1
|
Sassi FDMC, Garrido-Ramos MA, Utsunomia R, Dos Santos RZ, Ezaz T, Deon GA, Porto-Foresti F, Liehr T, Cioffi MDB. Independent evolution of satellite DNA sequences in homologous sex chromosomes of Neotropical armored catfish (Harttia). Commun Biol 2025; 8:524. [PMID: 40159539 PMCID: PMC11955569 DOI: 10.1038/s42003-025-07891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The Neotropical armored catfish Harttia is a valuable model for studying sex chromosome evolution, featuring two independently evolved male-heterogametic systems. This study examined satellitomes-sets of satellite DNAs-from four Amazonian species: H. duriventris (X1X2Y), H. rondoni (XY), H. punctata (X1X2Y), and H. villasboas (X1X2Y). These species share homologous sex chromosomes, with their satellitomes showing a high number of homologous satellite DNAs (satDNAs), primarily located on centromeres or telomeres, and varying by species. Each species revealed a distinct satDNA profile, with independent amplification and homogenization events occurring, suggesting an important role of these repetitive sequences in sex chromosome differentiation in a short evolutionary time, especially in recently originated sex chromosomes. Whole chromosome painting and bioinformatics revealed that in Harttia species without heteromorphic sex chromosomes, a specific satDNA (HviSat08-4011) is amplified in the same linkage group associated with sex chromosomes, suggesting an ancestral system. Such sequence (HviSat08-4011) has partial homology with the ZP4 gene responsible for the formation of the egg envelope, in which its role is discussed. This study indicates that these homologous sex chromosomes have diverged rapidly, recently, and independently in their satDNA content, with transposable elements playing a minor role when compared their roles on autosomal chromosome evolution.
Collapse
Affiliation(s)
- Francisco de M C Sassi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Geize A Deon
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Thomas Liehr
- Universitätsklinikum Jena, Friedrich-Schiller Universität, Institut für Humangenetik, Jena, Thüringen, 07747, Germany.
| | - Marcelo de B Cioffi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
2
|
Oliveira AMD, Deon GA, Sember A, Goes CAG, Supiwong W, Tanomtong A, Porto-Foresti F, Utsunomia R, Liehr T, Cioffi MDB. Repetitive DNAs and differentiation of the ZZ/ZW sex chromosome system in the combtail fish Belontia hasselti (Perciformes: Osphronemidae). BMC Ecol Evol 2025; 25:25. [PMID: 40098070 PMCID: PMC11917085 DOI: 10.1186/s12862-025-02358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Java combtail fish Belontia hasselti (Cuvier, 1831), a member of the Osphronemidae family, inhabits lakes and rivers throughout Southeast Asia and Sri Lanka. Previous cytogenetic research revealed it possesses a diploid chromosome number of 48 chromosomes with a female-heterogametic ZZ/ZW sex chromosome system, where the W chromosome is distinguishable as the only metacentric element in the complement. Female-heterogametic sex chromosome systems seem to be otherwise surprisingly rare in the highly diverse order Perciformes and, therefore, B. hasselti provides an important comparative model to evolutionary studies in this teleost lineage. To examine the level of sex chromosome differentiation in B. hasselti and the contribution of repetitive DNAs to this process we combined bioinformatic analyses with chromosomal mapping of selected repetitive DNA classes, and comparative genomic hybridization. RESULTS By providing the first satellitome study in Perciformes, we herein identified 13 satellite DNA monomers in B. hasselti, suggesting a very low diversity of satDNA in this fish species. Using fluorescence in situ hybridization, we revealed detectable clusters on chromosomes only for four satellite DNA monomers. Together with the two mapped microsatellite motifs, the repeats primarily accumulated on autosomes, with no distinct clusters located on the sex chromosomes. Comparative genomic hybridization showed no region with accumulated female-specific or enriched repeats on the W chromosome. Telomeric repeats terminated all chromosomes, and no additional interstitial sites were detected. CONCLUSION These data collectively indicate a low degree of sex chromosome differentiation in B. hasselti despite their considerable heteromorphy. Possible mechanisms that may underlie this pattern are discussed.
