1
|
Shan S, Gitzendanner MA, Boatwright JL, Spoelhof JP, Ethridge CL, Ji L, Liu X, Soltis PS, Schmitz RJ, Soltis DE. Genome-wide DNA methylation dynamics following recent polyploidy in the allotetraploid Tragopogon miscellus (Asteraceae). THE NEW PHYTOLOGIST 2024; 242:1363-1376. [PMID: 38450804 DOI: 10.1111/nph.19655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024]
Abstract
Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.
Collapse
Affiliation(s)
- Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - J Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, 29634, USA
| | - Jonathan P Spoelhof
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
2
|
Lallemand T, Leduc M, Desmazières A, Aubourg S, Rizzon C, Landès C, Celton JM. Insights into the Evolution of Ohnologous Sequences and Their Epigenetic Marks Post-WGD in Malus Domestica. Genome Biol Evol 2023; 15:evad178. [PMID: 37847638 PMCID: PMC10601995 DOI: 10.1093/gbe/evad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
A Whole Genome Duplication (WGD) event occurred several Ma in a Rosaceae ancestor, giving rise to the Maloideae subfamily which includes today many pome fruits such as pear (Pyrus communis) and apple (Malus domestica). This complete and well-conserved genome duplication makes the apple an organism of choice to study the early evolutionary events occurring to ohnologous chromosome fragments. In this study, we investigated gene sequence evolution and expression, transposable elements (TE) density, and DNA methylation level. Overall, we identified 16,779 ohnologous gene pairs in the apple genome, confirming the relatively recent WGD. We identified several imbalances in QTL localization among duplicated chromosomal fragments and characterized various biases in genome fractionation, gene transcription, TE densities, and DNA methylation. Our results suggest a particular chromosome dominance in this autopolyploid species, a phenomenon that displays similarities with subgenome dominance that has only been described so far in allopolyploids.
Collapse
Affiliation(s)
- Tanguy Lallemand
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Martin Leduc
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Adèle Desmazières
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Sébastien Aubourg
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d’Evry Val d’Essonne, Evry, France
| | - Claudine Landès
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Jean-Marc Celton
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
3
|
Jiang Y, Zhang S, Chen K, Xia X, Tao B, Kong W. Impacts of DNA methylases and demethylases on the methylation and expression of Arabidopsis ethylene signal pathway genes. Funct Integr Genomics 2023; 23:143. [PMID: 37127698 DOI: 10.1007/s10142-023-01069-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Arabidopsis ethylene (ET) signal pathway plays important roles in various aspects. Cytosine DNA methylation is significant in controlling gene expression in plants. Here, we analyzed the bisulfite sequencing and mRNA sequencing data from Arabidopsis (de)methylase mutants met1, cmt3, drm1/2, ddm1, ros1-4, and rdd to investigate how DNA (de)methylases influence the DNA methylation and expression of Arabidopsis ET pathway genes. At least 32 genes are found to involved in Arabidopsis ET pathway by text mining. Among them, 14 genes are unmethylated or methylated with very low levels. ACS6 and ACS9 are conspicuously methylated within their upstream regions. The other 16 genes are predominantly methylated at the CG sites within gene body regions in wild-type plants, and mutation of MET1 resulted in almost entire elimination of the CG methylations. In addition, CG methylations within some genes are jointly maintained by MET1 and other (de)methylases. Analyses of mRNA-seq data indicated that some ET pathway genes were differentially expressed between wild-type and diverse mutants. PDF1.2, the marker gene of ET signal pathway, was found being regulated indirectly by the methylases. Eighty-two transposable elements (TEs) were identified to be associated to 15 ET pathway genes. ACS11 is found located in a heterochromatin region that contains 57 TEs, indicating its specific expression and regulation. Together, our results suggest that DNA (de)methylases are implicated in the regulation of CG methylation within gene body regions and transcriptional activity of some ET pathway genes and that maintenance of normal CG methylation is essential for ET pathway in Arabidopsis.
Collapse
Affiliation(s)
- Yan Jiang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shengwei Zhang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kun Chen
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xue Xia
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bingqing Tao
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weiwen Kong
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Wang Y, Liu Y, Qu S, Liang W, Sun L, Ci D, Ren Z, Fan LM, Qian W. Nitrogen starvation induces genome-wide activation of transposable elements in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2374-2384. [PMID: 36178606 DOI: 10.1111/jipb.13376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) availability is a major limiting factor for plant growth and agricultural productivity. Although the gene regulation network in response to N starvation has been extensively studied, it remains unknown whether N starvation has an impact on the activity of transposable elements (TEs). Here, we report that TEs can be transcriptionally activated in Arabidopsis under N starvation conditions. Through genetic screening of idm1-14 suppressors, we cloned GLU1, which encodes a glutamate synthase that catalyzes the synthesis of glutamate in the primary N assimilation pathway. We found that glutamate synthase 1 (GLU1) and its functional homologs GLU2 and glutamate transport 1 (GLT1) are redundantly required for TE silencing, suggesting that N metabolism can regulate TE activity. Transcriptome and methylome analyses revealed that N starvation results in genome-wide TE activation without inducing obvious alteration of DNA methylation. Genetic analysis indicated that N starvation-induced TE activation is also independent of other well-established epigenetic mechanisms, including histone methylation and heterochromatin decondensation. Our results provide new insights into the regulation of TE activity under stressful environments in planta.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shaofeng Qu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dong Ci
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Liu-Min Fan
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| |
Collapse
|
5
|
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annu Rev Genet 2022; 56:63-87. [DOI: 10.1146/annurev-genet-072920-015534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Graduate Program in the Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
6
|
Zhou T, Bai G, Hu Y, Ruhsam M, Yang Y, Zhao Y. De novo genome assembly of the medicinal plant Gentiana macrophylla provides insights into the genomic evolution and biosynthesis of iridoids. DNA Res 2022; 29:6748869. [PMID: 36197098 PMCID: PMC9724787 DOI: 10.1093/dnares/dsac034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gentiana macrophylla is a perennial herb in the Gentianaceae family, whose dried roots are used in traditional Chinese medicine. Here, we assembled a chromosome-level genome of G. macrophylla using a combination of Nanopore, Illumina, and Hi-C scaffolding approaches. The final genome size was ~1.79 Gb (contig N50 = 720.804 kb), and 98.89% of the genome sequences were anchored on 13 pseudochromosomes (scaffold N50 = 122.73 Mb). The genome contained 55,337 protein-coding genes, and 73.47% of the assemblies were repetitive sequences. Genome evolution analysis indicated that G. macrophylla underwent two rounds of whole-genome duplication after the core eudicot γ genome triplication event. We further identified candidate genes related to the biosynthesis of iridoids, and the corresponding gene families mostly expanded in G. macrophylla. In addition, we found that root-specific genes are enriched in pathways involved in defense responses, which may greatly improve the biological adaptability of G. macrophylla. Phylogenomic analyses showed a sister relationship of asterids and rosids, and all Gentianales species formed a monophyletic group. Our study contributes to the understanding of genome evolution and active component biosynthesis in G. macrophylla and provides important genomic resource for the genetic improvement and breeding of G. macrophylla.
