able to order and orient scaffolds into 42 predicted chromosome fragments (PCFs). Using fluorescence in situ hybridization, we placed 153 cattle bacterial artificial chromosomes onto giraffe metaphase spreads to assess and assign the PCFs on 14 giraffe autosomes and the X chromosome resulting in the final assembly with an N50 of 177.94 Mbp. In this assembly, 21,621 protein-coding genes were identified using both de novo and homology-based predictions. CONCLUSIONS We have produced the first chromosome-scale genome assembly for a Giraffidae species. This assembly provides a valuable resource for the study of artiodactyl evolution and for understanding the molecular basis of the unique adaptive traits of giraffes. In addition, the assembly will provide a powerful resource to assist conservation efforts of Masai giraffe, whose population size has declined by 52% in recent years.
Collapse
Affiliation(s)
- Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK.,School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Qiye Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,China National Genebank, BGI-Shenzhen, Shenzhen 518083, China
| | - Iulia Darolti
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK.,Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Yang Zhou
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK.,The Genome Center, University of California, Davis, CA 95616, USA
| | - Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Leona G Chemnick
- San Diego Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Oliver A Ryder
- San Diego Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Guoije Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,China National Genebank, BGI-Shenzhen, Shenzhen 518083, China.,Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK.,The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Harris A Lewin
- The Genome Center, University of California, Davis, CA 95616, USA.,Department of Evolution and Ecology, College of Biological Sciences, and the Department of Reproduction and Population Health, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. PLoS One 2017; 12:e0187559. [PMID: 29112970 PMCID: PMC5675437 DOI: 10.1371/journal.pone.0187559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/21/2017] [Indexed: 11/19/2022] Open
Abstract
The Cervidae family comprises more than fifty species divided into three subfamilies: Capreolinae, Cervinae and Hydropotinae. A characteristic attribute for the species included in this family is the great karyotype diversity, with the chromosomal numbers ranging from 2n = 6 observed in female Muntiacus muntjak vaginalis to 2n = 70 found in Mazama gouazoubira as a result of numerous Robertsonian and tandem fusions. This work reports chromosomal homologies between cattle (Bos taurus, 2n = 60) and nine cervid species using a combination of whole chromosome and region-specific paints and BAC clones derived from cattle. We show that despite the great diversity of karyotypes in the studied species, the number of conserved chromosomal segments detected by 29 cattle whole chromosome painting probes was 35 for all Cervidae samples. The detailed analysis of the X chromosomes revealed two different morphological types within Cervidae. The first one, present in the Capreolinae is a sub/metacentric X with the structure more similar to the bovine X. The second type found in Cervini and Muntiacini is an acrocentric X which shows rearrangements in the proximal part that have not yet been identified within Ruminantia. Moreover, we characterised four repetitive sequences organized in heterochromatic blocks on sex chromosomes of the reindeer (Rangifer tarandus). We show that these repeats gave no hybridization signals to the chromosomes of the closely related moose (Alces alces) and are therefore specific to the reindeer.
Collapse
|
8
|
Proskuryakova AA, Kulemzina AI, Perelman PL, Makunin AI, Larkin DM, Farré M, Kukekova AV, Lynn Johnson J, Lemskaya NA, Beklemisheva VR, Roelke-Parker ME, Bellizzi J, Ryder OA, O'Brien SJ, Graphodatsky AS. X Chromosome Evolution in Cetartiodactyla. Genes (Basel) 2017; 8:genes8090216. [PMID: 28858207 PMCID: PMC5615350 DOI: 10.3390/genes8090216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 02/05/2023] Open
Abstract
The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.
Collapse
Affiliation(s)
- Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| | - Anastasia I Kulemzina
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| | - Alexey I Makunin
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Denis M Larkin
- The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Marta Farré
- The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Anna V Kukekova
- Animal Sciences Department, College of ACES, University of Illinois at Urbana-Champaign, IL 61801, USA.
| | - Jennifer Lynn Johnson
- Animal Sciences Department, College of ACES, University of Illinois at Urbana-Champaign, IL 61801, USA.
| | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Violetta R Beklemisheva
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Melody E Roelke-Parker
- Frederick National Laboratory of Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA.
| | - June Bellizzi
- Catoctin Zoo and Wildlife Preserve, Thurmont, MD 21788, USA.
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA.
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Sredniy Av. 41A, Saint-Petersburg 199034, Russia.
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale 3301 College Ave, Fort Lauderdale, FL 33314, USA.
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| |
Collapse
|
9
|
A Comparative Study of Pygmy Hippopotamus (Choeropsis liberiensis) Karyotype by Cross-Species Chromosome Painting. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9358-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Agaba M, Ishengoma E, Miller WC, McGrath BC, Hudson CN, Bedoya Reina OC, Ratan A, Burhans R, Chikhi R, Medvedev P, Praul CA, Wu-Cavener L, Wood B, Robertson H, Penfold L, Cavener DR. Giraffe genome sequence reveals clues to its unique morphology and physiology. Nat Commun 2016; 7:11519. [PMID: 27187213 PMCID: PMC4873664 DOI: 10.1038/ncomms11519] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. Giraffe's unique anatomy and physiology include its stature and associated cardiovascular adaptation. Here, Douglas Cavener and colleagues provide de novo genome assemblies of giraffe and its closest relative okapi and provide comparative analyses to infer insights into evolution and adaptation.