Collapse
Affiliation(s)
- Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská, 89, Liběchov, 277 21, Czech Republic
| | - Caio Augusto Gomes Goes
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, 17033-360, Brazil
| | - Weerayuth Supiwong
- Faculty of Interdisciplinary Studies, Khon Kaen University Nong Khai Campus, Muang, Nong Khai, 43000, Thailand
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, 40002, Thailand
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, 17033-360, Brazil
| | - Ricardo Utsunomia
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, 17033-360, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, 07747, Jena, Germany.
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
3
|
Lisachova L, Lisachov A, Romanenko S, Davletshina G, Altmanová M, Rovatsos M, Kratochvíl L, Giovannotti M, Nazarov R, Okshtein I, Trifonov V. Concerted Evolution of Genus-Specific Centromeric Satellite DNA in Eremias (Lacertidae, Reptilia). Cytogenet Genome Res 2025:1-13. [PMID: 40096838 DOI: 10.1159/000543883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Tandemly repeated satellite DNA sequences are an important part of animal genomes. They are involved in chromosome interactions and the maintenance of the integral structure of the nucleus, regulation of chromatin conformation and gene expression, and chromosome condensation and movement during cell division. Satellite DNAs located in the centromeric heterochromatin evolve rapidly and likely affect hybrid fertility and fitness. However, their studies are taxonomically highly biased. In lacertid lizards, satDNA has been extensively studied in the subfamily Lacertinae, but the subfamily Eremiadinae has been largely overlooked. RESULTS In this work, we describe a novel 177-bp-long centromeric satDNA family EremSat177, which is present in all studied species of the genus Eremias, but not in related genera. EremSat177 is not homologous to any previously identified centromeric satellites. Using fluorescence in situ hybridization, we demonstrate its centromeric localization in E. velox and E. arguta. We also show its tandem organization and intra-genomic homogenization by in silico analysis in the genome of E. argus. The phylogenetic analysis of consensus EremSat177 sequences from 12 Eremias species demonstrates that the same monomer subfamily is the most abundant in all these species, and its evolution mainly follows the species phylogeny as revealed by the mtDNA sequences. CONCLUSION The EremSat177 represents a novel, lineage-specific centromeric satellite DNA, and its role in centromere functioning should be revealed in further research.
Collapse
Affiliation(s)
- Lada Lisachova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Artem Lisachov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Guzel Davletshina
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Massimo Giovannotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Roman Nazarov
- Zoological Museum, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor Okshtein
- Institute of Theoretical and Experimental Physics, Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| |
Collapse
|
4
|
Marková A, Orosová M, Mora P, Benovics M, Lorite P. The first insight into Acanthocephalus (Palaeacanthocephala) satellitome: species-specific satellites as potential cytogenetic markers. Sci Rep 2025; 15:2945. [PMID: 39849044 PMCID: PMC11758010 DOI: 10.1038/s41598-025-85728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Acanthocephalan parasites are often overlooked in many areas of research, and satellitome and cytogenetic analyzes are no exception. The species of the genus Acanthocephalus are known for their very small chromosomes with ambiguous morphology, which makes karyotyping difficult. In this study, we performed the first satellitome analysis of three Acanthocephalus species to identify species- and chromosome-specific satellites that could serve as cytogenetic markers. RepeatExplorer2 revealed a remarkably high number of species-specific repeats, with a predominance of satellite DNAs, alongside variations in repetitive content between sexes. Five satellites in A. anguillae, two in A. lucii and six in A. ranae were successfully mapped to chromosomes using FISH. Each satellite showed a clustered hybridization signal at specific chromosomal locations, which allowed us to create a schematic representation of the distribution of satellites for each species. These newly identified satellites proved to be useful chromosomal markers for the accurate identification of homologous chromosome pairs. No FISH-positive signals were observed on the supernumerary chromosomes of A. anguillae and A. lucii, supporting the hypothesis that these chromosomes have recent origin.