Collapse
Affiliation(s)
- Tao Zhou
- Corresponding author: Tel. +86 29 8265 5424. (T.Z.); (Y.Z.)
| | | | | | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Yanci Yang
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Yuemei Zhao
- Corresponding author: Tel. +86 29 8265 5424. (T.Z.); (Y.Z.)
| |
Collapse
|
7
|
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. Evolution of complex genome architecture in gymnosperms. Gigascience 2022; 11:6659718. [PMID: 35946987 PMCID: PMC9364684 DOI: 10.1093/gigascience/giac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole-genome assembly of gymnosperms has only generated in the past 10 years and is now being further expanded into more taxonomic representations. Here, we provide an overview of the publicly available gymnosperm genome resources and discuss their assembly quality and recent findings in large genome architectures. In particular, we describe the genomic features most related to changes affecting the whole genome. We also highlight new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5–15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.
Collapse
Affiliation(s)
- Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Yanbing Gong
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - YaDong Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
8
|
Tsouris A, Schacherer J, Ishchuk OP. RNA Interference (RNAi ) as a Tool for High-Resolution Phenotypic Screening of the Pathogenic Yeast Candida glabrata. Methods Mol Biol 2022; 2477:313-330. [PMID: 35524125 DOI: 10.1007/978-1-0716-2257-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
After its discovery RNA interference (RNAi) has become a powerful tool to study gene functions in different organisms. RNAi has been applied at genome-wide scale and can be nowadays performed using high-throughput automated systems (robotics). The simplest RNAi process requires the expression of two genes (Dicer and Argonaute) to function. To initiate the silencing, constructs generating either double-strand RNA or antisense RNA are required. Recently, RNAi was reconstituted by expressing Saccharomyces castellii genes in the human pathogenic yeast Candida glabrata and was used to identify new genes related to the virulence of this pathogen.In this chapter, we describe a method to make the C. glabrata pathogenic yeast competent for RNAi and to use RNA silencing as a tool for low- or high-resolution phenotypic screening in this species.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
9
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
10
|
Quadrana L, Silveira AB, Caillieux E, Colot V. Detection of Transposable Element Insertions in Arabidopsis Using Sequence Capture. Methods Mol Biol 2021; 2250:141-155. [PMID: 33900601 DOI: 10.1007/978-1-0716-1134-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transposable elements (TEs) are repetitive DNA sequences that have the ability to mobilize in the genome and create major effect mutations. Despite the importance of transposition as a source of genetic novelty, we still know little about the rate, landscape, and consequences of TE mobilization. This situation stems in large part from the repetitive nature of TEs, which complicates their analysis. Moreover, TE mobilization is typically rare and therefore new TE (i.e., non-reference) insertions tend to be missed in small-scale population studies. This chapter describes a TE-sequence capture approach designed to identify transposition events for most of the TE families that are potentially active in Arabidopsis thaliana. We show that our TE-sequence capture design provides an efficient means to detect with high sensitivity and specificity insertions that are present at a frequency as low as 1/1000 within a DNA sample.
Collapse
Affiliation(s)
- Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - Amanda Bortolini Silveira
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Erwann Caillieux
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
11
|
Fu R, Huang X, Zhan A. Identification of DNA (de)methylation-related genes and their transcriptional response to environmental challenges in an invasive model ascidian. Gene 2020; 768:145331. [PMID: 33278554 DOI: 10.1016/j.gene.2020.145331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/26/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023]
Abstract
Marine invasive species are constantly challenged by acute or recurring environmental stresses during their range expansions. DNA methylation-mediated stress memory has been proposed to effectively affect species' response and enhance their overall performance in recurring environmental challenges. In order to further test this proposal in marine invasive species, we identified genes in the DNA methylation and demethylation processes in the highly invasive model species, Ciona robusta, and subsequently investigated the expression patterns of these genes under recurring salinity stresses. After a genome-wide comprehensive survey, we found a total of six genes, including two genes of DNA methyltransferase 3a (DNMT3a1 and DNMT3a2), and one gene of DNA methyltransferase 1 (DNMT1), methyl-CpG-binding domain protein 2 (MBD2), methyl-CpG-binding domain protein 4 (MBD4) and ten-eleven-translocation protein 1 (TET1). Phylogenetic reconstruction and domain arrangement analyses showed that the deduced proteins of the identified genes were evolutionarily conserved and functionally similar with their orthologs. All genes were constitutively expressed in all four tested tissues. Interestingly, we found time-dependent and stress-specific gene expression patterns under high and low salinity stresses. Under the recurring high salinity stresses, DNMT3a1 and TET1 conformed to the definition of memory genes, while under the recurring low salinity stresses, two DNMT3a paralogues were identified as the memory genes. Altogether, our results clearly showed that the transcriptional patterns of (de)methylation-related genes were significantly influenced by environmental stresses, and the transcriptional memory of some (de)methylation-related genes should play crucial roles in DNA methylation-mediated stress memory during the process of biological invasions.
