1
|
Geisen ABC, Santana Acevedo N, Oshima J, Dittrich M, Potabattula R, Haaf T. rDNA Copy Number Variation and Methylation During Normal and Premature Aging. Aging Cell 2025:e14497. [PMID: 39853912 DOI: 10.1111/acel.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Ribosomal RNA is the main component of the ribosome, which is essential for protein synthesis. The diploid human genome contains several hundred copies of the rDNA transcription unit (TU). Droplet digital PCR and deep bisulfite sequencing were used to determine the absolute copy number (CN) and the methylation status of individual rDNA TU in blood samples of healthy individuals. The absolute CN ranged from 243 to 895 (median 469). There was no difference in absolute CN between males and females and no gain or loss of copies with age (15-71 years). The number of rDNA TU with a completely unmethylated (0%) or lowly methylated (1%-10%) promoter region significantly decreased, whereas the number of copies with higher (11%-100%) methylation increased with age. The number of presumably active TU with a hypomethylated (0%-10%) promoter varied from 94 to 277 (median 180), independent from absolute CN. In contrast, the number of inactive hypermethylated (11%-100%) copies strongly increased with absolute CN. Promoter hypermethylation compensates to some extent for the enormous CN variation among individuals. Patients with Werner syndrome, a premature aging syndrome displayed the same CN variation and age-related methylation changes as controls. The role of rDNA CN variation as a modulating factor in human health and disease is largely unexplored. In particular, very low and high CN may be associated with increased disease risk.
Collapse
Affiliation(s)
- Alva B C Geisen
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|
2
|
Veiko NN, Ershova ES, Kondratyeva EI, Porokhovnik LN, Zinchenko RA, Melyanovskaya YL, Krasovskiy SA, Vasilyeva TP, Kostyuk GP, Zakharova NV, Kostyuk SV. Copy Number Variations of Human Ribosomal Genes in Health and Disease: Role and Causes. FRONT BIOSCI-LANDMRK 2025; 30:25765. [PMID: 40018927 DOI: 10.31083/fbl25765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND A number of association studies have linked ribosomal DNA gene copy number (rDNA CN) to aging and pathology. Data from these studies are contradictory and depend on the quantitative method. METHODS The hybridization technique was used for rDNA quantification in human cells. We determined the rDNA CN from healthy controls (HCs) and patients with schizophrenia (SZ) or cystic fibrosis (CF) (total number of subjects N = 1124). For the first time, rDNA CN was quantified in 105 long livers (90-101 years old). In addition, we conducted a joint analysis of the data obtained in this work and previously published by our group (total, N = 3264). RESULTS We found increased rDNA CN in the SZ group (534 ± 108, N = 1489) and CF group (567 ± 100, N = 322) and reduced rDNA CN in patients with mild cognitive impairment (330 ± 60, N = 93) compared with the HC group (422 ± 104, N = 1360). For the SZ, CF, and HC groups, there was a decreased range of rDNA CN variation in older age subgroups compared to child subgroups. For 311 patients with SZ or CF, rDNA CN was determined two or three times, with an interval of months to several years. Only 1.2% of patients demonstrated a decrease in rDNA CN over time. We did not find significant rDNA CN variation in eight different organs of the same patient or in cells of the same fibroblast population. CONCLUSIONS The results suggest that rDNA CN is a relatively stable quantitative genetic trait statistically associated with some diseases, which however, can change in rare cases under conditions of chronic oxidative stress. We believe that age- and disease-related differences between the groups in mean rDNA CN and its variance are caused by the biased elimination of carriers of marginal (predominantly low) rDNA CN values.