Collapse
Affiliation(s)
- Anna Marková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Martina Orosová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia.
| | - Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| | - Michal Benovics
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, 9 Brno, Czech Republic
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| |
Collapse
|
5
|
Dos Santos RZ, Goes CAG, Stornioli JHF, Sassi FDMC, de Moraes RLR, Dergam JA, Porto-Foresti F, Cioffi MDB, Utsunomia R. Comparative satellite DNA mapping in species of the genus Prochilodus (Teleostei, Characiformes) and its evolutionary implications. Genome 2025; 68:1-8. [PMID: 39471438 DOI: 10.1139/gen-2024-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Satellite DNA (satDNA) sequences are dynamic components of the eukaryotic genome that can play significant roles in species diversification. The Prochilodontidae family, which includes 21 Neotropical fish species, is characterized by a conserved karyotype of 2n = 54 biarmed chromosomes, with variation in some species and populations regarding the presence or absence of B chromosomes. This study aimed to investigate whether the chromosomal distribution of specific satDNA sequences is conserved among three Prochilodus species (Prochilodus lineatus, Prochilodus costatus, and Prochilodus argenteus) regarding organization and number of loci, and to compare their genomes using comparative genomic hybridization (CGH). Our results demonstrated that most satDNA sequences share a similar distribution pattern across the three species, and CGH analysis corroborated that their karyotypes are very similar in terms of repetitive DNA distribution. We also identified a potential CENP-B box sequence within PliSat01, a satDNA located in the pericentromeric region of all analyzed species. In contrast, PliSat04 and PliSat14 displayed differential locations and variations in the number of loci per genome, underscoring the dynamic nature of repetitive sequences even in species with otherwise highly conserved genomes. These findings represent the first evidence of karyotype diversification in Prochilodus, highlighting the evolutionary dynamism of satDNA sequences.
Collapse
Affiliation(s)
- Rodrigo Zeni Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual Paulista, 17033-360, Bauru-SP, Brazil
| | - Caio Augusto Gomes Goes
- Departamento de Ciências Biológicas, Universidade Estadual Paulista, 17033-360, Bauru-SP, Brazil
| | - José Henrique Forte Stornioli
- Departamento de Ciências Biológicas, Universidade Estadual Paulista, 17033-360, Bauru-SP, Brazil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | | | | | - Jorge Abdala Dergam
- Departamento de Biologia Animal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Universidade Estadual Paulista, 17033-360, Bauru-SP, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos-SP, Brazil
| | - Ricardo Utsunomia
- Departamento de Ciências Biológicas, Universidade Estadual Paulista, 17033-360, Bauru-SP, Brazil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| |
Collapse
|
6
|
Jankásek M, Kočárek P, Št’áhlavský F. Comparative cytogenetics of three Zoraptera species as a basis for understanding chromosomal evolution in Polyneoptera insects. PeerJ 2024; 12:e18051. [PMID: 39399435 PMCID: PMC11471171 DOI: 10.7717/peerj.18051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
Zoraptera (also called "angel insects") is one of the most unexplored insect orders. However, it holds promise for understanding the evolution of insect karyotypes and genome organization given its status as an early branching group of Polyneoptera and Pterygota (winged insects) during the Paleozoic. Here, we provide karyotype descriptions of three Zorapteran species: Brazilozoros huxleyi (2n♂; ♀ = 42; 42), B. kukalovae (2n♂; ♀ = 43; 44) and Latinozoros cacaoensis (2n♂; ♀ = 36; 36). These species represent two of the four recently recognized Zorapteran subfamilies. Contrary to an earlier suggestion that Zoraptera has holocentric chromosomes, we found karyotypes that were always monocentric. Interestingly, we detected both X0 (B. kukalovae) and XY (B. huxleyi, L. cacaoensis) sex chromosome systems. In addition to conventional karyotype descriptions, we applied fluorescent in situ hybridization for the first time in Zoraptera to map karyotype distributions of 18S rDNA, histone H3 genes, telomeres and (CAG)n and (GATA)n microsatellites. This study provides a foundation for cytogenetic research in Zoraptera.