Collapse
Affiliation(s)
- Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
To TK, Nishizawa Y, Inagaki S, Tarutani Y, Tominaga S, Toyoda A, Fujiyama A, Berger F, Kakutani T. RNA interference-independent reprogramming of DNA methylation in Arabidopsis. NATURE PLANTS 2020; 6:1455-1467. [PMID: 33257860 DOI: 10.1038/s41477-020-00810-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is important for silencing transposable elements (TEs) in diverse eukaryotes, including plants. In plant genomes, TEs are silenced by methylation of histone H3 lysine 9 (H3K9) and cytosines in both CG and non-CG contexts. The role of RNA interference (RNAi) in establishing TE-specific silent marks has been extensively studied, but the importance of RNAi-independent pathways remains largely unexplored. Here, we directly investigated transgenerational de novo DNA methylation of TEs after the loss of silent marks. Our analyses uncovered potent and precise RNAi-independent pathways for recovering non-CG methylation and H3K9 methylation in most TE genes (that is, coding regions within TEs). Characterization of a subset of TE genes without the recovery revealed the effects of H3K9 demethylation, replacement of histone H2A variants and their interaction with CG methylation, together with feedback from transcription. These chromatin components are conserved among eukaryotes and may contribute to chromatin reprogramming in a conserved manner.
Collapse
Affiliation(s)
- Taiko Kim To
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yuichiro Nishizawa
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- PREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
| | - Sayaka Tominaga
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
- Department of Integrated Genetics, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan.
| |
Collapse
|
13
|
de Melo ES, Wallau GL. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genet 2020; 16:e1008946. [PMID: 33253164 PMCID: PMC7728395 DOI: 10.1371/journal.pgen.1008946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize basically all eukaryotic species genomes. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, while it varied substantially among Anopheles species (0.13%-19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been extensively exchanged by horizontal transfer (172 TE families of 16 different superfamilies) among mosquitoes in the last 30 million years. Horizontally transferred TEs represents around 7% of the genome in Aedes species and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more than 32,000 genomes, we also uncovered transfers between mosquitoes and two different Phyla-Cnidaria and Nematoda-and two subphyla-Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are frequently exchanged by horizontal transfers among mosquitoes, influencing mosquito's genome size and variability.
Collapse
Affiliation(s)
- Elverson Soares de Melo
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
14
|
Scarrow M, Wang Y, Sun G. Molecular regulatory mechanisms underlying the adaptability of polyploid plants. Biol Rev Camb Philos Soc 2020; 96:394-407. [PMID: 33098261 DOI: 10.1111/brv.12661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Polyploidization influences the genetic composition and gene expression of an organism. This multi-level genetic change allows the formation of new regulatory pathways leading to increased adaptability. Although both forms of polyploidization provide advantages, autopolyploids were long thought to have little impact on plant divergence compared to allopolyploids due to their formation through genome duplication only, rather than in combination with hybridization. Recent advances have begun to clarify the molecular regulatory mechanisms such as microRNAs, alternative splicing, RNA-binding proteins, histone modifications, chromatin remodelling, DNA methylation, and N6 -methyladenosine (m6A) RNA methylation underlying the evolutionary success of polyploids. Such research is expanding our understanding of the evolutionary adaptability of polyploids and the regulatory pathways that allow adaptive plasticity in a variety of plant species. Herein we review the roles of individual molecular regulatory mechanisms and their potential synergistic pathways underlying plant evolution and adaptation. Notably, increasing interest in m6A methylation has provided a new component in potential mechanistic coordination that is still predominantly unexplored. Future research should attempt to identify and functionally characterize the evolutionary impact of both individual and synergistic pathways in polyploid plant species.
Collapse
Affiliation(s)
- Margaret Scarrow
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Yiling Wang
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, 041000, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
15
|
Romano G, Klima R, Feiguin F. TDP-43 prevents retrotransposon activation in the Drosophila motor system through regulation of Dicer-2 activity. BMC Biol 2020; 18:82. [PMID: 32620127 PMCID: PMC7334854 DOI: 10.1186/s12915-020-00816-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mutations in the small RNA-binding protein TDP-43 lead to the formation of insoluble cytoplasmic aggregates that have been associated with the onset and progression of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder affecting homeostasis of the motor system which is also characterized by aberrant expression of retrotransposable elements (RTEs). Although the TDP-43 function was shown to be required in the neurons and glia to maintain the organization of neuromuscular synapses and prevent denervation of the skeletal muscles, the molecular mechanisms involved in physiological dysregulation remain elusive. Here, we address this issue using a null mutation of the TDP-43 Drosophila homolog, TBPH. Results Using genome-wide gene expression profiles, we detected a strong upregulation of RTE expression in TBPH-null Drosophila heads, while the genetic rescue of the TDP-43 function reverted these modifications. Furthermore, we found that TBPH modulates the small interfering RNA (siRNA) silencing machinery responsible for RTE repression. Molecularly, we observed that TBPH regulates the expression levels of Dicer-2 by direct protein-mRNA interactions in vivo. Accordingly, the genetic or pharmacological recovery of Dicer-2 activity was sufficient to repress retrotransposon activation and promote motoneuron axonal wrapping and synaptic growth in TBPH-null Drosophila. Conclusions We identified an upregulation of RTE expression in TBPH-null Drosophila heads and demonstrate that defects in the siRNA pathway lead to RTE upregulation and motoneuron degeneration. Our results describe a novel physiological role of endogenous TDP-43 in the prevention of RTE-induced neurological alterations through the modulation of Dicer-2 activity and the siRNA pathway.
