1
|
Chai Z, Zhu C, Wang X, Zheng Y, Han F, Xie Q, Liu C. PADI3 inhibits epithelial-mesenchymal transition by targeting CKS1-induced signal transduction in colon cancer. J Cancer Res Ther 2024; 20:1323-1333. [PMID: 39206995 DOI: 10.4103/jcrt.jcrt_558_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Protein arginine deiminase 3 (PADI3) is involved in various biological processes of human disease. PADI3 has recently received increasing attention due to its role in tumorigenesis. In a previous study, we found that PADI3 plays a tumor suppressor role in colon cancer by inducing cell cycle arrest, but its critical role and mechanism in cancer metastasis remain obscure. In this study, we fully studied the role of PADI3 in colon cancer cell metastasis. METHODS The expression levels of related proteins were detected by Western blotting, and Transwell and wound healing assays were used to examine the cell migration ability. Flow cytometry was used to measure and exclude cell apoptosis-affected cell migration. Both overexpression and rescue experiments were employed to elucidate the molecular mechanism of CKS1 in colon cancer cells. RESULTS The expression levels of PADI3 and CKS1 are negatively related, and PADI3 can promote CKS1 degradation in a ubiquitin-dependent manner. PADI3 can suppress colon cancer cell migration and reduce the wound healing speed by inhibiting CKS1 expression. The molecular mechanism showed that CKS1 can promote EMT by increasing Snail and N-cadherin expression and suppressing E-cadherin expression. PADI3, as a suppressor of CKS1, can block the process of EMT by impairing CKS1-induced Snail upregulation and E-cadherin downregulation; however, the expression of N-cadherin cannot be rescued. CONCLUSIONS CKS1 promotes EMT in colon cancer by regulating Snail/E-cadherin expression, and this effect can be reversed by PADI3 via the promotion of CKS1 degradation in a ubiquitylation-dependent manner.
Collapse
Affiliation(s)
- Zhengbin Chai
- Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, People's Republic of China
| | - Changhui Zhu
- Department of Biochemistry and Molecular Biology, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Xiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Yingying Zheng
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Fabin Han
- Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Qi Xie
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Chunyan Liu
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| |
Collapse
|
2
|
Hon KW, Naidu R. Synergistic Mechanisms of Selected Polyphenols in Overcoming Chemoresistance and Enhancing Chemosensitivity in Colorectal Cancer. Antioxidants (Basel) 2024; 13:815. [PMID: 39061884 PMCID: PMC11273411 DOI: 10.3390/antiox13070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Despite significant advances in medical treatment, chemotherapy as monotherapy can lead to substantial side effects and chemoresistance. This underscores the need for therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Polyphenols represent a diverse group of natural compounds that can target multiple signaling pathways in cancer cells to induce anti-cancer effects. Additionally, polyphenols have been shown to work synergistically with chemotherapeutics and other natural compounds in cancer cells. This review aims to provide a comprehensive insight into the synergistic mechanisms of selected polyphenols as chemosensitizers in CRC cells. Further research and clinical trials are warranted to fully harness the synergistic mechanisms of selected polyphenols combined with chemotherapy or natural compounds in improving cancer treatment outcomes.
Collapse
Affiliation(s)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
3
|
Deshmukh R, Prajapati M, Harwansh RK. Management of Colorectal Cancer Using Nanocarriers-based Drug Delivery for Herbal Bioactives: Current and Emerging Approaches. Curr Pharm Biotechnol 2024; 25:599-622. [PMID: 38807329 DOI: 10.2174/0113892010242028231002075512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 05/30/2024]
Abstract
Colorectal cancer (CRC) is a complex and multifactorial disorder in middle-aged people. Several modern medicines are available for treating and preventing it. However, their therapeutic uses are limited due to drawbacks, such as gastric perforation, diarrhea, intestinal bleeding, abdominal cramps, hair loss, nausea, vomiting, weight loss, and adverse reactions. Hence, there is a continuous quest for safe and effective medicines to manage human health problems, like CRC. In this context, herbal medicines are considered an alternative disease control system. It has become popular in countries, like American, European, and Asian, due to its safety and effectiveness, which has been practiced for 1000 years. During the last few decades, herbal medicines have been widely explored through multidisciplinary fields for getting active compounds against human diseases. Several herbal bioactives, like curcumin, glycyrrhizin, paclitaxel, chlorogenic acid, gallic acid, catechin, berberine, ursolic acid, betulinic acid, chrysin, resveratrol, quercetin, etc., have been found to be effective against CRC. However, their pharmacological applications are limited due to low bioavailability and therapeutic efficacy apart from their several health benefits. An effective delivery system is required to increase their bioavailability and efficacy. Therefore, targeted novel drug delivery approaches are promising for improving these substances' solubility, bioavailability, and therapeutic effects. Novel carrier systems, such as liposomes, nanoparticles, micelles, microspheres, dendrimers, microbeads, and hydrogels, are promising for delivering poorly soluble drugs to the target site, i.e., the colon. Thus, the present review is focused on the pathophysiology, molecular pathways, and diagnostic and treatment approaches for CRC. Moreover, an emphasis has been laid especially on herbal bioactive-based novel delivery systems and their clinical updates.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Mahendra Prajapati
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
4
|