Collapse
Affiliation(s)
- Natalia N Veiko
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Elizaveta S Ershova
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Elena I Kondratyeva
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Lev N Porokhovnik
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Rena A Zinchenko
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Yuliya L Melyanovskaya
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Stanislav A Krasovskiy
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Tatiana P Vasilyeva
- Department of Public Health, National Research Institute of Public Health n.a. N.А. Semashko, 105064 Moscow, Russia
| | - George P Kostyuk
- Research Department, N. A. Alexeev Clinical Psychiatric Hospital №1, 115447 Moscow, Russia
| | - Natalia V Zakharova
- Research Department, N. A. Alexeev Clinical Psychiatric Hospital №1, 115447 Moscow, Russia
| | - Svetlana V Kostyuk
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| |
Collapse
|
3
|
Liskovykh M, Petrov NS, Noskov VN, Masumoto H, Earnshaw WC, Schlessinger D, Shabalina SA, Larionov V, Kouprina N. Actively transcribed rDNA and distal junction (DJ) sequence are involved in association of NORs with nucleoli. Cell Mol Life Sci 2023; 80:121. [PMID: 37043028 PMCID: PMC10097779 DOI: 10.1007/s00018-023-04770-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Although they are organelles without a limiting membrane, nucleoli have an exclusive structure, built upon the rDNA-rich acrocentric short arms of five human chromosomes (nucleolar organizer regions or NORs). This has raised the question: what are the structural features of a chromosome required for its inclusion in a nucleolus? Previous work has suggested that sequences adjacent to the tandemly repeated rDNA repeat units (DJ, distal junction sequence) may be involved, and we have extended such studies by addressing several issues related to the requirements for the association of NORs with nucleoli. We exploited both a set of somatic cell hybrids containing individual human acrocentric chromosomes and a set of Human Artificial Chromosomes (HACs) carrying different parts of a NOR, including an rDNA unit or DJ or PJ (proximal junction) sequence. Association of NORs with nucleoli was increased when constituent rDNA was transcribed and may be also affected by the status of heterochromatin blocks formed next to the rDNA arrays. Furthermore, our data suggest that a relatively small size DJ region, highly conserved in evolution, is also involved, along with the rDNA repeats, in the localization of p-arms of acrocentric chromosomes in nucleoli. Thus, we infer a cooperative action of rDNA sequence-stimulated by its activity-and sequences distal to rDNA contributing to incorporation into nucleoli. Analysis of NOR sequences also identified LncRNA_038958 in the DJ, a candidate transcript with the region of the suggested promoter that is located close to the DJ/rDNA boundary and contains CTCF binding sites. This LncRNA may affect RNA Polymerase I and/or nucleolar activity. Our findings provide the basis for future studies to determine which RNAs and proteins interact critically with NOR sequences to organize the higher-order structure of nucleoli and their function in normal cells and pathological states.
Collapse
Affiliation(s)
- Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Nikolai S Petrov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vladimir N Noskov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, Scotland, UK
| | - David Schlessinger
- National Institute on Aging, Laboratory of Genetics and Genomics, NIH, Baltimore, MD, 21224, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
McGee JP, Armache JP, Lindner SE. Ribosome heterogeneity and specialization of Plasmodium parasites. PLoS Pathog 2023; 19:e1011267. [PMID: 37053161 PMCID: PMC10101515 DOI: 10.1371/journal.ppat.1011267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Affiliation(s)
- James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, Pennsylvania, United States of America
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, Pennsylvania, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, Pennsylvania, United States of America
| |
Collapse
|
5
|
Lezhava T, Khavinson V, Jokhadze T, Buadze T, Monaselidze J, Sigua T, Gaiozishvili M, Tsuleiskiri T. Epigenetic Activation of Ribosomal Cystrons in Chromatids of Acrocentric Chromosome 15th in Ductal Breast Cancer. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Combined Assay of rDNA and SatIII Copy Numbers as an Individual Profile of Stress Resistance, Longevity, Fertility and Disease Predisposition. J Pers Med 2022; 12:jpm12101752. [PMID: 36294891 PMCID: PMC9604575 DOI: 10.3390/jpm12101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The ribosomal DNA and pericentromeric satellite repeats are two important types of moderately repeated sequences existing in the human genome. They are functionally involved in the universal stress response. There is accumulating evidence that the copy number variation (CNV) of the repeat units is a novel factor modulating the stress response and, thus, has phenotypic manifestations. The ribosomal repeat copy number plays a role in stress resistance, lifespan, in vitro fertilization chances, disease progression and aging, while the dynamics of the satellite copy number are a sort of indicator of the current stress state. Here, we review some facts showing that a combined assay of rDNA and SatII/III abundance can provide valuable individual data ("stress profile") indicating not only the inherited adaptive reserve but also the stress duration and acute or chronic character of the stress. Thus, the repeat count could have applications in personalized medicine in the future.
