1
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Chung HH, Bellefeuille SD, Miller HN, Gaborski TR. Extended live-tracking and quantitative characterization of wound healing and cell migration with SiR-Hoechst. Exp Cell Res 2018; 373:198-210. [PMID: 30399373 PMCID: PMC6327846 DOI: 10.1016/j.yexcr.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 01/14/2023]
Abstract
Cell migration is essential to many life processes, including immune response, tissue repair, and cancer progression. A reliable quantitative characterization of the cell migration can therefore aid in the high throughput screening of drug efficacy in wound healing and cancer treatments. In this work, we report what we believe is the first use of SiR-Hoechst for extended live tracking and automated analysis of cell migration and wound healing. We showed through rigorous statistical comparisons that this far-red label does not affect migratory behavior. We observed excellent automated tracking of random cell migration, in which the motility parameters (speed, displacement, path length, directionality ratio, persistence time, and direction autocorrelation) obtained closely match those obtained from manual tracking. We also present an analysis framework to characterize the healing of a scratch wound from the perspective of single cells. The use of SiR-Hoechst is advantageous for the crowded environments in wound healing assays because as long as cell nuclei do not overlap, continuous tracking can be maintained even if there is cell-cell contact. In this paper, we report wound recovery based on the number of cells migrating into the wound over time, normalized by the initial cell count prior to the infliction of the wound. This normalized cell count approach is impervious to operator bias during the arbitration of wound edges and is also robust against variability that arises due to differences in the cell density of different samples. Additional wound healing characteristics were also defined based on the evolution of cell speed and directionality during healing. Not unexpected, the wound healing cells exhibited much higher tendency to maintain the same migratory direction in comparison to the randomly migrating cells. The use of SiR-Hoechst thus greatly simplified the automation of single cell and whole population analysis with high spatial and temporal resolution over extended periods of time.
Collapse
Affiliation(s)
- Henry H Chung
- Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Sean D Bellefeuille
- Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Hayley N Miller
- Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Thomas R Gaborski
- Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States.
| |
Collapse
|
3
|
Zhang D, Lee J, Sun MB, Pei Y, Chu J, Gillette MU, Fan TM, Kilian KA. Combinatorial Discovery of Defined Substrates That Promote a Stem Cell State in Malignant Melanoma. ACS CENTRAL SCIENCE 2017; 3:381-393. [PMID: 28573199 PMCID: PMC5445527 DOI: 10.1021/acscentsci.6b00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 06/07/2023]
Abstract
The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell-ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand-receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Junmin Lee
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael B. Sun
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yi Pei
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James Chu
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Martha U. Gillette
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
O'Duibhir E, Carragher NO, Pollard SM. Accelerating glioblastoma drug discovery: Convergence of patient-derived models, genome editing and phenotypic screening. Mol Cell Neurosci 2017; 80:198-207. [PMID: 27825983 PMCID: PMC6128397 DOI: 10.1016/j.mcn.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/05/2016] [Accepted: 11/02/2016] [Indexed: 12/27/2022] Open
Abstract
Patients diagnosed with glioblastoma (GBM) continue to face a bleak prognosis. It is critical that new effective therapeutic strategies are developed. GBM stem cells have molecular hallmarks of neural stem and progenitor cells and it is possible to propagate both non-transformed normal neural stem cells and GBM stem cells, in defined, feeder-free, adherent culture. These primary stem cell lines provide an experimental model that is ideally suited to cell-based drug discovery or genetic screens in order to identify tumour-specific vulnerabilities. For many solid tumours, including GBM, the genetic disruptions that drive tumour initiation and growth have now been catalogued. CRISPR/Cas-based genome editing technologies have recently emerged, transforming our ability to functionally annotate the human genome. Genome editing opens prospects for engineering precise genetic changes in normal and GBM-derived neural stem cells, which will provide more defined and reliable genetic models, with critical matched pairs of isogenic cell lines. Generation of more complex alleles such as knock in tags or fluorescent reporters is also now possible. These new cellular models can be deployed in cell-based phenotypic drug discovery (PDD). Here we discuss the convergence of these advanced technologies (iPS cells, neural stem cell culture, genome editing and high content phenotypic screening) and how they herald a new era in human cellular genetics that should have a major impact in accelerating glioblastoma drug discovery.