Daneshvar S, Zamanian MY, Ivraghi MS, Golmohammadi M, Modanloo M, Kamiab Z, Pourhosseini SME, Heidari M, Bazmandegan G. A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms. Food Sci Nutr 2023; 11:6789-6801. [PMID: 37970406 PMCID: PMC10630840 DOI: 10.1002/fsn3.3645] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
Colon cancer (CC) is one of the most common and deadly cancers worldwide. Oncologists are facing challenges such as development of drug resistance and lack of suitable drug options for CC treatment. Flavonoids are a group of natural compounds found in fruits, vegetables, and other plant-based foods. According to research, they have a potential role in the prevention and treatment of cancer. Apigenin is a flavonoid that is present in many fruits and vegetables. It has been used as a natural antioxidant for a long time and has been considered due to its anticancer effects and low toxicity. The results of this review study show that apigenin has potential anticancer effects on CC cells through various mechanisms. In this comprehensive review, we present the cellular targets and signaling pathways of apigenin indicated to date in in vivo and in vitro CC models. Among the most important modulated pathways, Wnt/β-catenin, PI3K/AKT/mTOR, MAPK/ERK, JNK, STAT3, Bcl-xL and Mcl-1, PKM2, and NF-kB have been described. Furthermore, apigenin suppresses the cell cycle in G2/M phase in CC cells. In CC cells, apigenin-induced apoptosis is increased by inhibiting the formation of autophagy. According to the results of this study, apigenin appears to have the potential to be a promising agent for CC therapy, but more research is required in the field of pharmacology and pharmacokinetics to establish the apigenin effects and its dosage for clinical studies.
Collapse
Affiliation(s)
- Siamak Daneshvar
- Department of General SurgerySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Yasin Zamanian
- Department of PhysiologySchool of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | | | - Mona Modanloo
- Pharmaceutical Sciences Research CenterMazandaran University of Medical SciencesSariIran
| | - Zahra Kamiab
- Clinical Research Development UnitAli‐Ibn Abi‐Talib HospitalRafsanjan University of Medical SciencesRafsanjanIran
- Department of Community MedicineSchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Seyed Mohammad Ebrahim Pourhosseini
- Non‐Communicable Diseases Research CenterRafsanjan University of Medical SciencesRafsanjanIran
- Department of Internal MedicineSchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Mahsa Heidari
- Department of BiochemistryInstitute of Biochemistry and Biophysics (IBB)University of TehranTehranIran
| | - Gholamreza Bazmandegan
- Physiology‐Pharmacology Research CenterResearch Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
- Department of Physiology and PharmacologySchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
5
|
Moslehi M, Rezaei S, Talebzadeh P, Ansari MJ, Jawad MA, Jalil AT, Rastegar-Pouyani N, Jafarzadeh E, Taeb S, Najafi M. Apigenin in cancer therapy: Prevention of genomic instability and anticancer mechanisms. Clin Exp Pharmacol Physiol 2023; 50:3-18. [PMID: 36111951 DOI: 10.1111/1440-1681.13725] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
The incidence of cancer has been growing worldwide. Better survival rates following the administration of novel drugs and new combination therapies may concomitantly cause concern regarding the long-term adverse effects of cancer therapy, for example, second primary malignancies. Moreover, overcoming tumour resistance to anticancer agents has been long considered as a critical challenge in cancer research. Some low toxic adjuvants such as herb-derived molecules may be of interest for chemoprevention and overcoming the resistance of malignancies to cancer therapy. Apigenin is a plant-derived molecule with attractive properties for chemoprevention, for instance, promising anti-tumour effects, which may make it a desirable adjuvant to reduce genomic instability and the risks of second malignancies among normal tissues. Moreover, it may improve the efficiency of anticancer modalities. This paper aims to review various effects of apigenin in both normal tissues and malignancies. In addition, we explain how apigenin may have the ability to protect usual cells against the genotoxic repercussions following radiotherapy and chemotherapy. Furthermore, the inhibitory effects of apigenin on tumours will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Rezaei
- Department of Chemistry, University of Houston, Houston, Texas, USA
| | - Pourya Talebzadeh
- Student Research Committee, Tehran Medical Faculty, Islamic Azad University, Tehran, Iran
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Fux JE, Lefort ÉC, Rao PPN, Blay J. Apigenin directly interacts with and inhibits topoisomerase 1 to upregulate CD26/DPP4 on colorectal carcinoma cells. Front Pharmacol 2022; 13:1086894. [PMID: 36618939 PMCID: PMC9815539 DOI: 10.3389/fphar.2022.1086894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: CD26/dipeptidyl peptidase IV (DPP4) is a cell-surface glycoprotein present on most epithelial cells that modulates the local response to external signals. We have previously shown that the dietary flavone apigenin (4',5,7-trihydroxyflavone) upregulates cell-surface CD26/DPP4 on human colorectal carcinoma (CRC) cells and regulates its activities. We observed a unique synergistic interaction with the CRC chemotherapeutic agent irinotecan, which through its metabolite SN38 elevates CD26 at doses that are sub-cytotoxic. As SN38 interacts with topoisomerase 1 (Topo1) we evaluated whether apigenin influences Topo1 activity. Methods: We used a radioimmunoassay to selectively measure CD26 at the cell surface of HT-29 cells following various treatments. Topoisomerase 1 mRNA expression was measured by q-RT-PCR and protein abundance by western blot analysis. Direct inhibition of topoisomerase activity was measured using an assay of DNA supercoil relaxation with recombinant human Topo1. The role of Topo1 in the effect of apigenin was shown both pharmacologically and by siRNA silencing of Topo1. Molecular docking analysis was done with SBD computational software using the CDOCKER algorithm. Results: The interplay between apigenin and irinotecan