Collapse
|
7
|
Veiko NN, Ershova ES, Veiko RV, Umriukhin PE, Kurmyshev MV, Kostyuk GP, Kutsev SI, Kostyuk SV. Mild cognitive impairment is associated with low copy number of ribosomal genes in the genomes of elderly people. Front Genet 2022; 13:967448. [PMID: 36199570 PMCID: PMC9527325 DOI: 10.3389/fgene.2022.967448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Mild cognitive impairments (MCI) accompanying aging are associated with oxidative stress. The ability of cells to respond to stress is determined by the protein synthesis level, which depends on the ribosomes number. Ribosomal deficit was documented in MCI. The number of ribosomes depends, together with other factors, on the number of ribosomal genes copies. We hypothesized that MCI is associated with low rDNA CN in the elderly person genome. Materials and Methods: rDNA CN and the telomere repeat (TR) content were determined in the DNA of peripheral blood leukocytes of 93 elderly people (61–91 years old) with MCI and 365 healthy volunteers (16–91 years old). The method of non-radioactive quantitative hybridization of DNA with biotinylated DNA probes was used for the analysis. Results: In the MCI group, rDNA CN (mean 329 ± 60; median 314 copies, n = 93) was significantly reduced (p < 10–15) compared to controls of the same age with preserved cognitive functions (mean 412 ± 79; median 401 copies, n = 168) and younger (16–60 years) control group (mean 426 ± 109; median 416 copies, n = 197). MCI is also associated with a decrease in TR DNA content. There is no correlation between the content of rDNA and TR in DNA, however, in the group of DNA samples with rDNA CN > 540, TR content range was significantly narrowed compared to the rest of the sample. Conclusion: Mild cognitive impairment is associated with low ribosomal genes copies in the elderly people genomes. A low level of rDNA CN may be one of the causes of ribosomal deficit that was documented in MCI. The potential possibilities of using the rDNA CN indicator as a prognostic marker characterizing human life expectancy are discussed.
Collapse
Affiliation(s)
| | - Elizaveta S. Ershova
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
- *Correspondence: Elizaveta S. Ershova,
| | - Roman V. Veiko
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Pavel E. Umriukhin
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | | | - Georg P. Kostyuk
- Mental-health Clinic No1 Named After N.A. Alexeev, Moscow, Russia
| | | | - Svetlana V. Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| |
Collapse
|
8
|
Ravaioli F, Zampieri M, Morandi L, Pirazzini C, Pellegrini C, De Fanti S, Gensous N, Pirazzoli GL, Sambati L, Ghezzo A, Ciccarone F, Reale A, Monti D, Salvioli S, Caiafa P, Capri M, Bürkle A, Moreno-Villanueva M, Garagnani P, Franceschi C, Bacalini MG. DNA Methylation Analysis of Ribosomal DNA in Adults With Down Syndrome. Front Genet 2022; 13:792165. [PMID: 35571061 PMCID: PMC9094685 DOI: 10.3389/fgene.2022.792165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/18/2022] [Indexed: 01/08/2023] Open
Abstract
Control of ribosome biogenesis is a critical aspect of the regulation of cell metabolism. As ribosomal genes (rDNA) are organized in repeated clusters on chromosomes 13, 14, 15, 21, and 22, trisomy of chromosome 21 confers an excess of rDNA copies to persons with Down syndrome (DS). Previous studies showed an alteration of ribosome biogenesis in children with DS, but the epigenetic regulation of rDNA genes has not been investigated in adults with DS so far. In this study, we used a targeted deep-sequencing approach to measure DNA methylation (DNAm) of rDNA units in whole blood from 69 adults with DS and 95 euploid controls. We further evaluated the expression of the precursor of ribosomal RNAs (RNA45S) in peripheral blood mononuclear cells (PBMCs) from the same subjects. We found that the rDNA promoter tends to be hypermethylated in DS concerning the control group. The analysis of epihaplotypes (the combination of methylated and unmethylated CpG sites along the same DNA molecule) showed a significantly lower intra-individual diversity in the DS group, which at the same time was characterized by a higher interindividual variability. Finally, we showed that RNA45S expression is lower in adults with DS. Collectively, our results suggest a rearrangement of the epigenetic profile of rDNA in DS, possibly to compensate for the extranumerary rDNA copies. Future studies should assess whether the regulation of ribosome biogenesis can contribute to the pathogenesis of DS and explain the clinical heterogeneity characteristic of the syndrome.
