1
|
Kashyap J, Chhabra A, Kumari N, Tyagi RK. Nuclear localization signal in nuclear receptor VDR facilitates the mitotic genome bookmarking by involving distinct amino acid residues. Mol Cell Endocrinol 2024; 589:112233. [PMID: 38616036 DOI: 10.1016/j.mce.2024.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Mitotic genome-bookmarking preserves epigenetic information, re-establishing progenitor's gene expression profile through transcription factors, chromatin remodelers, and histone modifiers, thereby regulating cell fate and lineage commitment post-mitotically in progeny cells. Our recent study revealed that the constitutive association of VDR with mitotic chromatin involves its DNA-binding domain. However, amino acid residues in this domain, crucial for genome bookmarking, remain elusive. This study demonstrates that nuclear localization signal (NLS) residues between 49 and 55 amino acids in VDR are essential for receptor-chromatin interaction during mitosis. Furthermore, it is revealed that both bipartite nature of VDR-NLS region and N-terminally located positively charged arginine residues are critical for its 'genome-bookmarking' property. Since mitotic chromatin association of heterodimeric partner RXR depends on VDR-chromatin association, interventions in VDR binding also abort RXR-chromatin interaction. Overall, this study documents the mechanistic details underlying VDR-chromatin interactions in genome-bookmarking behavior, potentially aiding in comprehending VDR-mediated diseases attributed to certain SNPs.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Budzyński MA, Wong AK, Faghihi A, Teves SS. A dynamic role for transcription factors in restoring transcription through mitosis. Biochem Soc Trans 2024; 52:821-830. [PMID: 38526206 PMCID: PMC11088908 DOI: 10.1042/bst20231022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Mitosis involves intricate steps, such as DNA condensation, nuclear membrane disassembly, and phosphorylation cascades that temporarily halt gene transcription. Despite this disruption, daughter cells remarkably retain the parent cell's gene expression pattern, allowing for efficient transcriptional memory after division. Early studies in mammalian cells suggested that transcription factors (TFs) mark genes for swift reactivation, a phenomenon termed 'mitotic bookmarking', but conflicting data emerged regarding TF presence on mitotic chromosomes. Recent advancements in live-cell imaging and fixation-free genomics challenge the conventional belief in universal formaldehyde fixation, revealing dynamic TF interactions during mitosis. Here, we review recent studies that provide examples of at least four modes of TF-DNA interaction during mitosis and the molecular mechanisms that govern these interactions. Additionally, we explore the impact of these interactions on transcription initiation post-mitosis. Taken together, these recent studies call for a paradigm shift toward a dynamic model of TF behavior during mitosis, underscoring the need for incorporating dynamics in mechanistic models for re-establishing transcription post-mitosis.
Collapse
Affiliation(s)
- Marek A. Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Alexander K.L. Wong
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Armin Faghihi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sheila S. Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Chervova A, Molliex A, Baymaz HI, Coux RX, Papadopoulou T, Mueller F, Hercul E, Fournier D, Dubois A, Gaiani N, Beli P, Festuccia N, Navarro P. Mitotic bookmarking redundancy by nuclear receptors in pluripotent cells. Nat Struct Mol Biol 2024; 31:513-522. [PMID: 38196033 PMCID: PMC10948359 DOI: 10.1038/s41594-023-01195-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/30/2023] [Indexed: 01/11/2024]
Abstract
Mitotic bookmarking transcription factors (TFs) are thought to mediate rapid and accurate reactivation after mitotic gene silencing. However, the loss of individual bookmarking TFs often leads to the deregulation of only a small proportion of their mitotic targets, raising doubts on the biological significance and importance of their bookmarking function. Here we used targeted proteomics of the mitotic bookmarking TF ESRRB, an orphan nuclear receptor, to discover a large redundancy in mitotic binding among members of the protein super-family of nuclear receptors. Focusing on the nuclear receptor NR5A2, which together with ESRRB is essential in maintaining pluripotency in mouse embryonic stem cells, we demonstrate conjoint bookmarking activity of both factors on promoters and enhancers of a large fraction of active genes, particularly those most efficiently reactivated in G1. Upon fast and simultaneous degradation of both factors during mitotic exit, hundreds of mitotic targets of ESRRB/NR5A2, including key players of the pluripotency network, display attenuated transcriptional reactivation. We propose that redundancy in mitotic bookmarking TFs, especially nuclear receptors, confers robustness to the reestablishment of gene regulatory networks after mitosis.