was not observed when apigenin was combined with other chemotherapeutic drugs including the topoisomerase 2 inhibitors doxorubicin or etoposide. There was no enhancement of irinotecan action if apigenin was replaced with its hydroxylated metabolite luteolin (3',4',5,7-tetrahydroxyflavone) or emodin (6-methyl-1,3,8-trihydroxyanthraquinone), which is an inhibitor of the principal kinase target of apigenin, casein kinase 2 (CK2). Apigenin did not alter Topo1 mRNA expression, but siRNA knockdown of functional Topo1 eliminated the effect of apigenin and itself increased CD26 levels. Apigenin inhibited Topo1 activity in intact HT-29 cells and showed comparable inhibition of purified recombinant human Topo1 enzyme activity to that of SN-38, the active metabolite of irinotecan. Apigenin fits into the complex of Topo1 with DNA to directly inhibit Topo1 enzyme activity. Discussion: We conclude that apigenin has a unique fit into the Topo1-DNA functional complex that leads to direct inhibition of Topo1 activity, and suggest that this is the basis for the exceptional interaction with the CRC drug irinotecan. A combined action of these two agents may therefore exert a role to limit local signals that facilitate tumour progression.
Collapse
Affiliation(s)
- Julia E. Fux
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Émilie C. Lefort
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,Department of Pathology, Dalhousie University, Halifax, NS, Canada,*Correspondence: Jonathan Blay,
| |
Collapse
|
7
|
Huh H, Chen DW, Foldvari M, Slavcev R, Blay J. EGFR-targeted bacteriophage lambda penetrates model stromal and colorectal carcinoma tissues, is taken up into carcinoma cells, and interferes with 3-dimensional tumor formation. Front Immunol 2022; 13:957233. [PMID: 36591314 PMCID: PMC9800840 DOI: 10.3389/fimmu.2022.957233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Colorectal cancer and other adult solid cancers pose a significant challenge for successful treatment because the tumor microenvironment both hinders the action of conventional therapeutics and suppresses the immune activities of infiltrating leukocytes. The immune suppression is largely the effect of enhanced local mediators such as purine nucleosides and eicosanoids. Genetic approaches have the promise of interfering with these mechanisms of local immunosuppression to allow both intrinsic and therapeutic immunological anticancer processes. Bacterial phages offer a novel means of enabling access into tissues for therapeutic genetic manipulations. Methods We generated spheroids of fibroblastic and CRC cancer cells to model the 3-dimensional stromal and parenchymal components of colorectal tumours. We used these to examine the access and effects of both wildtype (WT) and epidermal growth factor (EGF)-presenting bacteriophage λ (WT- λ and EGF-λ) as a means of delivery of targeted genetic interventions in solid cancers. We used both confocal microscopy of spheroids exposed to AF488-tagged phages, and the recovery of viable phages as measured by plaque-forming assays to evaluate access; and measures of mitochondrial enzyme activity and cellular ATP to evaluate the outcome on the constituent cells. Results Using flourescence-tagged derivatives of these bacteriophages (AF488-WT-λ and AF488-EGF-λ) we showed that phage entry into these tumour microenvironments was possible and that the EGF ligand enabled efficient and persistent uptake into the cancer cell mass. EGF-λ became localized in the intracellular portion of cancer cells and was subjected to subsequent cellular processing. The targeted λ phage had no independent effect upon mature tumour spheroids, but interfered with the early formation and growth of cancer tissues without the need for addition of a toxic payload, suggesting that it might have beneficial effects by itself in addition to any genetic intervention delivered to the tumour. Interference with spheroid formation persisted over the duration of culture. Discussion We conclude that targeted phage technology is a feasible strategy to facilitate delivery into colorectal cancer tumour tissue (and by extension other solid carcinomas) and provides an appropriate delivery vehicle for a gene therapeutic that can reduce local immunosuppression and/or deliver an additional direct anticancer activity.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,Department of Pathology, Dalhousie University, Halifax, NS, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| |
Collapse
|
8
|
Cruciferous Vegetables and Their Bioactive Metabolites: from Prevention to Novel Therapies of Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1534083. [PMID: 35449807 PMCID: PMC9017484 DOI: 10.1155/2022/1534083] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
The Brassicaceae family, known as cruciferous vegetables, includes many economically important species, mainly edible oil plants, vegetable species, spice plants, and feed plants. Cruciferous vegetables are foods rich in nutritive composition and are also a good source of dietary fiber. Besides, cruciferous vegetables contain various bioactive chemicals known as glucosinolates and S-methyl cysteine sulfoxide, including sulphur-containing cancer-protective chemicals. Numerous studies have reported that daily intake of sulphurous vegetables helps prevent cancer formation and reduces cancer incidence, especially in colorectal cancer, through various mechanisms. The potential mechanisms of these compounds in preventing cancer in experimental studies are as follows: protecting cells against DNA damage, inactivating carcinogenic substances, showing antiviral and antibacterial effects, triggering apoptosis in cells with disrupted structure, inhibiting tumour cell migration causing metastasis and the development of tumour-feeding vessels (angiogenesis). These beneficial anticancer effects of cruciferous vegetables are generally associated with glucosinolates in their composition and some secondary metabolites, as well as other phenolic compounds, seed oils, and dietary fiber in the literature. This review aims to examine to the roles of cruciferous vegetables and their important bioactive metabolites in the prevention and treatment of colorectal cancer.