Collapse
Affiliation(s)
- Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Morandi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Noémie Gensous
- Department of Internal Medicine and Clinical Immunology, CHU Bordeaux (Groupe Hospitalier Saint-André), Bordeaux, France
- UMR/CNRS 5164, ImmunoConcEpT, CNRS, University of Bordeaux, Bordeaux, France
| | | | - Luisa Sambati
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, U.O.C. Clinica Neurologica Rete Neurologica Metropolitana (NEUROMET), Bologna, Italy
| | | | - Fabio Ciccarone
- IRCCS San Raffaele Roma, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”—Unit of Bologna, Bologna, Italy
- Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Maria Giulia Bacalini,
| |
Collapse
|
9
|
Khlebodarova TM. The molecular view of mechanical stress of brain cells, local translation, and neurodegenerative diseases. Vavilovskii Zhurnal Genet Selektsii 2021; 25:92-100. [PMID: 34901706 PMCID: PMC8629365 DOI: 10.18699/vj21.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
The assumption that chronic mechanical stress in brain cells stemming from intracranial hypertension,
arterial hypertension, or mechanical injury is a risk factor for neurodegenerative diseases was put forward in the
1990s and has since been supported. However, the molecular mechanisms that underlie the way from cell exposure to mechanical stress to disturbances in synaptic plasticity followed by changes in behavior, cognition, and
memory are still poorly understood. Here we review (1) the current knowledge of molecular mechanisms regulating local translation and the actin cytoskeleton state at an activated synapse, where they play a key role in the
formation of various sorts of synaptic plasticity and long-term memory, and (2) possible pathways of mechanical
stress intervention. The roles of the mTOR (mammalian target of rapamycin) signaling pathway; the RNA-binding
FMRP protein; the CYFIP1 protein, interacting with FMRP; the family of small GTPases; and the WAVE regulatory
complex in the regulation of translation initiation and actin cytoskeleton rearrangements in dendritic spines of the
activated synapse are discussed. Evidence is provided that chronic mechanical stress may result in aberrant activation of mTOR signaling and the WAVE regulatory complex via the YAP/TAZ system, the key sensor of mechanical
signals, and influence the associated pathways regulating the formation of F actin filaments and the dendritic spine
structure. These consequences may be a risk factor for various neurological conditions, including autistic spectrum
disorders and epileptic encephalopathy. In further consideration of the role of the local translation system in the
development of neuropsychic and neurodegenerative diseases, an original hypothesis was put forward that one
of the possible causes of synaptopathies is impaired proteome stability associated with mTOR hyperactivity and
formation of complex dynamic modes of de novo protein synthesis in response to synapse-stimulating factors,
including chronic mechanical stress.
Collapse
Affiliation(s)
- T M Khlebodarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Lezhava T, Buadze T, Mikaia N, Jokhadze T, Sigua T, Gaiozishvili M, Melkadze T. Epigenetic Activation of Ribosomal Cistrons in Chromatids of Acrocentric Chromosome 15 in Lung Cancer. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721050042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Priol AC, Denis L, Boulanger G, Thépaut M, Geoffray MM, Tordjman S. Detection of Morphological Abnormalities in Schizophrenia: An Important Step to Identify Associated Genetic Disorders or Etiologic Subtypes. Int J Mol Sci 2021; 22:ijms22179464. [PMID: 34502372 PMCID: PMC8430486 DOI: 10.3390/ijms22179464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022] Open
Abstract
Current research suggests that alterations in neurodevelopmental processes, involving gene X environment interactions during key stages of brain development (prenatal period and adolescence), are a major risk for schizophrenia. First, epidemiological studies supporting a genetic contribution to schizophrenia are presented in this article, including family, twin, and adoption studies. Then, an extensive literature review on genetic disorders associated with schizophrenia is reviewed. These epidemiological findings and clinical observations led researchers to conduct studies on genetic associations in schizophrenia, and more specifically on genomics (CNV: copy-number variant, and SNP: single nucleotide polymorphism). The main structural (CNV) and sequence (SNP) variants found in individuals with schizophrenia are reported here. Evidence of genetic contributions to schizophrenia and current knowledge on genetic syndromes associated with this psychiatric disorder highlight the importance of a clinical genetic examination to detect minor physical anomalies in individuals with ultra-high risk of schizophrenia. Several dysmorphic features have been described in schizophrenia, especially in early onset schizophrenia, and can be viewed as neurodevelopmental markers of vulnerability. Early detection of individuals with neurodevelopmental abnormalities is a fundamental issue to develop prevention and diagnostic strategies, therapeutic intervention and follow-up, and to ascertain better the underlying mechanisms involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Anne-Clémence Priol
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
- Correspondence: (A.-C.P.); (S.T.); Tel.: +33-2-99-51-06-04 (A.-C.P. & S.T.); Fax: +33-2-99-32-46-98 (A.-C.P. & S.T.)
| | - Laure Denis
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
| | - Gaella Boulanger
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
| | - Mathieu Thépaut
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
| | - Marie-Maude Geoffray
- Department of Child and Adolescent Psychiatry, Centre Hospitalier Le Vinatier, 69500 Bron, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
- CIC (Clinical Investigation Center) 1414 Inserm, Centre Hospitalier Universitaire (CHU) de Rennes, University of Rennes 1, 35033 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, University of Paris, 75006 Paris, France
- Correspondence: (A.-C.P.); (S.T.); Tel.: +33-2-99-51-06-04 (A.-C.P. & S.T.); Fax: +33-2-99-32-46-98 (A.-C.P. & S.T.)