Collapse
Affiliation(s)
- Almira Chervova
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Amandine Molliex
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | | | - Rémi-Xavier Coux
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Thaleia Papadopoulou
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Florian Mueller
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Imaging and Modeling Unit, Paris, France
| | - Eslande Hercul
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - David Fournier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Agnès Dubois
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Nicolas Gaiani
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Petra Beli
- Institute of Molecular Biology, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Nicola Festuccia
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| | - Pablo Navarro
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| |
Collapse
|
4
|
Wani SA, Hussain S, Gray JS, Nayak D, Tang H, Perez LM, Long MD, Siddappa M, McCabe CJ, Sucheston-Campbell LE, Freeman MR, Campbell MJ. Epigenetic disruption of the RARγ complex impairs its function to bookmark AR enhancer interactions required for enzalutamide sensitivity in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571947. [PMID: 38168185 PMCID: PMC10760102 DOI: 10.1101/2023.12.15.571947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The current study in prostate cancer (PCa) focused on the genomic mechanisms at the cross-roads of pro-differentiation signals and the emergence of lineage plasticity. We explored an understudied cistromic mechanism involving RARγ's ability to govern AR cistrome-transcriptome relationships, including those associated with more aggressive PCa features. The RARγ complex in PCa cell models was enriched for canonical cofactors, as well as proteins involved in RNA processing and bookmarking. Identifying the repertoire of miR-96 bound and regulated gene targets, including those recognition elements marked by m6A, revealed their significant enrichment in the RARγ complex. RARγ significantly enhanced the AR cistrome, particularly in active enhancers and super-enhancers, and overlapped with the binding of bookmarking factors. Furthermore, RARγ expression led to nucleosome-free chromatin enriched with H3K27ac, and significantly enhanced the AR cistrome in G2/M cells. RARγ functions also antagonized the transcriptional actions of the lineage master regulator ONECUT2. Similarly, gene programs regulated by either miR-96 or antagonized by RARγ were enriched in alternative lineages and more aggressive PCa phenotypes. Together these findings reveal an under-investigated role for RARγ, modulated by miR-96, to bookmark enhancer sites during mitosis. These sites are required by the AR to promote transcriptional competence, and emphasize luminal differentiation, while antagonizing ONECUT2.
Collapse
Affiliation(s)
- Sajad A Wani
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Shahid Hussain
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jaimie S Gray
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Hancong Tang
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Lillian M Perez
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mark D Long
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263
| | - Manjunath Siddappa
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
| | | | - Michael R Freeman
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Moray J Campbell
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
5
|
Rizvi S, Chhabra A, Tripathi A, Tyagi RK. Mitotic genome-bookmarking by nuclear hormone receptors: A novel dimension in epigenetic reprogramming and disease assessment. Mol Cell Endocrinol 2023; 578:112069. [PMID: 37730146 DOI: 10.1016/j.mce.2023.112069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Arrival of multi-colored fluorescent proteins and advances in live cell imaging has immensely contributed to our understanding of intracellular trafficking of nuclear receptors and their roles in gene regulatory functions. These regulatory events need to be faithfully propagated from progenitor to progeny cells. This is corroborated by multiple converging mechanisms that include histone modifications and lately, the phenomenon of 'mitotic genome-bookmarking' by specific transcription factors. This phenomenon refers to the retention and feed-forward transmission of progenitor's architectural blueprint of active transcription status which is silenced and preserved during mitosis. Upon mitotic exit, this phenomenon ensures accurate reactivation of transcriptome, proteome, cellular traits and phenotypes in the progeny cells. In addition to diverse modes of genome-bookmarking by nuclear receptors, a correlation between disease-associated receptor polymorphism and disruption of this phenomenon is apparent. However, breakthrough technologies shall reveal finer details of this phenomenon to help achieve normalcy in receptor-specific diseases.