Collapse
|
9
|
Cancer Therapy Challenge: It Is Time to Look in the "St. Patrick's Well" of the Nature. Int J Mol Sci 2021; 22:ijms221910380. [PMID: 34638721 PMCID: PMC8508794 DOI: 10.3390/ijms221910380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer still remains a leading cause of death despite improvements in diagnosis, drug discovery and therapy approach. Therefore, there is a strong need to improve methodologies as well as to increase the number of approaches available. Natural compounds of different origins (i.e., from fungi, plants, microbes, etc.) represent an interesting approach for fighting cancer. In particular, synergistic strategies may represent an intriguing approach, combining natural compounds with classic chemotherapeutic drugs to increase therapeutic efficacy and lower the required drug concentrations. In this review, we focus primarily on those natural compounds utilized in synergistic approached to treating cancer, with particular attention to those compounds that have gained the most research interest.
Collapse
|
10
|
DeRango-Adem EF, Blay J. Does Oral Apigenin Have Real Potential for a Therapeutic Effect in the Context of Human Gastrointestinal and Other Cancers? Front Pharmacol 2021; 12:681477. [PMID: 34084146 PMCID: PMC8167032 DOI: 10.3389/fphar.2021.681477] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023] Open
Abstract
Apigenin (4′, 5, 7-trihydroxyflavone) is a plant flavone that has been found to have various actions against cancer cells. We evaluated available evidence to determine whether it is feasible for apigenin to have such effects in human patients. Apigenin taken orally is systemically absorbed and recirculated by enterohepatic and local intestinal pathways. Its bioavailability is in the region of 30%. Once absorbed from the oral route it reaches maximal circulating concentration (Cmax) after a time (Tmax) of 0.5–2.5h, with an elimination half-life (T1/2) averaging 2.52 ± 0.56h. Using a circulating concentration for efficacy of 1–5μmol/L as the target, we evaluated data from both human and rodent pharmacokinetic studies to determine if a therapeutic concentration would be feasible. We find that oral intake of dietary materials would require heroic ingestion amounts and is not feasible. However, use of supplements of semi-purified apigenin in capsule form could reach target blood levels using amounts that are within the range currently acceptable for other supplements and medications. Modified formulations or parenteral injection are suitable but may not be necessary. Further work with direct studies of pharmacokinetics and clinical outcomes are necessary to fully evaluate whether apigenin will contribute to a useful clinical strategy, but given emerging evidence that it may interact beneficially with chemotherapeutic drugs, this is worthy of emphasis. In addition, more effective access to intestinal tissues from the oral route raises the possibility that apigenin may be of particular relevance to gastrointestinal disorders including colorectal cancer.
Collapse
Affiliation(s)
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
12
|
Manocha E, Bugatti A, Belleri M, Zani A, Marsico S, Caccuri F, Presta M, Caruso A. Avian Reovirus P17 Suppresses Angiogenesis by Promoting DPP4 Secretion. Cells 2021; 10:cells10020259. [PMID: 33525607 PMCID: PMC7911508 DOI: 10.3390/cells10020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Avian reovirus p17 (ARV p17) is a non-structural protein known to activate autophagy, interfere with gene transcription and induce a significant tumor cell growth inhibition in vitro and in vivo. In this study, we show that ARV p17 is capable of exerting potent antiangiogenic properties. The viral protein significantly inhibited the physiological angiogenesis of human endothelial cells (ECs) by affecting migration, capillary-like structure and new vessel formation. ARV p17 was not only able to suppress the EC physiological angiogenesis but also rendered ECs insensitive to two different potent proangiogenic inducers, such as VEGF-A and FGF-2 in the three-dimensional (3D) Matrigel and spheroid assay. ARV p17 was found to exert its antiangiogenic activity by upregulating transcription and release of the well-known tumor suppressor molecule dipeptidyl peptidase 4 (DPP4). The ability of ARV p17 to impact on angiogenesis is completely new and highlights the “two compartments” activity of the viral protein that is expected to hamper the tumor parenchymal/stromal crosstalk. The complex antitumor activities of ARV p17 open the way to a new promising field of research aimed to develop new therapeutic approaches for treating tumor and cancer metastasis.