Collapse
Affiliation(s)
- Marek Jankásek
- Department of Zoology, Charles University Prague, Praha 2, Czech Republic
| | - Petr Kočárek
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | | |
Collapse
|
7
|
Toma GA, Sember A, Goes CAG, Kretschmer R, Porto-Foresti F, Bertollo LAC, Liehr T, Utsunomia R, de Bello Cioffi M. Satellite DNAs and the evolution of the multiple X 1X 2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes). Sci Rep 2024; 14:20402. [PMID: 39223262 PMCID: PMC11369246 DOI: 10.1038/s41598-024-70920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic
| | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | | | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, 07747, Jena, Germany.
| | | | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
8
|
Blommaert J, Sandoval-Castillo J, Beheregaray LB, Wellenreuther M. Peering into the gaps: Long-read sequencing illuminates structural variants and genomic evolution in the Australasian snapper. Genomics 2024; 116:110929. [PMID: 39216708 DOI: 10.1016/j.ygeno.2024.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Even before genome sequencing, genetic resources have supported species management and breeding programs. Current technologies, such as long-read sequencing, resolve complex genomic regions, like those rich in repeats or high in GC content. Improved genome contiguity enhances accuracy in identifying structural variants (SVs) and transposable elements (TEs). We present an improved genome assembly and SV catalogue for the Australasian snapper (Chrysophrys auratus). The new assembly is more contiguous, allowing for putative identification of 14 centromeres and transfer of 26,115 gene annotations from yellowfin seabream. Compared to the previous assembly, 35,000 additional SVs, including larger and more complex rearrangements, were annotated. SVs and TEs exhibit a distribution pattern skewed towards chromosome ends, likely influenced by recombination. Some SVs overlap with growth-related genes, underscoring their significance. This upgraded genome serves as a foundation for studying natural and artificial selection, offers a reference for related species, and sheds light on genome dynamics shaped by evolution.
Collapse
Affiliation(s)
- Julie Blommaert
- The New Zealand Institute for Plant and Food Research, Nelson, New Zealand.
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research, Nelson, New Zealand; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Kretschmer R, Toma GA, Deon GA, dos Santos N, dos Santos RZ, Utsunomia R, Porto-Foresti F, Gunski RJ, Garnero ADV, Liehr T, de Oliveira EHC, de Freitas TRO, Cioffi MDB. Satellitome Analysis in the Southern Lapwing ( Vanellus chilensis) Genome: Implications for SatDNA Evolution in Charadriiform Birds. Genes (Basel) 2024; 15:258. [PMID: 38397247 PMCID: PMC10887557 DOI: 10.3390/genes15020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Vanellus (Charadriidae; Charadriiformes) comprises around 20 species commonly referred to as lapwings. In this study, by integrating cytogenetic and genomic approaches, we assessed the satellite DNA (satDNA) composition of one typical species, Vanellus chilensis, with a highly conserved karyotype. We additionally underlined its role in the evolution, structure, and differentiation process of the present ZW sex chromosome system. Seven distinct satellite DNA families were identified within its genome, accumulating on the centromeres, microchromosomes, and the W chromosome. However, these identified satellite DNA families were not found in two other Charadriiformes members, namely Jacana jacana and Calidris canutus. The hybridization of microsatellite sequences revealed the presence of a few repetitive sequences in V. chilensis, with only two out of sixteen displaying positive hybridization signals. Overall, our results contribute to understanding the genomic organization and satDNA evolution in Charadriiform birds.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Gustavo A. Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| | - Natalia dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (R.J.G.); (A.D.V.G.)
| | - Analía Del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (R.J.G.); (A.D.V.G.)
| | - Thomas Liehr
- Institute of Human Genetics, Friedrich Schiller University, University Hospital Jena, 07747 Jena, Germany
| | - Edivaldo Herculano Corra de Oliveira
- Laboratório de Citogenô mica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil;
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Thales Renato Ochotorena de Freitas
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| |
Collapse
|