Collapse
Affiliation(s)
- Giulia Romano
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Raffaella Klima
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Fabian Feiguin
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| |
Collapse
|
16
|
Raz A, Dahan-Meir T, Melamed-Bessudo C, Leshkowitz D, Levy AA. Redistribution of Meiotic Crossovers Along Wheat Chromosomes by Virus-Induced Gene Silencing. FRONTIERS IN PLANT SCIENCE 2020; 11:635139. [PMID: 33613593 PMCID: PMC7890124 DOI: 10.3389/fpls.2020.635139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
Meiotic recombination is the main driver of genetic diversity in wheat breeding. The rate and location of crossover (CO) events are regulated by genetic and epigenetic factors. In wheat, most COs occur in subtelomeric regions but are rare in centromeric and pericentric areas. The aim of this work was to increase COs in both "hot" and "cold" chromosomal locations. We used Virus-Induced gene Silencing (VIGS) to downregulate the expression of recombination-suppressing genes XRCC2 and FANCM and of epigenetic maintenance genes MET1 and DDM1 during meiosis. VIGS suppresses genes in a dominant, transient and non-transgenic manner, which is convenient in wheat, a hard-to-transform polyploid. F1 hybrids of a cross between two tetraploid lines whose genome was fully sequenced (wild emmer and durum wheat), were infected with a VIGS vector ∼ 2 weeks before meiosis. Recombination was measured in F2 seedlings derived from F1-infected plants and non-infected controls. We found significant up and down-regulation of CO rates along subtelomeric regions as a result of silencing either MET1, DDM1 or XRCC2 during meiosis. In addition, we found up to 93% increase in COs in XRCC2-VIGS treatment in the pericentric regions of some chromosomes. Silencing FANCM showed no effect on CO. Overall, we show that CO distribution was affected by VIGS treatments rather than the total number of COs which did not change. We conclude that transient silencing of specific genes during meiosis can be used as a simple, fast and non-transgenic strategy to improve breeding abilities in specific chromosomal regions.
Collapse
Affiliation(s)
- Amir Raz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Science, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
- Amir Raz,
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Avraham A. Levy,
| |
Collapse
|
17
|
Xue W, Anderson SN, Wang X, Yang L, Crisp PA, Li Q, Noshay J, Albert PS, Birchler JA, Bilinski P, Stitzer MC, Ross-Ibarra J, Flint-Garcia S, Chen X, Springer NM, Doebley JF. Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize. Genetics 2019; 213:143-160. [PMID: 31320409 PMCID: PMC6727801 DOI: 10.1534/genetics.119.302378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
In the course of generating populations of maize with teosinte chromosomal introgressions, an unusual sickly plant phenotype was noted in individuals from crosses with two teosinte accessions collected near Valle de Bravo, Mexico. The plants of these Bravo teosinte accessions appear phenotypically normal themselves and the F1 plants appear similar to typical maize × teosinte F1s. However, upon backcrossing to maize, the BC1 and subsequent generations display a number of detrimental characteristics including shorter stature, reduced seed set, and abnormal floral structures. This phenomenon is observed in all BC individuals and there is no chromosomal segment linked to the sickly plant phenotype in advanced backcross generations. Once the sickly phenotype appears in a lineage, normal plants are never again recovered by continued backcrossing to the normal maize parent. Whole-genome shotgun sequencing reveals a small number of genomic sequences, some with homology to transposable elements, that have increased in copy number in the backcross populations. Transcriptome analysis of seedlings, which do not have striking phenotypic abnormalities, identified segments of 18 maize genes that exhibit increased expression in sickly plants. A de novo assembly of transcripts present in plants exhibiting the sickly phenotype identified a set of 59 upregulated novel transcripts. These transcripts include some examples with sequence similarity to transposable elements and other sequences present in the recurrent maize parent (W22) genome as well as novel sequences not present in the W22 genome. Genome-wide profiles of gene expression, DNA methylation, and small RNAs are similar between sickly plants and normal controls, although a few upregulated transcripts and transposable elements are associated with altered small RNA or methylation profiles. This study documents hybrid incompatibility and genome instability triggered by the backcrossing of Bravo teosinte with maize. We name this phenomenon "hybrid decay" and present ideas on the mechanism that may underlie it.
Collapse
Affiliation(s)
- Wei Xue
- College of Agronomy, Shenyang Agricultural University, 110866 Liaoning Province, China
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
| | - Liyan Yang
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Life Science College, Shanxi Normal University, 041004 Shanxi Province, China
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Qing Li
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jaclyn Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Paul Bilinski
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Michelle C Stitzer
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Sherry Flint-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri 65211
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
18
|
Noshay JM, Anderson SN, Zhou P, Ji L, Ricci W, Lu Z, Stitzer MC, Crisp PA, Hirsch CN, Zhang X, Schmitz RJ, Springer NM. Monitoring the interplay between transposable element families and DNA methylation in maize. PLoS Genet 2019; 15:e1008291. [PMID: 31498837 PMCID: PMC6752859 DOI: 10.1371/journal.pgen.1008291] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/19/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methylation and epigenetic silencing play important roles in the regulation of transposable elements (TEs) in many eukaryotic genomes. A majority of the maize genome is derived from TEs that can be classified into different orders and families based on their mechanism of transposition and sequence similarity, respectively. TEs themselves are highly methylated and it can be tempting to view them as a single uniform group. However, the analysis of DNA methylation profiles in flanking regions provides evidence for distinct groups of chromatin properties at different TE families. These differences among TE families are reproducible in different tissues and different inbred lines. TE families with varying levels of DNA methylation in flanking regions also show distinct patterns of chromatin accessibility and modifications within the TEs. The differences in the patterns of DNA methylation flanking TE families arise from a combination of non-random insertion preferences of TE families, changes in DNA methylation triggered by the insertion of the TE and subsequent selection pressure. A set of nearly 70,000 TE polymorphisms among four assembled maize genomes were used to monitor the level of DNA methylation at haplotypes with and without the TE insertions. In many cases, TE families with high levels of DNA methylation in flanking sequence are enriched for insertions into highly methylated regions. The majority of the >2,500 TE insertions into unmethylated regions result in changes in DNA methylation in haplotypes with the TE, suggesting the widespread potential for TE insertions to condition altered methylation in conserved regions of the genome. This study highlights the interplay between TEs and the methylome of a major crop species.