Collapse
Affiliation(s)
- Ekta Manocha
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Mirella Belleri
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.B.); (M.P.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy;
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Marco Presta
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.B.); (M.P.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
- Correspondence:
| |
Collapse
|
13
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
14
|
Lefort ÉC, Diaconu B, Bentley VL, Blay J. Apigenin upregulation of CD26/DPPIV on colon epithelial cells requires inhibition of casein kinase 2. Food Sci Nutr 2020; 8:5321-5329. [PMID: 33133535 PMCID: PMC7590318 DOI: 10.1002/fsn3.1823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Accepted: 07/26/2020] [Indexed: 01/02/2023] Open
Abstract
CD26/DPPIV is a cell surface glycoprotein found on cells of the intestinal epithelium including those of the colon. We have previously shown that the dietary flavone apigenin (4',5,7-trihydroxyflavone) upregulates CD26/DPPIV on colon cells. Flavonoids such as apigenin interfere with the action of multiple cellular protein kinases and have the capacity to modulate the cell exterior and its ability to interface with the local environment through different signaling pathways. We show here that the ability of apigenin to upregulate CD26/DPPIV is exerted through and requires the activity of casein kinase 2 (CK2). Inhibitors of CK2 that are distinct from apigenin (emodin, 6-methyl-1,3,8-trihydroxyanthraquinone; TBB, 4,5,6,7-tetrabromobenzotriazole; and DRB, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside) showed a dose-dependent ability to increase CD26/DPPIV and had the same maximal effect when combined with apigenin at submaximal concentrations. Knockdown of CK2 with siRNA abrogated the ability of apigenin to upregulate CD26/DPPIV. Apigenin treatment of cells had no effect on the levels of CK2 protein, consistent with an inhibition of activity of the enzyme. Apigenin's upregulation of CD26/DPPIV in differentiated human colon epithelial cells depends upon inhibition of CK2 activity. This is a key step in enabling apigenin's ability to regulate the functions of intestinal epithelial cells.
Collapse
Affiliation(s)
| | - Bogdan Diaconu
- School of PharmacyUniversity of WaterlooWaterlooONCanada
| | | | - Jonathan Blay
- Department of PathologyDalhousie UniversityHalifaxNSCanada
- School of PharmacyUniversity of WaterlooWaterlooONCanada
| |
Collapse
|
15
|
Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J. Apigenin as an anticancer agent. Phytother Res 2020; 34:1812-1828. [PMID: 32059077 DOI: 10.1002/ptr.6647] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022]
Abstract
Apigenin is an edible plant-derived flavonoid that has been reported as an anticancer agent in several experimental and biological studies. It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways. Apigenin induces apoptosis by the activation of extrinsic caspase-dependent pathway by upregulating the mRNA expressions of caspase-3, caspase-8, and TNF-α. It induces intrinsic apoptosis pathway as evidenced by the induction of cytochrome c, Bax, and caspase-3, while caspase-8, TNF-α, and B-cell lymphoma 2 levels remained unchanged in human prostate cancer PC-3 cells. Apigenin treatment leads to significant downregulation of matrix metallopeptidases-2, -9, Snail, and Slug, suppressing invasion. The expressions of NF-κB p105/p50, PI3K, Akt, and the phosphorylation of p-Akt decreases after treatment with apigenin. However, apigenin-mediated treatment significantly reduces pluripotency marker Oct3/4 protein expression which might be associated with the downregulation of PI3K/Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Deakin University, Melbourne, Victoria, Australia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture Multan, Multan, Pakistan
| | - Tahira Batool Qaisarani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Hanif Mughal
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019; 9:679. [PMID: 31683894 PMCID: PMC6920853 DOI: 10.3390/biom9110679] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is a heterogeneous disease and one of the major issues of health concern, especially for the public health system globally. Nature is a source of anticancer drugs with abundant pool of diverse chemicals and pharmacologically active compounds. In recent decade, some natural products and synthetic analogs have been investigated for the cancer treatment. This article presents the utilization of natural products as a source of antitumor drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10106, Morocco.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
17
|
Shao S, Wang C, Tian J, Zhang H, Wang S, Du Y. Diagnostic and prognostic significance of serum CD26 level in Asian women with high-grade serous ovarian carcinoma. Future Oncol 2019; 15:1863-1871. [PMID: 31140312 DOI: 10.2217/fon-2018-0725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study was to reveal the diagnostic and prognostic significance of serum CD26 level in high-grade serous ovarian carcinoma women in China. Methods: There were 229 high-grade serous ovarian carcinoma women and 365 controls. Baseline serum CD26 level was measured using ELISA. A 36-month post-operation follow-up was performed. Results: Baseline serum CD26 level ≤601.5 pg/ml was associated with the increased risk of ovarian carcinoma (OR: 1.67; 95% CI: 1.20-2.32). Baseline serum level of CD26 ≤589.7 pg/ml was related to the elevated risk of cancer death (HR: 1.33; 95% CI: 1.04-1.69). Conclusion: Baseline serum CD26 level might be an independent diagnostic and prognostic marker for high-grade serous ovarian carcinoma.