Collapse
Affiliation(s)
- Eoghan O'Duibhir
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Institute of Genetics and Molecular Medicine, CRUK Edinburgh Centre, University of Edinburgh, UK
| | - Neil O Carragher
- Institute of Genetics and Molecular Medicine, CRUK Edinburgh Centre, University of Edinburgh, UK.
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Institute of Genetics and Molecular Medicine, CRUK Edinburgh Centre, University of Edinburgh, UK.
| |
Collapse
|
5
|
Febles NK, Chandrasekaran S, Fang Y. Resonant Waveguide Grating Imager for Single Cell Monitoring of the Invasion of 3D Speheroid Cancer Cells Through Matrigel. Methods Mol Biol 2017; 1571:143-160. [PMID: 28281255 DOI: 10.1007/978-1-4939-6848-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The invasion of cancer cells through their surrounding extracellular matrices is the first critical step to metastasis, a devastating event to cancer patients. However, in vitro cancer cell invasion is mostly studied using two-dimensional (2D) models. Three-dimensional (3D) multicellular spheroids may offer an advantageous cell model for cancer research and oncology drug discovery. This chapter describes a label-free, real-time, and single-cell approach to quantify the invasion of 3D spheroid colon cancer cells through Matrigel using a spatially resolved resonant waveguide grating imager.
Collapse
Affiliation(s)
- Nicole K Febles
- Biochemical Technologies, Corning Research and Development Corporation, Corning Incorporated, Sullivan Park, Corning, NY, 14831, USA
- NanoScience Technology Center, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Siddarth Chandrasekaran
- Biochemical Technologies, Corning Research and Development Corporation, Corning Incorporated, Sullivan Park, Corning, NY, 14831, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ye Fang
- Biochemical Technologies, Corning Research and Development Corporation, Corning Incorporated, Sullivan Park, Corning, NY, 14831, USA.
| |
Collapse
|
6
|
Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, Shorte SL, Turcatti G, von Schantz C, Carragher NO. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 2016; 15:751-769. [PMID: 27616293 DOI: 10.1038/nrd.2016.175] [Citation(s) in RCA: 343] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.
Collapse
Affiliation(s)
- Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; and at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Nathalie Aulner
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Marc Bickle
- Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.,European Cell-Based Assays Interest Group
| | - Anthony M Davies
- Translational Cell Imaging Queensland (TCIQ), Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane 4102 QLD, Australia; and The Irish National Centre for High Content Screening and Analysis, Trinity Translational Medicine Institute, Trinity College Dublin, Phase 3 Trinity Health Sciences 1.20, St James Hospital, Dublin D8, Republic of Ireland.,European Cell-Based Assays Interest Group
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research, The Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France.,European Cell-Based Assays Interest Group
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK.,European Cell-Based Assays Interest Group
| | - Maria C Montoya
- Cellomics Unit, Cell Biology &Physiology Program, Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,European Cell-Based Assays Interest Group
| | - Päivi Östling
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm 17165, Sweden.,European Cell-Based Assays Interest Group
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Leo S Price
- Faculty of Science, Leiden Academic Centre for Drug Research, Toxicology, Universiteit Leiden, The Netherlands; and at OcellO, J.H Oortweg 21, 2333 CH, Leiden, The Netherlands.,European Cell-Based Assays Interest Group
| | - Spencer L Shorte
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland.,European Cell-Based Assays Interest Group
| | - Carina von Schantz
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.,European Cell-Based Assays Interest Group
| |
Collapse
|
7
|