Collapse
Affiliation(s)
- Jaclyn M. Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| | - Sarah N. Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens GA, United States of America
| | - William Ricci
- Department of Plant Biology, University of Georgia, Athens GA, United States of America
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens GA, United States of America
| | - Michelle C. Stitzer
- Department of Plant Sciences, University of California Davis, Davis CA, United States of America
| | - Peter A. Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul MN, United States of America
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens GA, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens GA, United States of America
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul MN, United States of America
| |
Collapse
|
19
|
Grob S, Grossniklaus U. Invasive DNA elements modify the nuclear architecture of their insertion site by KNOT-linked silencing in Arabidopsis thaliana. Genome Biol 2019; 20:120. [PMID: 31186073 PMCID: PMC6560877 DOI: 10.1186/s13059-019-1722-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The three-dimensional (3D) organization of chromosomes is linked to epigenetic regulation and transcriptional activity. However, only few functional features of 3D chromatin architecture have been described to date. The KNOT is a 3D chromatin structure in Arabidopsis, comprising 10 interacting genomic regions termed KNOT ENGAGED ELEMENTs (KEEs). KEEs are enriched in transposable elements and associated small RNAs, suggesting a function in transposon biology. RESULTS Here, we report the KNOT's involvement in regulating invasive DNA elements. Transgenes can specifically interact with the KNOT, leading to perturbations of 3D nuclear organization, which correlates with the transgene's expression: high KNOT interaction frequencies are associated with transgene silencing. KNOT-linked silencing (KLS) cannot readily be connected to canonical silencing mechanisms, such as RNA-directed DNA methylation and post-transcriptional gene silencing, as both cytosine methylation and small RNA abundance do not correlate with KLS. Furthermore, KLS exhibits paramutation-like behavior, as silenced transgenes can lead to the silencing of active transgenes in trans. CONCLUSION Transgene silencing can be connected to a specific feature of Arabidopsis 3D nuclear organization, namely the KNOT. KLS likely acts either independent of or prior to canonical silencing mechanisms, such that its characterization not only contributes to our understanding of chromosome folding but also provides valuable insights into how genomes are defended against invasive DNA elements.
Collapse
Affiliation(s)
- Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
20
|
Morata J, Marín F, Payet J, Casacuberta JM. Plant Lineage-Specific Amplification of Transcription Factor Binding Motifs by Miniature Inverted-Repeat Transposable Elements (MITEs). Genome Biol Evol 2018; 10:1210-1220. [PMID: 29659815 PMCID: PMC5950925 DOI: 10.1093/gbe/evy073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transposable elements are one of the main drivers of plant genome evolution. Transposon insertions can modify the gene coding capacity or the regulation of their expression, the latter being a more subtle effect, and therefore particularly useful for evolution. Transposons have been show to contain transcription factor binding sites that can be mobilized upon transposition with the potential to integrate new genes into transcriptional networks. Miniature inverted-repeat transposable elements (MITEs) are a type of noncoding DNA transposons that could be particularly suited as a vector to mobilize transcription factor binding sites and modify transcriptional networks during evolution. MITEs are small in comparison to other transposons and can be excised, which should make them less mutagenic when inserting into promoters. On the other hand, in spite of their cut-and-paste mechanisms of transposition, they can reach very high copy numbers in genomes. We have previously shown that MITEs have amplified and redistributed the binding motif of the E2F transcription factor in different Brassicas. Here, we show that MITEs have amplified and mobilized the binding motifs of the bZIP60 and PIF3 transcription factors in peach and Prunus mume, and the TCP15/23 binding motif in tomato. Our results suggest that MITEs could have rewired new genes into transcriptional regulatory networks that are responsible for important adaptive responses and breeding traits in plants, such as stress responses, flowering time, or fruit ripening. The results presented here therefore suggest a general impact of MITEs in the evolution of transcriptional regulatory networks in plants.
Collapse
Affiliation(s)
- Jordi Morata
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Fatima Marín
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Josep M Casacuberta
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
21
|
Nakashima K, Tsuchiya M, Fukushima S, Abe J, Kanazawa A. Transcription of soybean retrotransposon SORE-1 is temporally upregulated in developing ovules. PLANTA 2018; 248:1331-1337. [PMID: 30209619 DOI: 10.1007/s00425-018-3005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
MAIN CONCLUSION Transcription of soybean retrotransposon SORE-1 was temporally upregulated during ovule development. This transcriptional pattern was under intrinsic control conferred by the long terminal repeat of SORE-1. Transcriptionally active retrotransposons are capable of inducing random disruption of genes, providing a powerful tool for mutagenesis. Activation of retrotransposons in reproductive cells, in particular, can lead to heritable changes. Here, we examined developmental control of transcription of soybean retrotransposon SORE-1. Transgenic Arabidopsis plants that contain β-glucuronidase (GUS) reporter gene fused with the SORE-1 long terminal repeat (LTR) had GUS staining in the ovule. Quantitative analysis of transcripts in plants with this DNA construct and those with the full-length SORE-1 element indicated a temporal upregulation of SORE-1 transcription during ovule development. A comparable phenomenon was also observed in soybean plants that had a recent insertion of this element in the GmphyA2 gene. These results provide evidence that the temporal upregulation of SORE-1 in the reproductive organ is sufficiently controlled by its LTR and indicate that the intrinsic expression pattern of SORE-1 is consistent with its mutagenic property.