Collapse
Affiliation(s)
- Shiqing Shao
- Department of Obstetrics & Gynecology, Huaihe Hospital, Henan University, Kaifeng, 475000, Henan Province, PR China
| | - Chen Wang
- Department of Obstetrics & Gynecology, Huaihe Hospital, Henan University, Kaifeng, 475000, Henan Province, PR China
| | - Jun Tian
- Department of Obstetrics & Gynecology, Huaihe Hospital, Henan University, Kaifeng, 475000, Henan Province, PR China
| | - Hongxia Zhang
- Department of Obstetrics & Gynecology, Huaihe Hospital, Henan University, Kaifeng, 475000, Henan Province, PR China
| | - Shelian Wang
- Department of Obstetrics & Gynecology, Huaihe Hospital, Henan University, Kaifeng, 475000, Henan Province, PR China
| | - Yaowu Du
- Laboratory for Nanomedicine, School of Basic Medical Science, Henan University, Kaifeng, 475004, Henan Province, PR China
| |
Collapse
|
18
|
Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway. Biosci Rep 2019; 39:BSR20190452. [PMID: 30967496 PMCID: PMC6522743 DOI: 10.1042/bsr20190452] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
Colon cancer is a leading cause of cancer-related deaths worldwide. The epithelial-mesenchymal transition (EMT) plays an important role in tumor metastasis of colon cancer. We first evaluated the effects of EMT-related transcription factors on the prognosis of colon cancer through analysis the data obtained from The Cancer Genome Atlas (TCGA). And then we screened a series of Chinese medicine monomers to find effect EMT inhibitors. First, Snail is a more important EMT transcription factors for colon cancer prognosis, compared with Twist and Slug. Then, we found that apigenin effectively inhibits the activity of Snail. Apigenin could inhibit the EMT, migration, and invasion of human colon cancer cells in vitro and in vivo through the NF-κB/Snail pathway. Snail is a key regulator of EMT in colon cancer and Snail inhibitor apigenin may be a therapeutic application for patients with colon cancer.
Collapse
|
19
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
20
|
Kashyap D, Sharma A, Tuli HS, Sak K, Garg VK, Buttar HS, Setzer WN, Sethi G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 2018; 48:457-471. [DOI: 10.1016/j.jff.2018.07.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Polyphenols in Colorectal Cancer: Current State of Knowledge including Clinical Trials and Molecular Mechanism of Action. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4154185. [PMID: 29568751 PMCID: PMC5820674 DOI: 10.1155/2018/4154185] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols have been reported to have wide spectrum of biological activities including major impact on initiation, promotion, and progression of cancer by modulating different signalling pathways. Colorectal cancer is the second most major cause of mortality and morbidity among females and the third among males. The objective of this review is to describe the activity of a variety of polyphenols in colorectal cancer in clinical trials, preclinical studies, and primary research. The molecular mechanisms of major polyphenols related to their beneficial effects on colorectal cancer are also addressed. Synthetic modifications and other future directions towards exploiting of natural polyphenols against colorectal cancer are discussed in the last section.
Collapse
|
22
|
Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem 2018; 144:582-594. [DOI: 10.1016/j.ejmech.2017.12.039] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
|
23
|
Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: An emerging anticancer agent. CURRENT PHARMACOLOGY REPORTS 2017; 3:423-446. [PMID: 29399439 PMCID: PMC5791748 DOI: 10.1007/s40495-017-0113-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in cancer chemoprevention provides convincing evidence that increased intake of vegetables and fruits may reduce the risk of several human malignancies. Phytochemicals present therein provide beneficial anti-inflammatory and antioxidant properties that serve to improve the cellular microenvironment. Compounds known as flavonoids categorized anthocyanidins, flavonols, flavanones, flavonols, flavones, and isoflavones have shown considerable promise as chemopreventive agents. Apigenin (4', 5, 7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties affecting several molecular and cellular targets used to treat various human diseases. Epidemiologic and case-control studies have suggested apigenin reduces the risk of certain cancers. Studies demonstrate that apigenin retain potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers. Apigenin's anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in liver increasing the systemic bioavailability in pharmacokinetic studies. Here we discuss the anticancer role of apigenin highlighting its potential activity as a chemopreventive and therapeutic agent. We also highlight the current caveats that preclude apigenin for its use in the human trials.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Aditi Goel
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Karishma Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
24
|
Redondo-Blanco S, Fernández J, Gutiérrez-Del-Río I, Villar CJ, Lombó F. New Insights toward Colorectal Cancer Chemotherapy Using Natural Bioactive Compounds. Front Pharmacol 2017; 8:109. [PMID: 28352231 PMCID: PMC5348533 DOI: 10.3389/fphar.2017.00109] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Combination therapy consists in the simultaneous administration of a conventional chemotherapy drug (or sometimes, a radiotherapy protocol) together with one or more natural bioactives (usually from plant or fungal origin) of small molecular weight. This combination of anticancer drugs may be applied to cell cultures of tumor cells, or to an animal model for a cancer type (or its xenograft), or to a clinical trial in patients. In this review, we summarize current knowledge describing diverse synergistic effects on colorectal cancer cell cultures, animal models, and clinical trials of various natural bioactives (stilbenes, flavonoids, terpenes, curcumin, and other structural families), which may be important with respect to diminish final doses of the chemotherapy drug, although maintaining its biological effect. This is important as these approaches may help reduce side effects in patients under conventional chemotherapy. Also, these molecules may exerts their synergistic effects via different cell cycle pathways, including different ones to those responsible of resistance phenotypes: transcription factors, membrane receptors, adhesion and structural molecules, cell cycle regulatory components, and apoptosis pathways.