Spencer A, Baker AB. High Throughput Label Free Measurement of Cancer Cell Adhesion Kinetics Under Hemodynamic Flow. Sci Rep 2016; 6:19854. [PMID: 26816215 PMCID: PMC4728493 DOI: 10.1038/srep19854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/18/2015] [Indexed: 01/09/2023] Open
Abstract
The kinetics of receptor-mediated cell adhesion to extracellular matrix and adherent cell monolayers plays a key role in many physiological and pathological processes including cancer metastasis. Within this process the presence of fluidic shear forces is a key regulator of binding equilibrium and kinetics of cell adhesion. Current techniques to examine the kinetics of cell adhesion are either performed in the absence of flow or are low throughput, limiting their application to pharmacological compound screening or the high throughput investigation of biological mechanisms. We developed a high throughput flow device that applies flow in a multi-well format and interfaced this system with electric cell-substrate impedance sensing (ECIS) system to allow label free detection of cell adhesion. We demonstrate that this combined system is capable of making real time measurements of cancer cell adhesion to extracellular matrix and immobilized platelets. In addition, we examined the dependence of the kinetics of binding of cancer cells on the level of shear stress and in the presence of small molecule inhibitors to adhesion-related pathways. This versatile system is broadly adaptable to the high throughput study of cell adhesion kinetics for many applications including drug screening and the investigation of the mechanisms of cancer metastasis.
Collapse
Affiliation(s)
- Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, University of Texas, Austin, TX USA
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, University of Texas, Austin, TX USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, TX USA.,Institute for Computational Engineering and Sciences (ICES), University of Texas, Austin, TX USA
| |
Collapse
|
8
|
Sun W, Lim CT, Kurniawan NA. Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy. J R Soc Interface 2015; 11:rsif.2014.0638. [PMID: 25100319 DOI: 10.1098/rsif.2014.0638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cancer metastasis involves the dissemination of cancer cells from the primary tumour site and is responsible for the majority of solid tumour-related mortality. Screening of anti-metastasis drugs often includes functional assays that examine cancer cell invasion inside a three-dimensional hydrogel that mimics the extracellular matrix (ECM). Here, we built a mechanically tuneable collagen hydrogel model to recapitulate cancer spreading into heterogeneous tumour stroma and monitored the three-dimensional invasion of highly malignant breast cancer cells, MDA-MB-231. Migration assays were carried out in the presence and the absence of drugs affecting four typical molecular mechanisms involved in cell migration, as well as under five ECMs with different biophysical properties. Strikingly, the effects of the drugs were observed to vary strongly with matrix mechanics and microarchitecture, despite the little dependence of the inherent cancer cell migration on the ECM condition. Specifically, cytoskeletal contractility-targeting drugs reduced migration speed in sparse gels, whereas migration in dense gels was retarded effectively by inhibiting proteolysis. The results corroborate the ability of cancer cells to switch their multiple invasion mechanisms depending on ECM condition, thus suggesting the importance of factoring in the biophysical properties of the ECM in anti-metastasis drug screenings.
Collapse
Affiliation(s)
- Wei Sun
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Republic of Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Republic of Singapore Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| | | |
Collapse
|
9
|
Kamimura M, Scheideler O, Shimizu Y, Yamamoto S, Yamaguchi K, Nakanishi J. Facile preparation of a photoactivatable surface on a 96-well plate: a versatile and multiplex cell migration assay platform. Phys Chem Chem Phys 2015; 17:14159-67. [DOI: 10.1039/c5cp01499a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoactivatable 96-well plate based on photocleavable PEG and poly-d-lysine serves as a useful high-throughput cell migration assay platform.