Collapse
Affiliation(s)
- Kenta Nakashima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Mayumi Tsuchiya
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Sae Fukushima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
22
|
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00117] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Morata J, Tormo M, Alexiou KG, Vives C, Ramos-Onsins SE, Garcia-Mas J, Casacuberta JM. The Evolutionary Consequences of Transposon-Related Pericentromer Expansion in Melon. Genome Biol Evol 2018; 10:1584-1595. [PMID: 29901717 PMCID: PMC6009578 DOI: 10.1093/gbe/evy115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are a major driver of plant genome evolution. A part from being a rich source of new genes and regulatory sequences, TEs can also affect plant genome evolution by modifying genome size and shaping chromosome structure. TEs tend to concentrate in heterochromatic pericentromeric regions and their proliferation may expand these regions. Here, we show that after the split of melon and cucumber, TEs have expanded the pericentromeric regions of melon chromosomes that, probably as a consequence, show a very low recombination frequency. In contrast, TEs have not proliferated to a high extent in cucumber, which has small TE-dense pericentromeric regions and shows a relatively constant recombination rate along chromosomes. These differences in chromosome structure also translate in differences in gene nucleotide diversity. Although gene nucleotide diversity is essentially constant along cucumber chromosomes, melon chromosomes show a bimodal pattern of genetic variability, with a gene-poor region where variability is negatively correlated with gene density. Interestingly, genes are not homogeneously distributed in melon, and the high variable low-recombining pericentromeric regions show a higher concentration of melon-specific genes whereas genes shared with cucumber and other plants are essentially found in gene-rich chromosomal arms. The results presented here suggest that melon pericentromeric regions may allow gene sequences to evolve more freely than in other chromosomal compartments which may allow new ORFs to arise and eventually be selected. These results show that TEs can drastically change the structure of chromosomes creating different chromosomal compartments imposing different constraints for gene evolution.
Collapse
Affiliation(s)
- Jordi Morata
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Marc Tormo
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Konstantinos G Alexiou
- Institut de Recerca i Tecnologia Agroalimentàries, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Cristina Vives
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Sebastián E Ramos-Onsins
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Jordi Garcia-Mas
- Institut de Recerca i Tecnologia Agroalimentàries, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
24
|
Hosaka A, Kakutani T. Transposable elements, genome evolution and transgenerational epigenetic variation. Curr Opin Genet Dev 2018. [DOI: 10.1016/j.gde.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Coronel CJ, González AI, Ruiz ML, Polanco C. Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. PLANT CELL REPORTS 2018; 37:137-152. [PMID: 29038910 DOI: 10.1007/s00299-017-2217-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/04/2017] [Indexed: 05/14/2023]
Abstract
We provide evidence that nucleotide sequence and methylation status changes occur in the Arabidopsis genome during in vitro tissue culture at a frequency high enough to represent an important source of variation. Somaclonal variation is a general consequence of the tissue culture process that has to be analyzed specifically when regenerated plants are obtained in any plant species. Currently, there are few studies about the variability comprising sequence changes and methylation status at the DNA level, generated by the culture of A. thaliana cells and tissues. In this work, two types of highly reproducible molecular markers, modified methylation sensitive AFLP (metAFLP) and transposon methylation display (TMD) have been used for the first time in this species to analyze the nucleotide and cytosine methylation changes induced by transformation and tissue culture protocols. We found significantly higher average methylation values (7.5%) in regenerated and transgenic plants when compared to values obtained from seed derived plants (3.2%) and that the main component of the somaclonal variation present in Arabidopsis clonal plants is genetic rather than epigenetic. However, we have found that the Arabidopsis regenerated and transgenic plants had a higher number of non-fully methylated sites flanking transposable elements than the control plants, and therefore, their mobilization can be facilitated. These data provide further evidence that changes in nucleotide sequence and methylation status occur in the Arabidopsis genome during in vitro tissue culture frequently enough to be an important source of variation in this species.
Collapse
Affiliation(s)
- Carlos J Coronel
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Ana I González
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - María L Ruiz
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Carlos Polanco
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
| |
Collapse
|
26
|
Hosaka A, Saito R, Takashima K, Sasaki T, Fu Y, Kawabe A, Ito T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T. Evolution of sequence-specific anti-silencing systems in Arabidopsis. Nat Commun 2017; 8:2161. [PMID: 29255196 PMCID: PMC5735166 DOI: 10.1038/s41467-017-02150-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023] Open
Abstract
The arms race between parasitic sequences and their hosts is a major driving force for evolution of gene control systems. Since transposable elements (TEs) are potentially deleterious, eukaryotes silence them by epigenetic mechanisms such as DNA methylation. Little is known about how TEs counteract silencing to propagate during evolution. Here, we report behavior of sequence-specific anti-silencing proteins used by Arabidopsis TEs and evolution of those proteins and their target sequences. We show that VANC, a TE-encoded anti-silencing protein, induces extensive DNA methylation loss throughout TEs. Related VANC proteins have evolved to hypomethylate TEs of completely different spectra. Targets for VANC proteins often form tandem repeats, which vary considerably between related TEs. We propose that evolution of VANC proteins and their targets allow propagation of TEs while causing minimal host damage. Our findings provide insight into the evolutionary dynamics of these apparently "selfish" sequences. They also provide potential tools to edit epigenomes in a sequence-specific manner.
Collapse
Affiliation(s)
- Aoi Hosaka
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan.