Collapse
Affiliation(s)
- Saúl Redondo-Blanco
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Javier Fernández
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Claudio J Villar
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Felipe Lombó
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
25
|
Pápay ZE, Kállai-Szabó N, Ludányi K, Klebovich I, Antal I. Development of oral site-specific pellets containing flavonoid extract with antioxidant activity. Eur J Pharm Sci 2016; 95:161-169. [PMID: 27989856 DOI: 10.1016/j.ejps.2016.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Herbal medicines are recognized as an effective treatment of common diseases, mainly associated with oxidative stress. Therefore developing drug delivery systems of these biological active ingredients are gaining interest. Parsley (Petroselinum crispum L.) is a well-known culinary herb and its leaf contains high amount of apigenin, therefore it is suitable as a natural source of this flavonoid. Apigenin possess many health effects such as antioxidant, anti-inflammatory and anticancer activities. Unfortunately, these benefits are limited due to the low water solubility and bioavailability, it was recently classified as BCS II group compound. Therefore the aim of this study was to develop a carrier system for Petroselinum crispum extract, containing high amount of apigenin. Microcrystalline cellulose inert pellet cores were chosen and enteric coatings were applied. The produced multiparticulates had spherical shape, narrow size distribution and low moisture content. 10% (w/w) Eudragit® L 30 D-55 and 15% (w/w) Eudragit® FS 30 D coating was adequate for the modified release in vitro. The layered pellets demonstrated antioxidant activity. It was concluded that development of oral site-specific pellets containing flavonoid extract successful and the therapeutic effectiveness could be hypothesized.
Collapse
Affiliation(s)
- Zsófia Edit Pápay
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Krisztina Ludányi
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Imre Klebovich
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary.
| |
Collapse
|
26
|
Xinhua W, Xiangting Q, Lingling C, Guohong L. Prognostic Significance of Serum CD26 Concentration in Patients with Esophageal Squamous Cell Carcinoma. Arch Med Res 2016; 47:299-303. [DOI: 10.1016/j.arcmed.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
|
27
|
Beckenkamp A, Davies S, Willig JB, Buffon A. DPPIV/CD26: a tumor suppressor or a marker of malignancy? Tumour Biol 2016; 37:7059-73. [DOI: 10.1007/s13277-016-5005-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
|
28
|
Subramanian AP, John AA, Vellayappan MV, Balaji A, Jaganathan SK, Mandal M, Supriyanto E. Honey and its Phytochemicals: Plausible Agents in Combating Colon Cancer through its Diversified Actions. J Food Biochem 2016. [DOI: 10.1111/jfbc.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Aruna Priyadharshni Subramanian
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Agnes Aruna John
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Muthu Vignesh Vellayappan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Arunpandian Balaji
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Saravana Kumar Jaganathan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| | - Mahitosh Mandal
- School of Medical Science and Technology; Indian Institute of Technology; West Bengal India
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Johor Bahru 81310 Malaysia
| |
Collapse
|
29
|
Boccardi V, Marano L, Rossetti RRA, Rizzo MR, di Martino N, Paolisso G. Serum CD26 levels in patients with gastric cancer: a novel potential diagnostic marker. BMC Cancer 2015; 15:703. [PMID: 26471376 PMCID: PMC4608357 DOI: 10.1186/s12885-015-1757-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND CD26 is an ectoenzyme with dipeptidyl peptidase 4 (DPP4) activity expressed on a variety of cell types. Considering that serum CD26 levels have been previously associated with different cancers, we examined the potential diagnostic value of serum CD26 levels in gastric cancer. METHODS Soluble serum CD26 levels were measured in pre and postoperative serum samples of 30 patients with gastric cancer and in 24 healthy donors by a specific ELISA kit. RESULTS We found significantly lower serum CD26 levels in patients with gastric cancer (557.7 ± 118.3 pg/mL) compared with healthy donors (703.4 ± 170.3 pg/mL). Moreover patients with HER2 positive tumors had significantly lower CD26 serum levels (511.8 ± 84.8 pg/mL) compared with HER2 negative tumors (619.1 ± 109.9 pg/mL, p = 0.006). A binary logistic model having gastric cancer as the dependent variable while age, gender, CEA, CA19.9 and CD26 levels as covariates, showed that CD26 serum levels were independently associated with gastric cancer presence. Indeed after 3 months from surgery serum CD26 levels significantly increased (700.1 ± 119.9 pg/mL vs 557.7 ± 118.3 pg/ml) in all patients (t = -4.454, p < 0.0001). CONCLUSIONS This is a preliminary study showing that the measurement of serum CD26 levels could represent an early detection marker for gastric cancer.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Internal Medicine, Surgical, Neurological Metabolic Disease and Geriatric Medicine, Second University of Naples, Piazza Miraglia 2, 80138, Naples, Italy.
| | - Luigi Marano
- General, Minimally Invasive and Robotic Surgery, Department of Surgery, "San Matteo degli Infermi" Hospital, ASL Umbria 2, 06049, Spoleto PG, Italy.
| | - Rosaria Rita Amalia Rossetti
- Department of Internal Medicine, Surgical, Neurological Metabolic Disease and Geriatric Medicine, Second University of Naples, Piazza Miraglia 2, 80138, Naples, Italy.
| | - Maria Rosaria Rizzo
- Department of Internal Medicine, Surgical, Neurological Metabolic Disease and Geriatric Medicine, Second University of Naples, Piazza Miraglia 2, 80138, Naples, Italy.