| |
Collapse
|
12
|
Yoneda M, Nakagawa T, Hattori N, Ito T. The nucleolus from a liquid droplet perspective. J Biochem 2021; 170:153-162. [PMID: 34358306 DOI: 10.1093/jb/mvab090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 11/14/2022] Open
Abstract
The nucleolus is a membrane-less organelle sequestered from the nucleus by liquid droplet formation through a liquid-liquid phase separation (LLPS). It plays important roles in cell homeostasis through its internal thermodynamic changes. Reversible nucleolar transitions between coalescence and dispersion are dependent on the concentrations, conformations, and interactions of its molecular liquid droplet-forming components, including DNA, RNA, and protein. The liquid droplet-like properties of the nucleolus enable its diverse dynamic roles. The liquid droplet formation mechanism, by which the nucleolus is sequestered from the nucleoplasm despite the absence of a membrane, explains a number of complex nucleolar functions.
Collapse
Affiliation(s)
- Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852-8523, JAPAN.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, JAPAN
| | - Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852-8523, JAPAN.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, JAPAN
| | - Naoko Hattori
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852-8523, JAPAN.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, JAPAN
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852-8523, JAPAN.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, JAPAN
| |
Collapse
|
13
|
Erenpreisa J, Krigerts J, Salmina K, Gerashchenko BI, Freivalds T, Kurg R, Winter R, Krufczik M, Zayakin P, Hausmann M, Giuliani A. Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis). Cells 2021; 10:1582. [PMID: 34201566 PMCID: PMC8304199 DOI: 10.3390/cells10071582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural organization principle of CHR regulating transcriptional pulsing. The dynamic CHR network is likely created together with nucleolus-associated chromatin domains, while the alveoli of this network, including springy splicing speckles, are the pulsing transcription hubs. CHR contributes to this regulation due to the silencing position variegation effect, stickiness, and flexible rigidity determined by the positioning of nucleosomes. The whole system acts in concert with the elastic nuclear actomyosin network which also emerges by self-organization during the transcriptional pulsing process. We hypothesize that the the transcriptional pulsing, in turn, adjusts its frequency/amplitudes specified by topologically associating domains to the replication timing code that determines epigenetic differentiation memory.
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Jekabs Krigerts
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Bogdan I. Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine;
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia;
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia;
| | - Ruth Winter
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Matthias Krufczik
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Pawel Zayakin
- Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia; (J.K.); (K.S.); (P.Z.)
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (R.W.); (M.K.); (M.H.)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| |
Collapse
|
14
|
Poot M, Hochstenbach R. Prevalence and Phenotypic Impact of Robertsonian Translocations. Mol Syndromol 2021; 12:1-11. [PMID: 33776621 PMCID: PMC7983559 DOI: 10.1159/000512676] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Robertsonian translocations (RTs) result from fusion of 2 acrocentric chromosomes (e.g., 13, 14, 15, 21, 22) and consequential losses of segments of the p arms containing 47S rDNA clusters and transcription factor binding sites. Depending on the position of the breakpoints, the size of these losses vary considerably between types of RTs. The prevalence of RTs in the general population is estimated to be around 1 per 800 individuals, making RTs the most common chromosomal rearrangement in healthy individuals. Based on their prevalence, RTs are classified as "common," rob(13;14) and rob(14;21), or "rare" (the 8 remaining nonhomologous combinations). Carriers of RTs are at an increased risk for offspring with chromosomal imbalances or with uniparental disomy. RTs are generally regarded as phenotypically neutral, although, due to RTs formation, 2 of the 10 ribosomal rDNA gene clusters, several long noncoding RNAs, and in the case of RTs involving chromosome 21, several mRNA encoding genes are lost. Nevertheless, recent evidence indicates that RTs may have a significant phenotypic impact. In particular, rob(13;14) carriers have a significantly elevated risk for breast cancer. While RTs are easily spotted by routine karyotyping, they may go unnoticed if only array-CGH and NextGen sequencing methods are applied. This review first discusses possible molecular mechanisms underlying the particularly high rates of RT formation and their incidence in the general population, and second, likely causes for the elevated cancer risk of some RTs will be examined.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Ron Hochstenbach
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Smirnov E, Chmúrčiaková N, Liška F, Bažantová P, Cmarko D. Variability of Human rDNA. Cells 2021; 10:cells10020196. [PMID: 33498263 PMCID: PMC7909238 DOI: 10.3390/cells10020196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.