| | - Raku Saito
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Kazuya Takashima
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Taku Sasaki
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yu Fu
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Akira Kawabe
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama Kamigamo, Kyoto, 606-8555, Japan
| | - Tasuku Ito
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Shizuoka, 411-8540, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
27
|
Cañas RA, Li Z, Pascual MB, Castro-Rodríguez V, Ávila C, Sterck L, Van de Peer Y, Cánovas FM. The gene expression landscape of pine seedling tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1064-1087. [PMID: 28635135 DOI: 10.1111/tpj.13617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/13/2017] [Accepted: 05/31/2017] [Indexed: 05/20/2023]
Abstract
Conifers dominate vast regions of the Northern hemisphere. They are the main source of raw materials for timber industry as well as a wide range of biomaterials. Despite their inherent difficulties as experimental models for classical plant biology research, the technological advances in genomics research are enabling fundamental studies on these plants. The use of laser capture microdissection followed by transcriptomic analysis is a powerful tool for unravelling the molecular and functional organization of conifer tissues and specialized cells. In the present work, 14 different tissues from 1-month-old maritime pine (Pinus pinaster) seedlings have been isolated and their transcriptomes analysed. The results increased the sequence information and number of full-length transcripts from a previous reference transcriptome and added 39 841 new transcripts. In total, 2376 transcripts were ubiquitously expressed in all of the examined tissues. These transcripts could be considered the core 'housekeeping genes' in pine. The genes have been clustered in function to their expression profiles. This analysis reduced the number of profiles to 38, most of these defined by their expression in a unique tissue that is much higher than in the other tissues. The expression and localization data are accessible at ConGenIE.org (http://v22.popgenie.org/microdisection/). This study presents an overview of the gene expression distribution in different pine tissues, specifically highlighting the relationships between tissue gene expression and function. This transcriptome atlas is a valuable resource for functional genomics research in conifers.
Collapse
Affiliation(s)
- Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - M Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
28
|
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. ANNALS OF BOTANY 2017; 120:195-207. [PMID: 28854566 PMCID: PMC5737689 DOI: 10.1093/aob/mcx078] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants. SCOPE This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization. CONCLUSIONS TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.
Collapse
Affiliation(s)
- Carlos M. Vicient
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
- For correspondence. E-mail
| | - Josep M. Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
29
|
Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits. Genetics 2017; 205:1425-1441. [PMID: 28179367 PMCID: PMC5378104 DOI: 10.1534/genetics.116.192823] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
Abstract
Structural Rearrangements can have unexpected effects on quantitative phenotypes. Surprisingly, these rearrangements can also be considered as... To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii, isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions.
Collapse
|
30
|
Pontvianne F, Carpentier MC, Durut N, Pavlištová V, Jaške K, Schořová Š, Parrinello H, Rohmer M, Pikaard CS, Fojtová M, Fajkus J, Sáez-Vásquez J. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome. Cell Rep 2016; 16:1574-1587. [PMID: 27477271 PMCID: PMC5279810 DOI: 10.1016/j.celrep.2016.07.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 07/03/2016] [Indexed: 11/27/2022] Open
Abstract
The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Marie-Christine Carpentier
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Nathalie Durut
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Veronika Pavlištová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Karin Jaške
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Šárka Schořová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | | | | | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Miloslava Fojtová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jiří Fajkus
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| |
Collapse
|
31
|
Guyot R, Darré T, Dupeyron M, de Kochko A, Hamon S, Couturon E, Crouzillat D, Rigoreau M, Rakotomalala JJ, Raharimalala NE, Akaffou SD, Hamon P. Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Mol Genet Genomics 2016; 291:1979-90. [PMID: 27469896 DOI: 10.1007/s00438-016-1235-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
The Coffea genus, 124 described species, has a natural distribution spreading from inter-tropical Africa, to Western Indian Ocean Islands, India, Asia and up to Australasia. Two cultivated species, C. arabica and C. canephora, are intensively studied while, the breeding potential and the genome composition of all the wild species remained poorly uncharacterized. Here, we report the characterization and comparison of the highly repeated transposable elements content of 11 Coffea species representatives of the natural biogeographic distribution. A total of 994 Mb from 454 reads were produced with a genome coverage ranging between 3.2 and 15.7 %. The analyses showed that highly repeated transposable elements, mainly LTR retrotransposons (LTR-RT), represent between 32 and 53 % of Coffea genomes depending on their biogeographic location and genome size. Species from West and Central Africa (Eucoffea) contained the highest LTR-RT content but with no strong variation relative to their genome size. At the opposite, for the insular species (Mascarocoffea), a strong variation of LTR-RT was observed suggesting differential dynamics of these elements in this group. Two LTR-RT lineages, SIRE and Del were clearly differentially accumulated between African and insular species, suggesting these lineages were associated to the genome divergence of Coffea species in Africa. Altogether, the information obtained in this study improves our knowledge and brings new data on the composition, the evolution and the divergence of wild Coffea genomes.
Collapse
Affiliation(s)
- Romain Guyot
- IRD UMR IPME, CoffeeAdapt, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Thibaud Darré
- IRD UMR DIADE, EvoGeC, BP 64501, 34394, Montpellier Cedex 5, France
| | | | | | - Serge Hamon
- IRD UMR DIADE, EvoGeC, BP 64501, 34394, Montpellier Cedex 5, France
| | | | - Dominique Crouzillat
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oe ́, BP 49716, 37097, Tours Cedex 2, France
| | - Michel Rigoreau
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oe ́, BP 49716, 37097, Tours Cedex 2, France
| | | | | | | | - Perla Hamon
- IRD UMR DIADE, EvoGeC, BP 64501, 34394, Montpellier Cedex 5, France
| |
Collapse
|
32
|
Khan A, Yadav NS, Morgenstern Y, Zemach A, Grafi G. Activation of Tag1 transposable elements in Arabidopsis dedifferentiating cells and their regulation by CHROMOMETHYLASE 3-mediated CHG methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1289-98. [PMID: 27475038 DOI: 10.1016/j.bbagrm.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Dedifferentiation, that is, the acquisition of stem cell-like state, commonly induced by stress (e.g., protoplasting), is characterized by open chromatin conformation, a chromatin state that could lead to activation of transposable elements (TEs). Here, we studied the activation of the Arabidopsis class II TE Tag1, in which two copies, situated close to each other (near genes) on chromosome 1 are found in Landsberg erecta (Ler) but not in Columbia (Col). We first transformed protoplasts with a construct in which a truncated Tag1 (ΔTag1 non-autonomous) blocks the expression of a reporter gene AtMBD5-GFP and found a relatively high ectopic excision of ΔTag1 accompanied by expression of AtMBD5-GFP in protoplasts derived from Ler compared to Col; further increase was observed in ddm1 (decrease in DNA methylation1) protoplasts (Ler background). Ectopic excision was associated with transcription of the endogenous Tag1 and changes in histone H3 methylation at the promoter region. Focusing on the endogenous Tag1 elements we found low level of excision in Ler protoplasts, which was slightly and strongly enhanced in ddm1 and cmt3 (chromomethylase3) protoplasts, respectively, concomitantly with reduction in Tag1 gene body (GB) CHG methylation and increased Tag1 transcription; strong activation of Tag1 was also observed in cmt3 leaves. Notably, in cmt3, but not in ddm1, Tag1 elements were excised out from their original sites and transposed elsewhere in the genome. Our results suggest that dedifferentiation is associated with Tag1 activation and that CMT3 rather than DDM1 plays a central role in restraining Tag1 activation via inducing GB CHG methylation.
