1
|
Li Z, Zhou B, Zhu X, Yang F, Jin K, Dai J, Zhu Y, Song X, Jiang G. Differentiation-related genes in tumor-associated macrophages as potential prognostic biomarkers in non-small cell lung cancer. Front Immunol 2023; 14:1123840. [PMID: 36969247 PMCID: PMC10033599 DOI: 10.3389/fimmu.2023.1123840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThe purpose of this study was to evaluate the role of differentiation-related genes (DRGs) in tumor-associated macrophages (TAMs) in non-small cell lung cancer (NSCLC).MethodsSingle cell RNA-seq (scRNA-seq) data from GEO and bulk RNA-seq data from TCGA were analyzed to identify DRGs using trajectory method. Functional gene analysis was carried out by GO/KEGG enrichment analysis. The mRNA and protein expression in human tissue were analyzed by HPA and GEPIA databases. To investigate the prognostic value of these genes, three risk score (RS) models in different pathological types of NSCLC were generated and predicted NSCLC prognosis in datasets from TCGA, UCSC and GEO databases.Results1,738 DRGs were identified through trajectory analysis. GO/KEGG analysis showed that these genes were predominantly related to myeloid leukocyte activation and leukocyte migration. 13 DRGs (C1QB, CCL4, CD14, CD84, FGL2, MS4A6A, NLRP3, PLEK, RNASE6, SAMSN1, SPN, TMEM176B, ZEB2) related to prognosis were obtained through univariate Cox analysis and Lasso regression. C1QB, CD84, FGL2, MS4A6A, NLRP3, PLEK, SAMSN1, SPN, and ZEB2 were downregulated in NSCLC compared to non-cancer tissue. The mRNA of 13 genes were significantly expressed in pulmonary macrophages with strong cell specificity. Meanwhile, immunohistochemical staining showed that C1QB, CCL4, SPN, CD14, NLRP3, SAMSN1, MS4A6A, TMEM176B were expressed in different degrees in lung cancer tissues. ZEB2 (HR=1.4, P<0.05) and CD14 (HR=1.6, P<0.05) expression were associated with a worse prognosis in lung squamous cell carcinoma; ZEB2 (HR=0.64, P<0.05), CD84 (HR=0.65, P<0.05), PLEK (HR=0.71, P<0.05) and FGL2 (HR=0.61, P<0.05) expression were associated with a better prognosis in lung adenocarcinoma. Three RS models based on 13 DRGs both showed that the high RS was significantly associated with poor prognosis in different pathological types of NSCLC.ConclusionsThis study highlights the prognostic value of DRGs in TAMs in NSCLC patients, providing novel insights for the development of therapeutic and prognostic targets based on TAM functional differences.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao Song
- *Correspondence: Xiao Song, ; Gening Jiang,
| | | |
Collapse
|
2
|
Pinar IP, Jones HD. Novel imaging approaches for small animal models of lung disease (2017 Grover Conference series). Pulm Circ 2018; 8:2045894018762242. [PMID: 29480066 PMCID: PMC5888832 DOI: 10.1177/2045894018762242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Imaging in small animal models of lung disease is challenging, as existing technologies are limited either by resolution or by the terminal nature of the imaging approach. Here, we describe the current state of small animal lung imaging, the technological advances of laboratory-sourced phase contrast X-ray imaging, and the application of this novel technology and its attendant image analysis techniques to the in vivo imaging of the large airways and pulmonary vasculature in murine models of lung health and disease.
Collapse
Affiliation(s)
- Isaac P Pinar
- 1 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia.,2 Division of Biological Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, Australia
| | - Heather D Jones
- 3 Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
3
|
Marazioti A, Lilis I, Vreka M, Apostolopoulou H, Kalogeropoulou A, Giopanou I, Giotopoulou GA, Krontira AC, Iliopoulou M, Kanellakis NI, Agalioti T, Giannou AD, Jones-Paris C, Iwakura Y, Kardamakis D, Blackwell TS, Taraviras S, Spella M, Stathopoulos GT. Myeloid-derived interleukin-1β drives oncogenic KRAS-NF-κΒ addiction in malignant pleural effusion. Nat Commun 2018; 9:672. [PMID: 29445180 PMCID: PMC5813197 DOI: 10.1038/s41467-018-03051-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Malignant pleural effusion (MPE) is a frequent metastatic manifestation of human cancers. While we previously identified KRAS mutations as molecular culprits of MPE formation, the underlying mechanism remained unknown. Here, we determine that non-canonical IKKα-RelB pathway activation of KRAS-mutant tumor cells mediates MPE development and this is fueled by host-provided interleukin IL-1β. Indeed, IKKα is required for the MPE-competence of KRAS-mutant tumor cells by activating non-canonical NF-κB signaling. IL-1β fuels addiction of mutant KRAS to IKKα resulting in increased CXCL1 secretion that fosters MPE-associated inflammation. Importantly, IL-1β-mediated NF-κB induction in KRAS-mutant tumor cells, as well as their resulting MPE-competence, can only be blocked by co-inhibition of both KRAS and IKKα, a strategy that overcomes drug resistance to individual treatments. Hence we show that mutant KRAS facilitates IKKα-mediated responsiveness of tumor cells to host IL-1β, thereby establishing a host-to-tumor signaling circuit that culminates in inflammatory MPE development and drug resistance.