Collapse
Affiliation(s)
- Sheeba Rizvi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Price RM, Budzyński MA, Shen J, Mitchell JE, Kwan JJ, Teves S. Heat shock transcription factors demonstrate a distinct mode of interaction with mitotic chromosomes. Nucleic Acids Res 2023; 51:5040-5055. [PMID: 37114996 PMCID: PMC10250243 DOI: 10.1093/nar/gkad304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A large number of transcription factors have been shown to bind and interact with mitotic chromosomes, which may promote the efficient reactivation of transcriptional programs following cell division. Although the DNA-binding domain (DBD) contributes strongly to TF behavior, the mitotic behaviors of TFs from the same DBD family may vary. To define the mechanisms governing TF behavior during mitosis in mouse embryonic stem cells, we examined two related TFs: Heat Shock Factor 1 and 2 (HSF1 and HSF2). We found that HSF2 maintains site-specific binding genome-wide during mitosis, whereas HSF1 binding is somewhat decreased. Surprisingly, live-cell imaging shows that both factors appear excluded from mitotic chromosomes to the same degree, and are similarly more dynamic in mitosis than in interphase. Exclusion from mitotic DNA is not due to extrinsic factors like nuclear import and export mechanisms. Rather, we found that the HSF DBDs can coat mitotic chromosomes, and that HSF2 DBD is able to establish site-specific binding. These data further confirm that site-specific binding and chromosome coating are independent properties, and that for some TFs, mitotic behavior is largely determined by the non-DBD regions.
Collapse
Affiliation(s)
- Rachel M Price
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Marek A Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Junzhou Shen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Jennifer E Mitchell
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - James Z J Kwan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Kashyap J, Kumari N, Ponnusamy K, Tyagi RK. Hereditary Vitamin D-Resistant Rickets (HVDRR) associated SNP variants of vitamin D receptor exhibit malfunctioning at multiple levels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194891. [PMID: 36396100 DOI: 10.1016/j.bbagrm.2022.194891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily. It is a primary regulator of calcium and phosphate homeostasis required for skeleton and bone mineralization. Vitamin D in active form 1α,25 dihydroxyvitamin-D3 mediates its cellular functions by binding to VDR. Active VDR forms heterodimers with partner RXR (retinoid X receptor) to execute its physiological actions. HVDRR (Hereditary Vitamin D-Resistant Rickets) is a rare genetic disorder that occurs because of generalized resistance to the 1α,25(OH)2D3. HVDRR is caused by the polymorphic variations in VDR gene leading to defective intestinal calcium absorption and mineralization of newly forming bones. Using point and deletion SNPs of VDR we have studied several HVDRR-associated SNP variants for their subcellular dynamics, transcriptional functions, 'genome bookmarking', heterodimeric interactions with RXR, and receptor stability. We previously reported that VDR is a 'mitotic bookmarking factor' that remains constitutively associated with the mitotic chromatin to inherit 'transcriptional memory', however the mechanistic details remained unclear. We document that 'genome bookmarking' property by VDR is critically impaired by naturally occurring HVDRR-associated point and deletion variants found in patients. Furthermore, these HVDRR-associated SNP variants of VDR were found to be compromised in transcriptional function, nuclear translocation, protein stability and intermolecular interactions with its heterodimeric partner RXR. Intriguingly, majority of these disease-allied functional defects failed to be rescued by RXR. Our findings suggest that the HVDRR-associated SNP variations influence the normal functioning of the receptor, and this derived understanding may help in the management of disease with precisely designed small molecule modulators.