Collapse
Affiliation(s)
- Masao Kamimura
- World Premier International (WPI) Research Center Initiative
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Olivia Scheideler
- World Premier International (WPI) Research Center Initiative
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Yoshihisa Shimizu
- World Premier International (WPI) Research Center Initiative
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Shota Yamamoto
- Department of Chemistry
- Faculty of Science
- Research Institute for Photofunctionalized Materials
- Kanagawa University
- Hiratsuka
| | - Kazuo Yamaguchi
- Department of Chemistry
- Faculty of Science
- Research Institute for Photofunctionalized Materials
- Kanagawa University
- Hiratsuka
| | - Jun Nakanishi
- World Premier International (WPI) Research Center Initiative
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
10
|
Febles NK, Ferrie AM, Fang Y. Label-free single cell kinetics of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 2014; 86:8842-9. [PMID: 25118958 DOI: 10.1021/ac502269v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article reports label-free, real-time, and single-cell quantification of the invasion of spheroidal colon cancer cells through three-dimensional (3D) Matrigel using a resonant waveguide grating (RWG) imager. This imager employs a time-resolved swept wavelength interrogation scheme to monitor cell invasion and adhesion with a temporal resolution up to 3 s and a spatial resolution of 12 μm. As the model system, spheroids of human colorectal adenocarcinoma HT-29 cells are generated by culturing the cells in 96-well round-bottom ultralow attachment plates. 3D Matrigel is formed by its gelation in 384-well RWG biosensor microplates. The invasion and adhesion of spheroidal HT29 cells is initiated by placing individual spheroids onto the Matrigel-coated biosensors. The time series RWG images are obtained and used to extract the optical signatures arising from the adhesion after the cells are dissociated from the spheroids and invade through the 3D Matrigel. Compound profiling shows that epidermal growth factor accelerates cancer cell invasion, while vandetanib, a multitarget kinase inhibitor, dose-dependently inhibits invasion. This study demonstrates that the label-free imager can monitor in real-time the invasion of spheroidal cancer cells through 3D matrices.
Collapse
Affiliation(s)
- Nicole K Febles
- Biochemical Technologies, Science and Technology Division, Corning Incorporated , Corning, New York 14831, United States
| | | | | |
Collapse
|
11
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|
12
|
Singh T, Kothapalli C, Varma D, Nicoll SB, Vazquez M. Carboxymethylcellulose hydrogels support central nervous system-derived tumor-cell chemotactic migration: Comparison with conventional extracellular matrix macromolecules. J Biomater Appl 2014; 29:433-41. [DOI: 10.1177/0885328214532969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The local microenvironment plays an important role in maintaining the dynamics of the extracellular matrix and the cell–extracellular matrix relationship. The extracellular matrix is a complex network of macromolecules with distinct mechanical and biochemical characteristics. Disruptions in extracellular matrix homeostasis are associated with the onset of cancer. The extracellular matrix becomes highly disorganized, and the cell–matrix relationship changes, resulting in altered cell-signaling processes and metastasis. Medulloblastoma is one of the most common malignant pediatric brain tumors in the United States. In order to gain a better understanding of the interplay between cell–extracellular matrix interactions and cell-migratory responses in tumors, eight different matrix macromolecule formulations were investigated using a medulloblastoma-derived cell line: poly-d-lysine, matrigel, laminin, collagen 1, fibronectin, a 10% blend of laminin–collagen 1, a 20% blend of laminin–collagen 1, and a cellulose-derived hydrogel, carboxymethylcellulose. Over time, the average changes in cell morphology were quantified in 2D and 3D, as was migration in the presence and absence of the chemoattractant, epidermal growth factor. Data revealed that carboxymethylcellulose allowed for a cell–extracellular matrix relationship typically believed to be present in tumors, with cells exhibiting a rounded, amoeboid morphology consistent with chemotactic migration, while the other matrices promoted an elongated cell shape as well as both haptotactic and chemotactic motile processes. Therefore, carboxymethylcellulose hydrogels may serve as effective platforms for investigating central nervous system-derived tumor-cell migration in response to soluble factors.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Biomedical Engineering, The City College of New York-CUNY, USA
