1
|
Koirala N, Poudel M, Shrivastava AK, Subba RK, Panthi M, Paudel S, Almarhoon ZM, Sharifi-Rad J, Calina D. Multifaceted role of heparin in oncology: from anticoagulation to anticancer mechanisms and clinical implications. Discov Oncol 2025; 16:231. [PMID: 39992596 PMCID: PMC11850695 DOI: 10.1007/s12672-025-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Heparin, traditionally known for its anticoagulant properties, has recently been identified as a potential agent in cancer therapy. Its derivatives, including low-molecular-weight heparin (LMWH) and unfractionated heparin (UFH), are being investigated for their multifaceted roles in oncology. This review focuses on the expanding exploration of heparin's anticancer effects and its possible integration into cancer treatment protocols. The primary aim is to consolidate and analyze current research on the anticancer properties of heparin and its derivatives. It seeks to illuminate the mechanisms by which these compounds influence cancer progression, including their impact on angiogenesis, tumor cell proliferation, immune response modulation, and the inhibition of cancer cell migration and invasion. Additionally, the review aims to evaluate the potential of heparin and its derivatives in complementing existing chemotherapy treatments. An extensive literature review was conducted, encompassing in vitro, in vivo, and clinical studies. Sources included a range of scientific databases, employing keywords related to heparin and oncology. The selected studies were critically reviewed to extract relevant data on the efficacy, mechanisms, and potential clinical applications of heparin in cancer therapy. The results reveals that heparin and its derivatives exhibit significant anticancer activity across various research settings; key findings include the inhibition of angiogenesis, reduction in tumor cell proliferation, stimulation of immune responses, and the limitation of cancer cell migration and invasion. The compounds also show promise as adjuncts to conventional chemotherapy, potentially enhancing the efficacy of existing cancer treatments. This review highlights the burgeoning role of heparin and its derivatives in the realm of cancer therapy, marking a shift from their traditional use as anticoagulants. While promising, the research underscores the need for further comprehensive studies to fully understand the mechanisms of action, optimal dosing, potential side effects, and patient selection criteria. The potential integration of heparin into cancer treatment regimens opens new therapeutic possibilities warranting continued investigation in this rapidly evolving field.
Collapse
Affiliation(s)
- Niranjan Koirala
- Specialized Research Center, Nepal Academy of Science and Technology, Pokhara, Gandaki, Nepal.
| | - Melina Poudel
- Department of Chemical and Biological Sciences, Youngstown State University, 1 Tressel Way, Youngstown, OH, 44555, USA
| | - Amit Kumar Shrivastava
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular Biosciences Graduate program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Romit Kumar Subba
- College of Pharmacy, Gachon University, Hambakmoe-ro, Incheon, 21936, Republic of Korea
| | - Mamata Panthi
- College of Pharmacy, Gachon University, Hambakmoe-ro, Incheon, 21936, Republic of Korea
| | - Samrat Paudel
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
2
|
Al-Azzawi HMA, Hamza SA, Paolini R, Arshad F, Patini R, O'Reilly L, McCullough M, Celentano A. Towards an emerging role for anticoagulants in cancer therapy: a systematic review and meta-analysis. FRONTIERS IN ORAL HEALTH 2024; 5:1495942. [PMID: 39568788 PMCID: PMC11576436 DOI: 10.3389/froh.2024.1495942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Background Anticoagulants, renowned for their role in preventing blood clot formation, have captivated researchers' attention for the exploitation of their potential to inhibit cancer in pre-clinical models. Objectives To undertake a systematic review and meta-analysis of the effects of anticoagulants in murine cancer research models. Further, to present a reference tool for anticoagulant therapeutic modalities relating to future animal pre-clinical models of cancer and their translation into the clinic. Methods Four databases were utilized including Medline (Ovid), Embase (Ovid), Web of science, and Scopus databases. We included studies relating to any cancer conducted in murine models that assessed the effect of traditional anticoagulants (heparin and its derivatives and warfarin) and newer oral anticoagulants on cancer. Results A total of 6,158 articles were identified in an initial multi-database search. A total of 157 records were finally included for data extraction. Studies on heparin species and warfarin demonstrated statistically significant results in favour of tumour growth and metastasis inhibition. Conclusion Our findings constitute a valuable reference guide for the application of anticoagulants in cancer research and explore the promising utilization of non-anticoagulants heparin in preclinical cancer research. Systematic Review Registration PROSPERO [CRD42024555603].