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neha Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Niu X, Wu T, Yin Q, Gu X, Li G, Zhou C, Ma M, Su L, Tang S, Tian Y, Yang M, Cui H. Combination of Paclitaxel and PXR Antagonist SPA70 Reverses Paclitaxel-Resistant Non-Small Cell Lung Cancer. Cells 2022; 11:3094. [PMID: 36231056 PMCID: PMC9563422 DOI: 10.3390/cells11193094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Paclitaxel (PTX) is one of the most efficient drugs for late-stage non-small cell lung cancer (NSCLC) patients. However, most patients gradually develop resistance to PTX with long-term treatments. The identification of new strategies to reverse PTX resistance in NSCLC is crucially important for the treatment. PTX is an agonist for the pregnane X receptor (PXR) which regulates PTX metabolism. Antagonizing PXR, therefore, may render the NSCLC more sensitive to the PTX treatment. In this study, we investigated the PXR antagonist SPA70 and its role in PTX treatment of NSCLC. In vitro, SPA70 and PTX synergistically inhibited cell growth, migration and invasion in both paclitaxel-sensitive and paclitaxel-resistant A549 and H460 lung cancer cells. Mechanistically, we found PTX and SPA70 cotreatment disassociated PXR from ABCB1 (MDR1, P-gp) promoter, thus inhibiting P-gp expression. Furthermore, the combination regimen synergistically enhanced the interaction between PXR and Tip60, which abrogated Tip60-mediated α-tubulin acetylation, leading to mitosis defect, S-phase arrest and necroptosis/apoptosis. Combination of PXT and SPA70 dramatically inhibited tumor growth in a paclitaxel-resistant A549/TR xenograft tumor model. Taken together, we showed that SPA70 reduced the paclitaxel resistance of NSCLC. The combination regimen of PTX and SPA70 could be potential novel candidates for the treatment of taxane-resistant lung cancer.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qishuang Yin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Changlong Zhou
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Su
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shu Tang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Thakur K, Goud ESK, Jawa Y, Keswani C, Onteru S, Singh D, Singh SP, Roy P, Tyagi RK. Detection of endocrine and metabolism disrupting xenobiotics in milk-derived fat samples by fluorescent protein-tagged nuclear receptors and live cell imaging. Toxicol Mech Methods 2022; 33:293-306. [PMID: 36154553 DOI: 10.1080/15376516.2022.2128704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Nuclear receptors (NRs) are ligand-modulated transcription factors that regulate multiple physiological functions in our body. Many NRs in their unliganded state are localized in cytoplasm. The ligand-inducible nuclear translocation of NRs provides a valuable tool for studying the NR-ligand interactions and their downstream effects. The translocation response of NRs can be studied irrespective of the nature of the interacting ligand (agonist, antagonist, or a small molecule modulator). These nuclear translocation studies offer an advantage over promoter-reporter-based transcription assays where transcription response is observed only with the activating hormones or agonistic ligands. Globally, milk serves as a major dietary source. However, suspected presence of endocrine/metabolism disrupting chemicals like bisphenols, parabens, organochlorine pesticides, carbamates, non-steroidal anti-inflammatory drugs, chloramphenicol, brominated flame retardants, etc. has been reported. Considering that these chemicals may impart serious developmental and metabolism-related health concerns, it is essential to develop assays suitable for the detection of xenobiotics present at differing levels in milk. Since milk samples cannot be used directly on cultured cells or for microscopy, a combination of screening strategies has been developed herein based on the revelation that i) lipophilic NR ligands can be successfully retrieved in milk-fat; ii) milk-fat treatment of cells is compatible with live-cell imaging studies; and finally, iii) treatment of cells with xenobiotics-spiked and normal milk derived fat provides a visual and quantifiable response of NR translocation in living cells. Utilizing a milk-fat extraction method and Green Fluorescent Protein (GFP) tagged NRs expressed in cultured mammalian cells, followed by an assessment of NR response proved to be an effective approach for screening xenobiotics present in milk samples.HighlightsDiverse endocrine and metabolism disrupting chemicals are suspected to contaminate milk.Nuclear receptors serve as 'xenosensors' for assessing the presence of xenobiotics in milk.Nuclear import of steroid receptors with (ant)agonist can be examined in live cells.Lipophilic xenobiotics are extracted and observed enriched in milk-fat fraction.A comprehensive cell-based protocol aids in the detection of xenobiotics in milk.