Collapse
Affiliation(s)
- Antonia Marazioti
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece.
| | - Ioannis Lilis
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Malamati Vreka
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377, Munich, Bavaria, Germany
| | - Hara Apostolopoulou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Argyro Kalogeropoulou
- Stem Cell Biology Laboratory, Department of Physiology, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Ioanna Giopanou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Georgia A Giotopoulou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Anthi C Krontira
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Marianthi Iliopoulou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Nikolaos I Kanellakis
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Theodora Agalioti
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Anastasios D Giannou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Celestial Jones-Paris
- Division of Allergy, Pulmonary and Critical Care, Department of Internal Medicine, Vanderbilt University School of Medicine, T-1218 MCN, Nashville, TN, 37232-2650, USA
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Chiba, 278-0022, Japan
| | - Dimitrios Kardamakis
- Department of Radiation Oncology and Stereotactic Radiotherapy, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care, Department of Internal Medicine, Vanderbilt University School of Medicine, T-1218 MCN, Nashville, TN, 37232-2650, USA
| | - Stavros Taraviras
- Stem Cell Biology Laboratory, Department of Physiology, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Magda Spella
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Georgios T Stathopoulos
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece.
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377, Munich, Bavaria, Germany.
| |
Collapse
|
4
|
Spella M, Giannou AD, Stathopoulos GT. Switching off malignant pleural effusion formation-fantasy or future? J Thorac Dis 2015; 7:1009-20. [PMID: 26150914 DOI: 10.3978/j.issn.2072-1439.2015.05.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Malignant pleural effusion (MPE) is common and difficult to treat. In the vast majority of patients the presence of MPE heralds incurable disease, associated with poor quality of life, morbidity and mortality. Current therapeutic approaches are inefficient and merely offer palliation of associated symptoms. Recent scientific progress has shed light in the biologic processes governing the mechanisms behind the pathobiology of MPE. Pleural based tumors interfere with pleural fluid drainage, as well as the host vasculature and immune system, resulting in decreased fluid absorption and increased pleural fluid production via enhanced plasma extravasation into the pleural space. In order to achieve this feat, pleural based tumors must elicit critical vasoactive events in the pleura, thus forming a favorable microenvironment for tumor dissemination and MPE development. Such properties involve specific transcriptional signaling cascades in addition to secretion of important mediators which attract and activate host cell populations which, in turn, impact tumor cell functions. The dissection of the biologic steps leading to MPE formation provides novel therapeutic targets and recent research findings provide encouraging results towards future therapeutic innovations in MPE management.
Collapse
Affiliation(s)
- Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| |
Collapse
|
5
|
Zaynagetdinov R, Sherrill TP, Gleaves LA, McLoed AG, Saxon JA, Habermann AC, Connelly L, Dulek D, Peebles RS, Fingleton B, Yull FE, Stathopoulos GT, Blackwell TS. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res 2015; 75:1624-1634. [PMID: 25691457 DOI: 10.1158/0008-5472.can-14-2379] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/30/2015] [Indexed: 01/02/2023]
Abstract
Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis.