Collapse
Affiliation(s)
| | - Syed Ameer Hamza
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Fizza Arshad
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Romeo Patini
- Head and Neck Department, "Fondazione Policlinico Universitario A. Gemelli-IRCCS" School of Dentistry, Catholic University of Sacred Heart-Rome Largo A. Gemelli, Rome, Italy
| | - Lorraine O'Reilly
- Clinical Translation Centre, Cancer Biology and Stem Cells Division and Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
3
|
Zhang X, Li W, Wang X, Lin J, Dang C, Diao D. Effectiveness of D-dimer in predicting distant metastasis in colorectal cancer. PLoS One 2024; 19:e0306909. [PMID: 38995895 PMCID: PMC11244829 DOI: 10.1371/journal.pone.0306909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
PURPOSE Patients with cancer often present with a hypercoagulable state, which is closely associated with tumor progression. The purpose of this study was to assess the diagnostic efficacy of D-dimer in predicting distant metastasis in colorectal cancer (CRC). METHODS This study included 529 patients diagnosed with CRC at our hospital between January 2020 and December 2022. Plasma coagulation indicators and tumor markers were collected prior to treatment and their diagnostic efficacy for predicting CRC metastasis was assessed by receiver operating characteristic (ROC) curves. Independent risk factors for evaluating tumor metastasis were obtained by multivariate logistic regression analysis. RESULTS The level of D-dimer in the metastatic group was significantly higher than that in the non-metastatic group (P<0.001). The results of the multiple logistic regression analysis indicated that lower level of prealbumin and platelet, and higher level of glucose, CEA and D-dimer were independent risk factors for distant metastasis in patients with CRC (P<0.05, respectively). The combination of prealbumin, glucose, D-dimer, platelet and tumor markers (PRE2) was found to be significantly more effective in predicting metastasis of CRC when compared to the combination of tumor marker alone (PRE1, P<0.001). CONCLUSION Plasma D-dimer may be a novel tumor marker for screening metastases of CRC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenxing Li
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuan Wang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinhe Lin
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengxue Dang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongmei Diao
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Dhami SPS, Patmore S, Comerford C, Byrne C, Cavanagh B, Castle J, Kirwan CC, Kenny M, Schoen I, O'Donnell JS, O'Sullivan JM. Breast cancer cells mediate endothelial cell activation, promoting von Willebrand factor release, tumor adhesion, and transendothelial migration. J Thromb Haemost 2022; 20:2350-2365. [PMID: 35722954 PMCID: PMC9796425 DOI: 10.1111/jth.15794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Breast cancer results in a three- to four-fold increased risk of venous thromboembolism (VTE), which is associated with reduced patient survival. Despite this, the mechanisms underpinning breast cancer-associated thrombosis remain poorly defined. Tumor cells can trigger endothelial cell (EC) activation resulting in increased von Willebrand factor (VWF) secretion. Importantly, elevated plasma VWF levels constitute an independent biomarker for VTE risk. Moreover, in a model of melanoma, treatment with low molecular weight heparin (LMWH) negatively regulated VWF secretion and attenuated tumor metastasis. OBJECTIVE To investigate the role of VWF in breast cancer metastasis and examine the effect of LMWH in modulating EC activation and breast tumor transmigration. METHODS von Willebrand factor levels were measured by ELISA. Primary ECs were used to assess tumor-induced activation, angiogenesis, tumor adhesion, and transendothelial migration. RESULTS AND CONCLUSION Patients with metastatic breast cancer have markedly elevated plasma VWF:Ag levels that also correlate with poorer survival. MDA-MB-231 and MCF-7 breast cancer cells induce secretion of VWF, angiopoietin-2, and osteoprotegerin from ECs, which is further enhanced by the presence of platelets. Vascular endothelial growth factor-A (VEGF-A) plays an important role in modulating breast cancer-induced VWF release. Moreover, VEGF-A from breast tumor cells also contributes to a pro-angiogenic effect on ECs. VWF multimers secreted from ECs, in response to tumor-VEGF-A, mediate adhesion of breast tumor cells along the endothelium. LMWH inhibits VWF-breast tumor adhesion and transendothelial migration. Our findings highlight the significant crosstalk between tumor cells and the endothelium including increased VWF secretion which may contribute to tumor metastasis.