Collapse
Affiliation(s)
- Keshav Thakur
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | | | - Yashika Jawa
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Suneel Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, Haryana, India
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
10
|
Kashyap J, Tyagi RK. Mitotic genome bookmarking by nuclear receptor VDR advocates transmission of cellular transcriptional memory to progeny cells. Exp Cell Res 2022; 417:113193. [PMID: 35523304 DOI: 10.1016/j.yexcr.2022.113193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
Abstract
Mitosis is an essential process for the self-renewal of cells that is accompanied by dynamic changes in nuclear architecture and chromatin organization. Despite all the changes, the cell manages to re-establish all the parental epigenetic marks, post-mitotically. Recent reports suggest that some sequence-specific transcription factors remain attached to mitotic chromatin during cell division to ensure timely reactivation of a subset of transcription factors necessary to maintain cell identity. These mitotically associated factors are suggested to act as 'genome bookmarking factors' and the phenomenon is termed 'genome bookmarking'. Here, we studied this phenomenon with Vitamin D Receptor (VDR), a key regulator of calcium and phosphate homeostasis and a member of the nuclear receptor superfamily. This study, for the first time, has confirmed VDR as a mitotic bookmarking factor that may be playing a crucial role in the maintenance of cell identity and genome bookmarking. Full 'DNA binding domain (DBD)' present in VDR was identified as essential for enrichment of VDR on mitotic chromatin. Furthermore, the study also demonstrates that VDR evokes mitotic chromatin binding behaviour in its heterodimeric partner Retinoid X receptor (RXR). Interestingly, for promoting bookmarking behaviour in RXR, both DBD and/or ligand-binding domain (LBD) in conjunction with hinge region of VDR were required. Additionally, ChIP analysis showed that VDR remains associated with DR3 (direct repeat 3) region of its specific target gene promoter CYP24A1(Cytochrome P450 family 24 subfamily A member1), during mitosis. Altogether, our study illustrates a novel function of VDR in the epigenetic transmission and control of expression of target proteome for maintenance of cell identity and traits in progeny cells.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Niu X, Cui H, Gu X, Wu T, Sun M, Zhou C, Ma M. Nuclear Receptor PXR Confers Irradiation Resistance by Promoting DNA Damage Response Through Stabilization of ATF3. Front Oncol 2022; 12:837980. [PMID: 35372071 PMCID: PMC8965888 DOI: 10.3389/fonc.2022.837980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 12/26/2022] Open
Abstract
Low response rate to radiotherapy remains a problem for liver and colorectal cancer patients due to inappropriate DNA damage response in tumors. Here, we report that pregnane X receptor (PXR) contributes to irradiation (IR) resistance by promoting activating transcription factor 3 (ATF3)-mediated ataxia-telangiectasia-mutated protein (ATM) activation. PXR stabilized ATF3 protein by blocking its ubiquitination. PXR–ATF3 interaction is required for regulating ATF3, as one mutant of lysine (K) 42R of ATF3 lost binding with PXR and abolished PXR-reduced ubiquitination of ATF3. On the other hand, threonine (T) 432A of PXR lost binding with ATF3 and further compromised ATM activation. Moreover, the PXR–ATF3 interaction increases ATF3 stabilization through disrupting ATF3–murine double minute 2 (MDM2) interaction and negatively regulating MDM2 protein expression. PXR enhanced MDM2 auto-ubiquitination and shortened its half-life, therefore compromising the MDM2-mediated degradation of ATF3 protein. Structurally, both ATF3 and PXR bind to the RING domain of MDM2, and on the other hand, MDM2 binds with PXR on the DNA-binding domain (DBD), which contains zinc finger sequence. Zinc finger sequence is well known for nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) playing E3 ligase activity to degrade nuclear factor κB (NFκB)/p65. However, whether zinc-RING sequence grants E3 ligase activity to PXR remains elusive. Taken together, these results provide a novel mechanism that PXR contributes to IR resistance by promoting ATF3-mediated ATM activation through stabilization of ATF3. Our result suggests that targeting PXR may sensitize liver and colon cancer cells to IR therapy.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Changlong Zhou
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
13
|
Genomic Insights into Non-steroidal Nuclear Receptors in Prostate and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:227-239. [DOI: 10.1007/978-3-031-11836-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Rigalli JP, Theile D, Nilles J, Weiss J. Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning. Cells 2021; 10:cells10113137. [PMID: 34831358 PMCID: PMC8625645 DOI: 10.3390/cells10113137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.