Collapse
Affiliation(s)
- Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA, 37232
| | - Taylor P Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA, 37232
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA, 37232
| | - Allyson G McLoed
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA, 37232
| | - Jamie A Saxon
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA, 37232
| | - Arun C Habermann
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA, 37232
| | - Linda Connelly
- Department of Pharmaceutical Sciences, University of Hawaii, Hilo, Hawaii, USA, 96720
| | - Daniel Dulek
- Department of Pediatrics, Vanderbilt University, Nashville, TN, USA, 37232
| | - R Stokes Peebles
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA, 37232.,U.S. Department of Veterans Affairs
| | - Barbara Fingleton
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA, 37232
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA, 37232.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, University of Patras, 26504 Rio, Greece
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA, 37232.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA, 37232.,U.S. Department of Veterans Affairs.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA, 37232.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| |
Collapse
|
6
|
Zhang B, Gao F, Wang M, Cao X, Liu F, Wang X, Luo J, Wang G, Bai J. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT. JOURNAL OF BIOPHOTONICS 2014; 7:110-116. [PMID: 23696158 DOI: 10.1002/jbio.201300037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/01/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lin YY, Kao HW, Li JJ, Hwang JJ, Tseng YL, Lin WJ, Lin MH, Ting G, Wang HE. Tumor burden talks in cancer treatment with PEGylated liposomal drugs. PLoS One 2013; 8:e63078. [PMID: 23675454 PMCID: PMC3651236 DOI: 10.1371/journal.pone.0063078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/28/2013] [Indexed: 12/19/2022] Open
Abstract
Purpose PEGylated liposomes are important drug carriers that can passively target tumor by enhanced permeability and retention (EPR) effect in neoplasm lesions. This study demonstrated that tumor burden determines the tumor uptake, and also the tumor response, in cancer treatment with PEGylated liposomal drugs in a C26/tk-luc colon carcinoma-bearing mouse model. Methods Empty PEGylated liposomes (NanoX) and those encapsulated with VNB (NanoVNB) were labeled with In-111 to obtain InNanoX and InVNBL in high labeling yield and radiochemical purity (all >90%). BALB/c mice bearing either small (58.4±8.0 mm3) or large (102.4±22.0 mm3) C26/tk-luc tumors in the right dorsal flank were intravenously administered with NanoVNB, InNanoX, InVNBL, or NanoX as a control, every 7 days for 3 times. The therapeutic efficacy was evaluated by body weight loss, tumor growth inhibition (using calipers and bioluminescence imaging) and survival fraction. The scintigraphic imaging of tumor mouse was performed during and after treatment. Results The biodistribution study of InVNBL revealed a clear inverse correlation (r2 = 0.9336) between the tumor uptake and the tumor mass ranged from 27.6 to 623.9 mg. All three liposomal drugs showed better therapeutic efficacy in small-tumor mice than in large-tumor mice. Tumor-bearing mice treated with InVNBL (a combination drug) showed the highest tumor growth inhibition rate and survival fraction compared to those treated with NanoVNB (chemodrug only) and InNanoX (radionuclide only). Specific tumor targeting and significantly increased tumor uptake after periodical treatment with InVNBL were evidenced by scintigraphic imaging, especially in mice bearing small tumors. Conclusion The significant differences in the outcomes of cancer treatment and molecular imaging between animals bearing small and large tumors revealed that tumor burden is a critical and discriminative factor in cancer therapy using PEGylated liposomal drugs.
Collapse
Affiliation(s)
- Yi-Yu Lin
- Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Wen Kao
- Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Je Li
- Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Jong Hwang
- Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | - Wuu-Jyh Lin
- Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | | | - Gann Ting
- National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Ell Wang
- Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Roura S, Gálvez-Montón C, Bayes-Genis A. Bioluminescence imaging: a shining future for cardiac regeneration. J Cell Mol Med 2013; 17:693-703. [PMID: 23402217 PMCID: PMC3823173 DOI: 10.1111/jcmm.12018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/28/2012] [Indexed: 12/28/2022] Open
Abstract
Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light-emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell-based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light-emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | | | | |
Collapse
|
9
|
Psallidas I, Karabela SP, Moschos C, Sherrill TP, Kollintza A, Magkouta S, Theodoropoulou P, Roussos C, Blackwell TS, Kalomenidis I, Stathopoulos GT. Specific effects of bortezomib against experimental malignant pleural effusion: a preclinical study. Mol Cancer 2010; 9:56. [PMID: 20219102 PMCID: PMC2841124 DOI: 10.1186/1476-4598-9-56] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/10/2010] [Indexed: 12/23/2022] Open
Abstract
Background We have previously shown that nuclear factor (NF)-κB activation of mouse Lewis lung carcinoma (LLC) specifically promotes the induction of malignant pleural effusions (MPE) by these cells. In the present studies we hypothesized that treatment of immunocompetent mice with bortezomib tailored to inhibit cancer cell NF-κB activation and not proliferation specifically inhibits MPE formation by LLC cells. Results Treatment of LLC cells with low concentrations of bortezomib (100 ng/ml) inhibited NF-κB activation and NF-κB-dependent transcription, but not cellular proliferation. Bortezomib treatment of immunocompetent C57BL/6 mice bearing LLC-induced subcutaneous tumors and MPEs significantly blocked tumor-specific NF-κB activation. However, bortezomib treatment did not impair subcutaneous LLC tumor growth, but was effective in limiting LLC-induced MPE. This specific effect was evidenced by significant reductions in effusion accumulation and the associated mortality and was observed with both preventive (beginning before MPE formation) and therapeutic (beginning after MPE establishment) bortezomib treatment. The favorable impact of bortezomib on MPE was associated with suppression of cardinal MPE-associated phenomena, such as inflammation, vascular hyperpermeability, and angiogenesis. In this regard, therapeutic bortezomib treatment had identical favorable results on MPE compared with preventive treatment, indicating that the drug specifically counteracts effusion formation. Conclusions These studies indicate that proteasome inhibition tailored to block NF-κB activation of lung adenocarcinoma specifically targets the effusion-inducing phenotype of this tumor. Although the drug has limited activity against advanced solid lung cancer, it may prove beneficial for patients with MPE.