Collapse
Affiliation(s)
- Sukhraj Pal Singh Dhami
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| | - Sean Patmore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| | - Claire Comerford
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| | - Ciara M. Byrne
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging CoreRoyal College of Surgeons in IrelandDublinIreland
| | - John Castle
- Manchester Cancer Research CentreThe University of ManchesterManchesterUK
| | - Cliona C. Kirwan
- Manchester Cancer Research CentreThe University of ManchesterManchesterUK
- The Nightingale CentreManchester University Foundation TrustManchester, WythenshaweUK
| | - Martin Kenny
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| | - James S. O'Donnell
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
- National Coagulation CentreSt James HospitalDublinIreland
| | - Jamie M. O'Sullivan
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
5
|
Hamza MS, Mousa SA. Cancer-Associated Thrombosis: Risk Factors, Molecular Mechanisms, Future Management. Clin Appl Thromb Hemost 2021; 26:1076029620954282. [PMID: 32877229 PMCID: PMC7476343 DOI: 10.1177/1076029620954282] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Venous thromboembolism (VTE) is a major health problem in patients with cancer. Cancer augments thrombosis and causes cancer-associated thrombosis (CAT) and vice versa thrombosis amplifies cancer progression, termed thrombosis-associated cancer (TAC). Risk factors that lead to CAT and TAC include cancer type, chemotherapy, radiotherapy, hormonal therapy, anti-angiogenesis therapy, surgery, or supportive therapy with hematopoietic growth factors. There are some other factors that have an effect on CAT and TAC such as tissue factor, neutrophil extracellular traps (NETs) released in response to cancer, cancer procoagulant, and cytokines. Oncogenes, estrogen hormone, and thyroid hormone with its integrin αvβ3 receptor promote angiogenesis. Lastly, patient-related factors can play a role in development of thrombosis in cancer. Low-molecular-weight heparin and direct oral anticoagulants (DOACs) are used in VTE prophylaxis and treatment rather than vitamin K antagonist. Now, there are new directions for potential management of VTE in patients with cancer such as euthyroid, blockade of thyroid hormone receptor on integrin αvβ3, sulfated non-anticoagulant heparin, inhibition of NETs and stratifying low and high-risk patients with significant bleeding problems with DOACs.
Collapse
Affiliation(s)
- Marwa S. Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- Shaker A. Mousa, PhD, The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| |
Collapse
|
6
|
Ma SN, Mao ZX, Wu Y, Liang MX, Wang DD, Chen X, Chang PA, Zhang W, Tang JH. The anti-cancer properties of heparin and its derivatives: a review and prospect. Cell Adh Migr 2021; 14:118-128. [PMID: 32538273 PMCID: PMC7513850 DOI: 10.1080/19336918.2020.1767489] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angiogenesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-CXCR4 axis. Here we summarize the current experimental evidence regarding the anti-cancer role of heparin and its derivatives, and conclude that there is evidence to support heparin’s role in inhibiting cancer progression, making it a promising anti-cancer agent.