Collapse
Affiliation(s)
- Morris Agaba
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania.,Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi GPO00100, Kenya.,Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Edson Ishengoma
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania
| | - Webb C Miller
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Barbara C McGrath
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chelsea N Hudson
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Oscar C Bedoya Reina
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Aakrosh Ratan
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Public Health Genomics, Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Rico Burhans
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rayan Chikhi
- Center for Genomics and Bioinformatics, Department of Computer Science and Engineering, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Medvedev
- Center for Genomics and Bioinformatics, Department of Computer Science and Engineering, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lan Wu-Cavener
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Brendan Wood
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | - Douglas R Cavener
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania.,Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
11
|
Nanger, Eudorcas, Gazella, and Antilope form a well-supported chromosomal clade within Antilopini (Bovidae, Cetartiodactyla). Chromosoma 2014; 124:235-47. [PMID: 25416455 DOI: 10.1007/s00412-014-0494-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
The evolutionary clade comprising Nanger, Eudorcas, Gazella, and Antilope, defined by an X;BTA5 translocation, is noteworthy for the many autosomal Robertsonian fusions that have driven the chromosome number variation from 2n = 30 observed in Antilope cervicapra, to the 2n = 58 in present Eudorcas thomsoni and Eudorcas rufifrons. This work reports the phylogenetic relationships within the Antilopini using comprehensive cytogenetic data from A. cervicapra, Gazella leptoceros, Nanger dama ruficollis, and E. thomsoni together with corrected karyotypic data from an additional nine species previously reported in the literature. Fluorescence in situ hybridization using BAC and microdissected cattle painting probes, in conjunction with differential staining techniques, provide the following: (i) a detailed analysis of the E. thomsoni chromosomes, (ii) the identification and fine-scale analysis the BTA3 orthologue in species of Antilopini, and (iii) the location of the pseudoautosomal regions on sex chromosomes of the four species. Our phylogenetic analysis of the chromosomal data supports monophyly of Nanger and Eudorcas and suggests an affiliation between A. cervicapra and some of the Gazella species. This renders Gazella paraphyletic and emphasizes a closer relationship between Antilope and Gazella than what has previously been considered.
Collapse
|
12
|
Kulemzina AI, Perelman PL, Grafodatskaya DA, Nguyen TT, Thompson M, Roelke-Parker ME, Graphodatsky AS. Comparative chromosome painting of pronghorn (Antilocapra americana) and saola (Pseudoryx nghetinhensis) karyotypes with human and dromedary camel probes. BMC Genet 2014; 15:68. [PMID: 24923361 PMCID: PMC4061535 DOI: 10.1186/1471-2156-15-68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pronghorn (Antilocapridae, 2n = 58) and saola (Bovidae, 2n = 50) are members of Pecora, a highly diversified group of even-toed hoofed mammals. Karyotypes of these species were not involved in chromosome painting studies despite their intriguing phylogenetic positions in Pecora. RESULTS To trace the chromosome evolution during very fast radiation of main families from the common Pecoran ancestor, high-resolution comparative chromosome maps of pronghorn and saola with human (HSA) and dromedary camel (CDR) painting probes were established. The human and dromedary camel painting probes revealed 50 and 64 conserved segments respectively in the pronghorn genome, while 51 and 63 conserved segments respectively in the saola genome. Integrative analysis with published comparative maps showed that inversions in chromosomes homologous to CDR19/35/19 (HSA 10/20/10), CDR12/34/12 (HSA12/22/12/22), CDR10/33/10 (HSA 11) are present in representatives of all five living Pecoran families. The pronghorn karyotype could have formed from a putative 2n = 58 Pecoran ancestral karyotype by one fission and one fusion and that the saola karyotype differs from the presumed 2n = 60 bovid ancestral karyotype (2n = 60) by five fusions. CONCLUSION The establishment of high-resolution comparative maps for pronghorn and saola has shed some new insights into the putative ancestral karyotype, chromosomal evolution and phylogenic relationships in Pecora. No cytogenetic signature rearrangements were found that could unite the Antilocapridae with Giraffidae or with any other Pecoran families. Our data on the saola support a separate position of Pseudorigyna subtribe rather than its affinity to either Bovina or Bubalina, but the saola phylogenetic position within Bovidae remains unresolved.
Collapse
Affiliation(s)
- Anastasia I Kulemzina
- Institute of Molecular and Cellular Biology, SB RAS and Novosibirsk State University, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Development of a sequential multicolor-FISH approach with 13 chromosome-specific painting probes for the rapid identification of river buffalo (Bubalus bubalis, 2n = 50) chromosomes. J Appl Genet 2014; 55:397-401. [PMID: 24664789 DOI: 10.1007/s13353-014-0207-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
The development of new molecular techniques (array CGH, M-FISH, SKY-FISH, etc.) has led to great advancements in the entire field of molecular cytogenetics. However, the application of these methods is still very limited in farm animals. In the present study, we report, for the first time, the production of 13 river buffalo (Bubalus bubalis, 2n = 50) chromosome-specific painting probes, generated via chromosome microdissection and the DOP-PCR procedure. A sequential multicolor-FISH approach is also proposed on the same slide for the rapid identification of river buffalo chromosome/arms, namely, 1p-1q, 2p-2q, 3p-3q, 4p-4q, 5p-5q, 18, X, and Y, using both conventional and late-replicating banded chromosome preparations counterstained by DAPI. The provided 'bank' of chromosome-specific painting probes is useful for any further cytogenetic investigation not only for the buffalo breeds, but also for other species of the family Bovidae, such as cattle, sheep, and goats, for chromosome abnormality diagnosis, and, more generally, for evolutionary studies.
Collapse
|