| | - Natale di Martino
- Department of Internal Medicine, Surgical, Neurological Metabolic Disease and Geriatric Medicine, Second University of Naples, Piazza Miraglia 2, 80138, Naples, Italy.
| | - Giuseppe Paolisso
- Department of Internal Medicine, Surgical, Neurological Metabolic Disease and Geriatric Medicine, Second University of Naples, Piazza Miraglia 2, 80138, Naples, Italy.
| |
Collapse
|
30
|
Kaur J, Kaur G. An insight into the role of citrus bioactives in modulation of colon cancer. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
31
|
Bao YY, Zhou SH, Fan J, Wang QY. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. Future Oncol 2014; 9:1353-64. [PMID: 23980682 DOI: 10.2217/fon.13.84] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apigenin, a natural phytoestrogen flavonoid, has potential biological effects, including antioxidative, anti-inflammatory and anticancer activities. The mechanisms of anticancer activities of apigenin are unknown. Some studies have found that apigenin inhibits GLUT-1 mRNA and protein expression in cancer cells. Thus, we hypothesized that apigenin exerts similar effects on head and neck cancers through its inhibition of GLUT-1 expression. In this article, we review the anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. In addition, we describe the current state of knowledge about the relationship between apigenin and GLUT-1 expression in head and neck cancers.
Collapse
Affiliation(s)
- Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, Zhejiang Province, China
| | | | | | | |
Collapse
|
32
|
González-Abuín N, Martínez-Micaelo N, Blay M, Ardévol A, Pinent M. Grape-seed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1066-1072. [PMID: 24410268 DOI: 10.1021/jf405239p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Grape-seed procyanidin extract (GSPE) has been reported to improve insulin resistance in cafeteria rats. Because glucagon-like peptide-1 (GLP-1) is involved in glucose homeostasis, the preventive effects of GSPE on GLP-1 production, secretion, and elimination were evaluated in a model of diet-induced insulin resistance. Rats were fed a cafeteria diet for 12 weeks, and 25 mg of GSPE/kg of body weight was administered concomitantly. Vehicle-treated cafeteria-fed rats and chow-fed rats were used as controls. The cafeteria diet decreased active GLP-1 plasma levels, which is attributed to a decreased intestinal GLP-1 production, linked to reduced colonic enteroendocrine cell populations. Such effects were prevented by GSPE. In the same context, GSPE avoided the decrease on intestinal dipeptidyl-peptidase 4 (DPP4) activity and modulated the gene expression of GLP-1 and its receptor in the hypothalamus. In conclusion, the preventive treatment with GSPE abrogates the effects of the cafeteria diet on intestinal GLP-1 production and DPP4 activity.
Collapse
Affiliation(s)
- Noemi González-Abuín
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili , 43007 Tarragona, Spain
| | | | | | | | | |
Collapse
|
33
|
Abstract
Apigenin (4',5,7-trihydroxyflavone, 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many fruits, vegetables, and herbs, the most abundant sources being the leafy herb parsley and dried flowers of chamomile. Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal lumen to be absorbed and distributed as apigenin itself. For this reason, the epithelium of the gastrointestinal tract is exposed to higher concentrations of apigenin than tissues at other locations. This would also be true for epithelial cancers of the gastrointestinal tract. We consider the evidence for actions of apigenin that might hinder the ability of gastrointestinal cancers to progress and spread. Apigenin has been shown to inhibit cell growth, sensitize cancer cells to elimination by apoptosis, and hinder the development of blood vessels to serve the growing tumor. It also has actions that alter the relationship of the cancer cells with their microenvironment. Apigenin is able to reduce cancer cell glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell adhesion molecules that participate in cancer progression, and oppose chemokine signaling pathways that direct the course of metastasis into other locations. As such, apigenin may provide some additional benefit beyond existing drugs in slowing the emergence of metastatic disease.
Collapse
Affiliation(s)
- Émilie C Lefort
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
34
|
González-Abuín N, Martínez-Micaelo N, Blay M, Pujadas G, Garcia-Vallvé S, Pinent M, Ardévol A. Grape seed-derived procyanidins decrease dipeptidyl-peptidase 4 activity and expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9055-9061. [PMID: 22891874 DOI: 10.1021/jf3010349] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dipeptidyl-peptidase 4 (DPP4) inhibitors are among the newest treatments against type 2 diabetes. Since some flavonoids modulate DPP4 activity, we evaluated whether grape seed-derived procyanidins (GSPEs), which are antihyperglycemic, modulate DPP4 activity and/or expression. In vitro inhibition assays showed that GSPEs inhibit pure DPP4. Chronic GSPE treatments in intestinal human cells (Caco-2) showed a decrease of DPP4 activity and gene expression. GSPE was also assayed in vivo. Intestinal but not plasmatic DPP4 activity and gene expression were decreased by GSPE in healthy and diet-induced obese animals. Healthy rats also showed glycemia improvement after oral glucose consumption but not after an intraperitoneal glucose challenge. In genetically obese rats, only DPP4 gene expression was down-regulated. Thus, procyanidin inhibition of intestinal DPP4 activity, either directly and/or via gene expression down-regulation, could be responsible for some of their effects in glucose homeostasis.
Collapse
Affiliation(s)
- Noemi González-Abuín
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | | | | | |
Collapse
|