Collapse
|
16
|
Yao Y, Tan HW, Liang ZL, Wu GQ, Xu YM, Lau ATY. The Impact of Coilin Nonsynonymous SNP Variants E121K and V145I on Cell Growth and Cajal Body Formation: The First Characterization. Genes (Basel) 2020; 11:genes11080895. [PMID: 32764415 PMCID: PMC7463897 DOI: 10.3390/genes11080895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/05/2023] Open
Abstract
Coilin is the main component of Cajal body (CB), a membraneless organelle that is involved in the biogenesis of ribonucleoproteins and telomerase, cell cycle, and cell growth. The disruption of CBs is linked to neurodegenerative diseases and potentially cancers. The coilin gene (COIL) contains two nonsynonymous SNPs: rs116022828 (E121K) and rs61731978 (V145I). Here, we investigated for the first time the functional impacts of these coilin SNPs on CB formation, coilin subcellular localization, microtubule formation, cell growth, and coilin expression and protein structure. We revealed that both E121K and V145I mutants could disrupt CB formation and result in various patterns of subcellular localization with survival motor neuron protein. Noteworthy, many of the E121K cells showed nucleolar coilin accumulation. The microtubule regrowth and cell cycle assays indicated that the E121K cells appeared to be trapped in the S and G2/M phases of cell cycle, resulting in reduced cell proliferation. In silico protein structure prediction suggested that the E121K mutation caused greater destabilization on the coilin structure than the V145I mutation. Additionally, clinical bioinformatic analysis indicated that coilin expression levels could be a risk factor for cancer, depending on the cancer types and races.
Collapse
Affiliation(s)
- Yue Yao
- Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Y.Y.); (H.W.T.); (Z.-L.L.); (G.-Q.W.)
| | - Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Y.Y.); (H.W.T.); (Z.-L.L.); (G.-Q.W.)
| | - Zhan-Ling Liang
- Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Y.Y.); (H.W.T.); (Z.-L.L.); (G.-Q.W.)
| | - Gao-Qi Wu
- Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Y.Y.); (H.W.T.); (Z.-L.L.); (G.-Q.W.)
| | - Yan-Ming Xu
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Y.Y.); (H.W.T.); (Z.-L.L.); (G.-Q.W.)
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
17
|
Mapping and Quantification of Non-Coding RNA Originating from the rDNA in Human Glioma Cells. Cancers (Basel) 2020; 12:cancers12082090. [PMID: 32731436 PMCID: PMC7464196 DOI: 10.3390/cancers12082090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Ribosomal DNA is one of the most conserved parts of the genome, especially in its rRNA coding regions, but some puzzling pieces of its noncoding repetitive sequences harbor secrets of cell growth and development machinery. Disruptions in the neat mechanisms of rDNA orchestrating the cell functioning result in malignant conversion. In cancer cells, the organization of rRNA coding genes and their transcription somehow differ from that of normal cells, but little is known about the particular mechanism for this switch. In this study, we demonstrate that the region ~2 kb upstream of the rDNA promoter is transcriptionally active in one type of the most malignant human brain tumors, and we compare its expression rate to that of healthy human tissues and cell cultures. Sense and antisense non-coding RNA transcripts were detected and mapped, but their secondary structure and functions remain to be elucidated. We propose that the transcripts may relate to a new class of so-called promoter-associated RNAs (pRNAs), or have some other regulatory functions. We also hope that the expression of these non-coding RNAs can be used as a marker in glioma diagnostics and prognosis.
Collapse
|
18
|
Ogaki Y, Fukuma M, Shimizu N. Repeat induces not only gene silencing, but also gene activation in mammalian cells. PLoS One 2020; 15:e0235127. [PMID: 32579599 PMCID: PMC7313748 DOI: 10.1371/journal.pone.0235127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022] Open
Abstract
Repeat-induced gene silencing (RIGS) establishes the centromere structure, prevents the spread of transposons and silences transgenes, thereby limiting recombinant protein production. We previously isolated a sequence (B-3-31) that alleviates RIGS from the human genome. Here, we developed an assay system for evaluating the influence of repeat sequences on gene expression, based on in vitro ligation followed by our original gene amplification technology in animal cells. Using this assay, we found that the repeat of B-3-31, three core sequences of replication initiation regions (G5, C12, and D8) and two matrix attachment regions (AR1 and 32–3), activated the co-amplified plasmid-encoded d2EGFP gene in both human and hamster cell lines. This upregulation effect persisted for up to 82 days, which was confirmed to be repeat-induced, and was thus designated as a repeat-induced gene activation (RIGA). In clear contrast, the repeat of three bacterial sequences (lambda-phage, Amp, and ColE1) and three human retroposon sequences (Alu, 5’-untranslated region, and ORF1 of a long interspersed nuclear element) suppressed gene expression, thus reflecting RIGS. RIGS was CpG-independent. We suggest that RIGA might be associated with replication initiation. The discovery of RIGS and RIGA has implications for the repeat in mammalian genome, as well as practical value in recombinant production.