| | | | - Devika Varma
- Department of Biomedical Engineering, The City College of New York-CUNY, USA
| | - Steven B Nicoll
- Department of Biomedical Engineering, The City College of New York-CUNY, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, The City College of New York-CUNY, USA
| |
Collapse
|
13
|
Nobis M, Carragher NO, McGhee EJ, Morton JP, Sansom OJ, Anderson KI, Timpson P. Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS J 2013; 280:5177-97. [PMID: 23678945 DOI: 10.1111/febs.12348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/18/2022]
Abstract
The integration of signal transduction pathways plays a fundamental role in governing disease initiation, progression and outcome. It is therefore necessary to understand disease at the signalling level to enable effective treatment and to intervene in its progression. The recent extension of in vitro subcellular image-based analysis to live in vivo modelling of disease is providing a more complete picture of real-time, dynamic signalling processes or drug responses in live tissue. Intravital imaging offers alternative strategies for studying disease and embraces the biological complexities that govern disease progression. In the present review, we highlight how three-dimensional or live intravital imaging has uncovered novel insights into biological mechanisms or modes of drug action. Furthermore, we offer a prospective view of how imaging applications may be integrated further with the aim of understanding disease in a more physiological and functional manner within the framework of the drug discovery process.
Collapse
Affiliation(s)
- Max Nobis
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Carragher NO, Brunton VG, Frame MC. Combining imaging and pathway profiling: an alternative approach to cancer drug discovery. Drug Discov Today 2012; 17:203-14. [PMID: 22493783 DOI: 10.1016/j.drudis.2012.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Conventional drug discovery strategies are typically 'target centric' based on the selection of lead compounds with optimised 'on-target' potency and selectivity profiles. However, high-attrition rates are often the result of compensatory or redundant cancer mechanisms and the fact that tumours do not find it difficult to escape inhibition of a single pathway. In this article, we highlight two emerging and complimentary technologies; namely phenotypic imaging and post-translational pathway profiling, which when combined with relevant disease models can provide pharmacodiagnostic and drug combination strategies that predict and counteract inherent and adaptive drug resistance. The implementation of such approaches at early stages of the drug discovery process enables more informed decisions on candidate drug selection and how to maximise and predict efficacy before clinical development.
Collapse
Affiliation(s)
- Neil O Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK.
| | | | | |
Collapse
|
15
|
Advancing cancer drug discovery towards more agile development of targeted combination therapies. Future Med Chem 2012; 4:87-105. [PMID: 22168166 DOI: 10.4155/fmc.11.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current drug-discovery strategies are typically 'target-centric' and are based upon high-throughput screening of large chemical libraries against nominated targets and a selection of lead compounds with optimized 'on-target' potency and selectivity profiles. However, high attrition of targeted agents in clinical development suggest that combinations of targeted agents will be most effective in treating solid tumors if the biological networks that permit cancer cells to subvert monotherapies are identified and retargeted. Conventional drug-discovery and development strategies are suboptimal for the rational design and development of novel drug combinations. In this article, we highlight a series of emerging technologies supporting a less reductionist, more agile, drug-discovery and development approach for the rational design, validation, prioritization and clinical development of novel drug combinations.
Collapse
|
16
|
Live cell in vitro and in vivo imaging applications: accelerating drug discovery. Pharmaceutics 2011; 3:141-70. [PMID: 24310493 PMCID: PMC3864231 DOI: 10.3390/pharmaceutics3020141] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 12/20/2022] Open
Abstract
Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates.