Collapse
|
15
|
Kumar S, Vijayan R, Dash AK, Gourinath S, Tyagi RK. Nuclear receptor SHP dampens transcription function and abrogates mitotic chromatin association of PXR and ERα via intermolecular interactions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194683. [PMID: 33444783 DOI: 10.1016/j.bbagrm.2020.194683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/29/2020] [Accepted: 12/29/2020] [Indexed: 01/07/2023]
Abstract
Mitosis is a cellular process that produces two identical progenies. Genome-wide transcription is believed to be silenced during mitosis. However, some transcription factors have been reported to associate with the mitotic chromatin to uphold a role in 'gene-bookmarking'. Here, we investigated the dynamic role of nuclear receptor SHP during cell cycle, and observed intermolecular interactions with PXR and ERα. This was reflected in altered subcellular localization, transcription function and mitotic chromatin behavior of these receptors. Subsequently, by in silico and live cell imaging approaches we identified the minimal domain(s) and crucial amino-acid residues required for such receptor-receptor interactions. It was apparent that both PXR/ERα interact with SHP to translocate cytoplasmic RFP-tagged SHP into the nucleus. In addition, during mitosis SHP interacted with some of the key nuclear receptors, altering partners, as well as, its own relationship with mitotic chromatin. SHP displaced a major fraction of PXR and ERα from the mitotic chromatin while promoted its own weak association reflected in its binding. Since SHP lacks DBD this association is attributed to receptor-receptor interactions rather than SHP-DNA interactions. The abrogation of PXR and ERα from the mitotic chromatin by SHP implies potential implications in regulation of gene bookmarking events in cellular development. Overall, it is concluded that intermolecular interactions between SHP and partner PXR/ERα result in attenuation of target promoter activities. It is proposed that SHP may act as an indirect physiological regulator and functions in a hog-tie manner by displacing the interacting transcription factor from gene regulatory sites.
Collapse
Affiliation(s)
- Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Amit K Dash
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
16
|
Xing Y, Yan J, Niu Y. PXR: a center of transcriptional regulation in cancer. Acta Pharm Sin B 2020; 10:197-206. [PMID: 32082968 PMCID: PMC7016272 DOI: 10.1016/j.apsb.2019.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
Pregnane X receptor (PXR, NR1I2) is a prototypical member of the nuclear receptor superfamily. PXR can be activated by both endobiotics and xenobiotics. As a key xenobiotic receptor, the cellular function of PXR is mostly exerted by its binding to the regulatory gene sequences in a ligand-dependent manner. Classical downstream target genes of PXR participate in xenobiotic responses, such as detoxification, metabolism and inflammation. Emerging evidence also implicates PXR signaling in the processes of apoptosis, cell cycle arrest, proliferation, angiogenesis and oxidative stress, which are closely related to cancer. Here, we discussed, in addition to the characterization of PXR per se, the biological function and regulatory mechanism of PXR signaling in cancer, and its potential for the targeted prevention and therapeutics.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Jiong Yan
- Center for Pharmacogenetics, University of Pittsburgh, PA 15261, USA
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Corresponding author.
| |
Collapse
|