Collapse
Affiliation(s)
- Asif Khan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Narendra Singh Yadav
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Yaakov Morgenstern
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | - Assaf Zemach
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, 69978 Tel Aviv, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
33
|
Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA, Colot V. The Arabidopsis thaliana mobilome and its impact at the species level. eLife 2016; 5. [PMID: 27258693 PMCID: PMC4917339 DOI: 10.7554/elife.15716] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
Transposable elements (TEs) are powerful motors of genome evolution yet a comprehensive assessment of recent transposition activity at the species level is lacking for most organisms. Here, using genome sequencing data for 211 Arabidopsis thaliana accessions taken from across the globe, we identify thousands of recent transposition events involving half of the 326 TE families annotated in this plant species. We further show that the composition and activity of the 'mobilome' vary extensively between accessions in relation to climate and genetic factors. Moreover, TEs insert equally throughout the genome and are rapidly purged by natural selection from gene-rich regions because they frequently affect genes, in multiple ways. Remarkably, loci controlling adaptive responses to the environment are the most frequent transposition targets observed. These findings demonstrate the pervasive, species-wide impact that a rich mobilome can have and the importance of transposition as a recurrent generator of large-effect alleles.
Collapse
Affiliation(s)
- Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Paris, France
| | - Amanda Bortolini Silveira
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Paris, France
| | | | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Robert A Martienssen
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Palo Alto, United States.,Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
34
|
|
35
|
Affiliation(s)
- Victoria H. Meller
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| | - Sonal S. Joshi
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| | - Nikita Deshpande
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| |
Collapse
|
36
|
Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:67-76. [PMID: 26164237 DOI: 10.1016/j.pbi.2015.05.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 05/04/2023]
Abstract
In plant genomes the vast majority of transposable elements (TEs) are found in a transcriptionally silenced state that is epigenetically propagated from generation to generation. Although the mechanism of this maintenance of silencing has been well studied, it is now clear that the pathways responsible for maintaining TEs in a silenced state differ from the pathways responsible for initially targeting the TE for silencing. Recently, attention in this field has focused on investigating the molecular mechanisms that initiate and establish TE silencing. Here we review the current models of how TEs are triggered for silencing, the data supporting each model, and the key future questions in this fast moving field.
Collapse
Affiliation(s)
- Dalen Fultz
- Department of Molecular Genetics, The Ohio State University, United States
| | - Sarah G Choudury
- Department of Molecular Genetics, The Ohio State University, United States
| | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
37
|
Evangelinos M, Anagnostopoulos G, Karvela-Kalogeraki I, Stathopoulou PM, Scazzocchio C, Diallinas G. Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans. Fungal Genet Biol 2015; 81:1-11. [PMID: 26021704 DOI: 10.1016/j.fgb.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Transposons constitute powerful genetic tools for gene inactivation, exon or promoter trapping and genome analyses. The Minos element from Drosophila hydei, a Tc1/mariner-like transposon, has proved as a very efficient tool for heterologous transposition in several metazoa. In filamentous fungi, only a handful of fungal-specific transposable elements have been exploited as genetic tools, with the impala Tc1/mariner element from Fusarium oxysporum being the most successful. Here, we developed a two-component transposition system to manipulate Minos transposition in Aspergillus nidulans (AnMinos). Our system allows direct selection of transposition events based on re-activation of niaD, a gene necessary for growth on nitrate as a nitrogen source. On average, among 10(8) conidiospores, we obtain up to ∼0.8×10(2) transposition events leading to the expected revertant phenotype (niaD(+)), while ∼16% of excision events lead to AnMinos loss. Characterized excision footprints consisted of the four terminal bases of the transposon flanked by the TA target duplication and led to no major DNA rearrangements. AnMinos transposition depends on the presence of its homologous transposase. Its frequency was not significantly affected by temperature, UV irradiation or the transcription status of the original integration locus (niaD). Importantly, transposition is dependent on nkuA, encoding an enzyme essential for non-homologous end joining of DNA in double-strand break repair. AnMinos proved to be an efficient tool for functional analysis as it seems to transpose in different genomic loci positions in all chromosomes, including a high proportion of integration events within or close to genes. We have used Minos to obtain morphological and toxic analogue resistant mutants. Interestingly, among morphological mutants some seem to be due to Minos-elicited over-expression of specific genes, rather than gene inactivation.
Collapse
Affiliation(s)
- Minoas Evangelinos
- Faculty of Biology, University of Athens, Panepistimioupolis, Athens 15784, Greece
| | | | | | | | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London SW7 2AZ, United Kingdom; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - George Diallinas
- Faculty of Biology, University of Athens, Panepistimioupolis, Athens 15784, Greece.
| |
Collapse
|
38
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
39
|
Tricker PJ. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin. FRONTIERS IN PLANT SCIENCE 2015; 6:699. [PMID: 26442015 PMCID: PMC4561384 DOI: 10.3389/fpls.2015.00699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/21/2015] [Indexed: 05/06/2023]
Abstract
The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defense "priming" and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity's adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.
Collapse
Affiliation(s)
- Penny J. Tricker
- *Correspondence: Penny J. Tricker, Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Hartley Grove, Urrbrae, SA 5064, Australia,
| |
Collapse
|