Collapse
|
17
|
Hulkower KI, Herber RL. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 2011; 3:107-24. [PMID: 24310428 PMCID: PMC3857040 DOI: 10.3390/pharmaceutics3010107] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 01/08/2023] Open
Abstract
Cell migration and invasion are processes that offer rich targets for intervention in key physiologic and pathologic phenomena such as wound healing and cancer metastasis. With the advent of high-throughput and high content imaging systems, there has been a movement towards the use of physiologically relevant cell-based assays earlier in the testing paradigm. This allows more effective identification of lead compounds and recognition of undesirable effects sooner in the drug discovery screening process. This article will review the effective use of several principle formats for studying cell motility: scratch assays, transmembrane assays, microfluidic devices and cell exclusion zone assays.
Collapse
Affiliation(s)
- Keren I Hulkower
- Platypus Technologies, LLC, 5520 Nobel Drive, Suite 100, Madison, WI 53711, USA.
| | | |
Collapse
|
18
|
Echeverria V, Meyvantsson I, Skoien A, Worzella T, Lamers C, Hayes S. An automated high-content assay for tumor cell migration through 3-dimensional matrices. ACTA ACUST UNITED AC 2011; 15:1144-51. [PMID: 20930216 DOI: 10.1177/1087057110378890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High-content tumor cell migration assays in 3-dimensional (3D) extracellular matrix are a powerful tool for modeling and understanding the biology of this critical step in the process of metastasis. Currently available methods offer very limited throughput and are not amenable to studies of comparative pharmacology or small-scale screening. The authors present an automated approach to high-content tumor cell migration assays. A standard screening-sized plate with an array of microchannels was designed and constructed from common thermoplastics. After filling the channels with 3D matrix, cells were placed at one end of the channel, and migration into the channel was monitored via an imaging system. All liquid-handling steps were performed by standard liquid-handling robotics. Tumor cell migration in the channel was truly 3D and correlated with metastatic potential. The information-rich data from these assays were used to rank the potency of compounds inhibiting migration through 3D collagen as well as to gain additional insights into the compounds' activities related to cell health. This approach is compatible with a variety of multiparametric, morphological, and/or kinetic readouts.
Collapse
|
19
|
|
20
|
Le Dévédec SE, Yan K, de Bont H, Ghotra V, Truong H, Danen EH, Verbeek F, van de Water B. Systems microscopy approaches to understand cancer cell migration and metastasis. Cell Mol Life Sci 2010; 67:3219-40. [PMID: 20556632 PMCID: PMC2933849 DOI: 10.1007/s00018-010-0419-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/21/2010] [Accepted: 05/14/2010] [Indexed: 01/15/2023]
Abstract
Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration.
Collapse
Affiliation(s)
- Sylvia E. Le Dévédec
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kuan Yan
- Imaging and BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Hans de Bont
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Veerander Ghotra
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Hoa Truong
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Erik H. Danen
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Fons Verbeek
- Imaging and BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Leiden/Amsterdam Center for Drug Research, Gorleaus Laboratories, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:103-20. [PMID: 19800930 DOI: 10.1016/j.bbamcr.2009.09.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 02/04/2023]
Abstract
A number of extensive reviews are available discussing the roles of MMPs in various aspects of cancer progression from benign tumor formation to overt cancer present with deadly metastases. This review will focus specifically on the evidence functionally linking the MMPs and tumor-induced angiogenesis in various in vivo models. Emphasis has been placed on the cellular origin of the MMPs in tumor tissue, the requirement of proMMP activation and the resulting proteolytic activity for the induction and progression of tumor angiogenesis, and the pleiotropic roles for some of the MMPs. The functional mechanisms of the angiogenic MMPs are discussed as well as their catalytic detection in complex biological systems. In addition, the contribution of active MMPs to metastatic spread and establishment of secondary metastasis will be discussed in view of the findings indicating that MMPs are involved in the preparation of pre-metastatic niches. Finally, the most recent evidence, indicating the pro-metastatic consequences of anti-angiogenic therapies employing MMP inhibitors will be presented as examples highlighting possible outcomes of interfering with the pleiotropic nature of the MMP functionality.
Collapse
|