Collapse
Affiliation(s)
- Yusuke Ogaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Miki Fukuma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
19
|
Hosgood HD, Hu W, Rothman N, Klugman M, Weinstein SJ, Virtamo JR, Albanes D, Cawthon R, Lan Q. Variation in ribosomal DNA copy number is associated with lung cancer risk in a prospective cohort study. Carcinogenesis 2020; 40:975-978. [PMID: 30859204 DOI: 10.1093/carcin/bgz052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Disruption of ribosomal DNA (rDNA) has been linked to a variety of diseases in humans, including carcinogenesis. To evaluate the associations between rDNA copy number (CN) and risk of lung cancer, we measured 5.8S and 18S rDNA CN in the peripheral blood of 229 incident lung cancer cases and 1:1 matched controls from a nested case-control study within a prospective cohort of male smokers. There was a dose-response relationship between quartiles of both 18S and 5.8S rDNA CN and risk of lung cancer (odds ratio [OR], 95% confidence interval [CI]: 18S: 1.0 [ref]; 1.2 [0.6-2.1]; 1.8 [1.0-3.4]; 2.3 [1.3-4.1; Ptrend = 0.0002; 5.8S: 1.0 [ref]; 1.6 [0.8-2.9]; 2.2 [1.1-4.2]; 2.6 [1.3-5.1]; Ptrend = 0.0001). The associations between rDNA CN and lung cancer risk were similar when excluding cases diagnosed within 5 years of follow-up, and when stratifying by heavy (>20 cigarettes per day) and light smokers (≤20 cigarettes per day). We are the first to report that rDNA CN may be associated with future risk of lung cancer. To further elucidate the relationship between rDNA and lung cancer, replication studies are needed in additional populations, particularly those that include non-smokers.
Collapse
Affiliation(s)
- H Dean Hosgood
- Division of Epidemiology, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Madelyn Klugman
- Division of Epidemiology, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jarmo R Virtamo
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Porokhovnik L. Individual Copy Number of Ribosomal Genes as a Factor of Mental Retardation and Autism Risk and Severity. Cells 2019; 8:cells8101151. [PMID: 31561466 PMCID: PMC6830322 DOI: 10.3390/cells8101151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Autism is a complex multifactorial developmental disorder characterized by deficits in communication and restricted interests, often followed by mental retardation. Autism spectrum disorders (ASD) are caused by defects in miscellaneous molecular mechanisms, many of which remain unclear. But a considerable part of the known pathways converges on protein synthesis or degradation processes at different stages in the dendrites, laying the foundation for a concept of disturbed “translational homeostasis” or “proteostasis” in autism. The protein synthesis is conducted on ribosomes, cellular organelles consisting from a complex of riboproteins and a ribosomal RNA (rRNA) framework. The rRNA is encoded by ribosomal genes (RG) existing in multiple copies in the genome. The more copies of RG that are contained in the genome, the higher is the peak (maximum possible) ribosome abundance in the cell. A hypothesis is proposed that the RG copy number, through determining the quantity of ribosomes available in the dendrites, modulates the level of local dendritic translation and thus is a factor of risk and severity of a series of neuropsychiatric disorders caused by aberrant dendritic translation. A carrier of very low copy number of ribosomal genes is expected to have a milder form of ASD than a subject with the same epigenetic and genetic background, but a higher ribosomal gene dosage. Various ways of evaluation and testing the hypothesis on clinical material and animal models are suggested.