Collapse
Affiliation(s)
- Ioannis Psallidas
- Applied Biomedical Research & Training Center "Marianthi Simou", Department of Critical Care & Pulmonary Services, General Hospital "Evangelismos", National and Kapodistrian University of Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Marques SM, Esteves da Silva JCG. Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB Life 2009; 61:6-17. [PMID: 18949818 DOI: 10.1002/iub.134] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Luciferase is a general term for enzymes catalyzing visible light emission by living organisms (bioluminescence). The studies carried out with Photinus pyralis (firefly) luciferase allowed the discovery of the reaction leading to light production. It can be regarded as a two-step process: the first corresponds to the reaction of luciferase's substrate, luciferin (LH(2)), with ATP-Mg(2+) generating inorganic pyrophosphate and an intermediate luciferyl-adenylate (LH(2)-AMP); the second is the oxidation and decarboxylation of LH(2)-AMP to oxyluciferin, the light emitter, producing CO(2), AMP, and photons of yellow-green light (550- 570 nm). In a dark reaction LH(2)-AMP is oxidized to dehydroluciferyl-adenylate (L-AMP). Luciferase also shows acyl-coenzyme A synthetase activity, which leads to the formation of dehydroluciferyl-coenzyme A (L-CoA), luciferyl-coenzyme A (LH(2)-CoA), and fatty acyl-CoAs. Moreover luciferase catalyzes the synthesis of dinucleoside polyphosphates from nucleosides with at least a 3'-phosphate chain plus an intact terminal pyrophosphate moiety. The LH(2) stereospecificity is a particular feature of the bioluminescent reaction where each isomer, D-LH(2) or L-LH(2), has a specific function. Practical applications of the luciferase system, either in its native form or with engineered proteins, encloses the analytical assay of metabolites like ATP and molecular biology studies with luc as a reporter gene, including the most recent and increasing field of bioimaging.
Collapse
Affiliation(s)
- Simone M Marques
- Centro de Investigação em Química (CIQ-UP), Department of Chemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | | |
Collapse
|
11
|
Stathopoulos GT, Psallidas I, Moustaki A, Moschos C, Kollintza A, Karabela S, Porfyridis I, Vassiliou S, Karatza M, Zhou Z, Joo M, Blackwell TS, Roussos C, Graf D, Kalomenidis I. A central role for tumor-derived monocyte chemoattractant protein-1 in malignant pleural effusion. J Natl Cancer Inst 2008; 100:1464-76. [PMID: 18840818 DOI: 10.1093/jnci/djn325] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tumor cells in malignant pleural effusions (MPEs) are an important source of monocyte chemoattractant protein (MCP)-1. However, the role of tumor-derived MCP-1 in the pathogenesis and progression of MPE has not been determined. METHODS B16 mouse skin melanoma cells, which are deficient in MCP-1 expression, and mouse Lewis lung cancer (LLC) cells, which express high levels of MCP-1, were engineered to stably express MCP-1 and short hairpin RNAs (shRNAs) targeting the MCP-1 transcript, respectively. Cells were injected into the pleural cavities of syngeneic immunocompetent mice, and MPE volume and pleural tumors were quantified at necropsy (day 14). MCP-1 and other mediators were determined by cytometric bead array and enzyme-linked immunosorbent assay, and mononuclear and endothelial cells were identified by immunolabeling of F4/80 and factor VIII-related antigen respectively. Mouse survival was assessed using Kaplan-Meier analysis. Vascular permeability in mice with MPE was assessed using albumin-binding Evans blue. Statistical tests were two-sided. RESULTS LLC cells expressing shRNA against MCP-1 elaborated less than 5% of the MCP-1 level in cells expressing nonspecific shRNA (control cells), and intrapleural delivery of these cells resulted in less MPE (mean MPE volume = 86 and 585 muL, respectively; difference = 499 muL; 95% confidence interval [CI] = 331 to 669 muL; P < .001), reduced MCP-1 levels in the pleural fluid, and lower mortality than when control cells were delivered. Overexpression of MCP-1 in intrapleurally injected B16 melanoma cells led to increased MPE and reduced survival. In mice with MPE, MCP-1 was a potent inducer of vascular permeability, mononuclear recruitment, and, in pleural tumors, of angiogenesis. CONCLUSION MCP-1 produced by tumor cells is an important determinant of their capacity to induce the formation of MPE and may be a useful target for the treatment of malignant pleural disease.
Collapse
Affiliation(s)
- Georgios T Stathopoulos
- Applied Biomedical Research and Training Center Marianthi Simou, Department of Critical Care and Pulmonary Services, General Hospital Evangelismos, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|