Collapse
Affiliation(s)
- Lev Porokhovnik
- Research Centre for Medical Genetics, 1 Moskvorechie str., Moscow 115478, Russia.
| |
Collapse
|
21
|
Kouprina N, Larionov V. TAR Cloning: Perspectives for Functional Genomics, Biomedicine, and Biotechnology. Mol Ther Methods Clin Dev 2019; 14:16-26. [PMID: 31276008 PMCID: PMC6586605 DOI: 10.1016/j.omtm.2019.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Completion of the human genome sequence and recent advances in engineering technologies have enabled an unprecedented level of understanding of DNA variations and their contribution to human diseases and cellular functions. However, in some cases, long-read sequencing technologies do not allow determination of the genomic region carrying a specific mutation (e.g., a mutation located in large segmental duplications). Transformation-associated recombination (TAR) cloning allows selective, most accurate, efficient, and rapid isolation of a given genomic fragment or a full-length gene from simple and complex genomes. Moreover, this method is the only way to simultaneously isolate the same genomic region from multiple individuals. As such, TAR technology is currently in a leading position to create a library of the individual genes that comprise the human genome and physically characterize the sites of chromosomal alterations (copy number variations [CNVs], inversions, translocations) in the human population, associated with the predisposition to different diseases, including cancer. It is our belief that such a library and analysis of the human genome will be of great importance to the growing field of gene therapy, new drug design methods, and genomic research. In this review, we detail the motivation for TAR cloning for human genome studies, biotechnology, and biomedicine, discuss the recent progress of some TAR-based projects, and describe how TAR technology in combination with HAC (human artificial chromosome)-based and CRISPR-based technologies may contribute in the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Genome Organization in and around the Nucleolus. Cells 2019; 8:cells8060579. [PMID: 31212844 PMCID: PMC6628108 DOI: 10.3390/cells8060579] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
The nucleolus is the largest substructure in the nucleus, where ribosome biogenesis takes place, and forms around the nucleolar organizer regions (NORs) that comprise ribosomal RNA (rRNA) genes. Each cell contains hundreds of rRNA genes, which are organized in three distinct chromatin and transcriptional states—silent, inactive and active. Increasing evidence indicates that the role of the nucleolus and rRNA genes goes beyond the control of ribosome biogenesis. Recent results highlighted the nucleolus as a compartment for the location and regulation of repressive genomic domains and, together with the nuclear lamina, represents the hub for the organization of the inactive heterochromatin. In this review, we aim to describe the crosstalk between the nucleolus and the rest of the genome and how distinct rRNA gene chromatin states affect nucleolus structure and are implicated in genome stability, genome architecture, and cell fate decision.
Collapse
|
23
|
Symonová R. Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome. Genes (Basel) 2019; 10:genes10050345. [PMID: 31067804 PMCID: PMC6562748 DOI: 10.3390/genes10050345] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Nuclear ribosomal RNA (rRNA) genes represent the oldest repetitive fraction universal to all eukaryotic genomes. Their deeply anchored universality and omnipresence during eukaryotic evolution reflects in multiple roles and functions reaching far beyond ribosomal synthesis. Merely the copy number of non-transcribed rRNA genes is involved in mechanisms governing e.g., maintenance of genome integrity and control of cellular aging. Their copy number can vary in response to environmental cues, in cellular stress sensing, in development of cancer and other diseases. While reaching hundreds of copies in humans, there are records of up to 20,000 copies in fish and frogs and even 400,000 copies in ciliates forming thus a literal subgenome or an rDNAome within the genome. From the compositional and evolutionary dynamics viewpoint, the precursor 45S rDNA represents universally GC-enriched, highly recombining and homogenized regions. Hence, it is not accidental that both rDNA sequence and the corresponding rRNA secondary structure belong to established phylogenetic markers broadly used to infer phylogeny on multiple taxonomical levels including species delimitation. However, these multiple roles of rDNAs have been treated and discussed as being separate and independent from each other. Here, I aim to address nuclear rDNAs in an integrative approach to better assess the complexity of rDNA importance in the evolutionary context.
Collapse
Affiliation(s)
- Radka Symonová
- Faculty of Science, Department of Biology, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
24
|
Tuorto F, Parlato R. rRNA and tRNA Bridges to Neuronal Homeostasis in Health and Disease. J Mol Biol 2019; 431:1763-1779. [PMID: 30876917 DOI: 10.1016/j.jmb.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Dysregulation of protein translation is emerging as a unifying mechanism in the pathogenesis of many neuronal disorders. Ribosomal RNA (rRNA) and transfer RNA (tRNA) are structural molecules that have complementary and coordinated functions in protein synthesis. Defects in both rRNAs and tRNAs have been described in mammalian brain development, neurological syndromes, and neurodegeneration. In this review, we present the molecular mechanisms that link aberrant rRNA and tRNA transcription, processing and modifications to translation deficits, and neuropathogenesis. We also discuss the interdependence of rRNA and tRNA biosynthesis and how their metabolism brings together proteotoxic stress and impaired neuronal homeostasis.
Collapse
Affiliation(s)
- Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany; Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|