Collapse
Affiliation(s)
- Sai-Nan Ma
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China.,Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University , Suqian, P.R.China
| | - Zhi-Xiang Mao
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University , Xuzhou, P.R. China
| | - Yang Wu
- Core Facility, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Ping-An Chang
- Urinary Surgery, Dongtai People's Hospital , Dongtai, P.R. China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| |
Collapse
|
7
|
Abdulmalik O, Darwish NHE, Muralidharan-Chari V, Taleb MA, Mousa SA. Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia. Haematologica 2021; 107:532-540. [PMID: 33567814 PMCID: PMC8804574 DOI: 10.3324/haematol.2020.272393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells, which increases the adhesiveness of the cells, thereby altering the rheological properties of the blood, and triggers inflammatory responses, leading to hemolysis and vaso-occlusive crises. Unfractionated heparin and low-molecular weight heparins have been suggested as treatments to relieve coagulation complications in SCD. However, they are associated with bleeding complications after repeated dosing. An alternative sulfated non-anticoagulant heparin derivative (S-NACH) was previously reported to have no to low systemic anticoagulant activity and no bleeding side effects, and it interfered with P-selectin-dependent binding of sickle cells to endothelial cells, with concomitant decrease in the levels of adhesion biomarkers in SCD mice. S-NACH has been further engineered and structurally enhanced to bind with and modify HbS to inhibit sickling directly, thus employing a multimodal approach. Here, we show that S-NACH can: (i) directly engage in Schiff-base reactions with HbS to decrease red blood cell sickling under both normoxia and hypoxia in vitro, (ii) prolong the survival of SCD mice under hypoxia, and (iii) regulate the altered steady state levels of pro- and anti-inflammatory cytokines. Thus, our proof-of-concept, in vitro and in vivo preclinical studies demonstrate that the multimodal S-NACH is a highly promising candidate for development into an improved and optimized alternative to low-molecular weight heparins for the treatment of patients with SCD.
Collapse
Affiliation(s)
- Osheiza Abdulmalik
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA
| | - Noureldien H E Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Clinical Pathology (Hematology Section), Faculty of Medicine, Mansoura University, Mansoura
| | | | - Maii Abu Taleb
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Vascular Vison Pharmaceuticals Co., 7 University Place, Rensselaer, NY.
| |
Collapse
|
8
|
Fang L, Xu Q, Qian J, Zhou JY. Aberrant Factors of Fibrinolysis and Coagulation in Pancreatic Cancer. Onco Targets Ther 2021; 14:53-65. [PMID: 33442266 PMCID: PMC7797325 DOI: 10.2147/ott.s281251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant factors associated with fibrinolysis and thrombosis are found in many cancer patients, which can promote metastasis and are associated with poor prognosis. The relationship between tumor-associated fibrinolysis and thrombosis is poorly understood in pancreatic cancer. This review provides a brief highlight of existing studies that the fibrinolysis and coagulation systems were activated in pancreatic cancer patients, along with aberrant high concentrations of tissue plasminogen activator (t-PA), urine plasminogen activator (u-PA), D-dimer, fibrinogen, or platelets. These factors cooperate with each other, propelling tumor cell shedding, localization, adhesion to distant metastasis. The relationship between thrombosis or fibrinolysis and cancer immune escape is also investigated. In addition, the potential prevention and therapy strategies of pancreatic cancer targeting factors in fibrinolysis and coagulation systems are also been discussed, in which we highlight two effective agents aspirin and low-molecular weight heparin (LMWH). Summarily, this review provides new directions for the research and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lianghua Fang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Qing Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210029, People's Republic of China
| | - Jun Qian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Jin-Yong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
9
|
Featherby S, Xiao YP, Ettelaie C, Nikitenko LL, Greenman J, Maraveyas A. Low molecular weight heparin and direct oral anticoagulants influence tumour formation, growth, invasion and vascularisation by separate mechanisms. Sci Rep 2019; 9:6272. [PMID: 31000751 PMCID: PMC6472388 DOI: 10.1038/s41598-019-42738-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
The bidirectional association between coagulation and cancer has been established. However, anticoagulant therapies have been reported to have beneficial outcomes by influencing the vascularisation of the tumours. In this study the influence of a set of anticoagulants on tumour formation, invasion and vascularisation was examined. WM-266-4 melanoma and AsPC-1 pancreatic cancer cell lines were treated with LMWH (Tinzaparin and Dalteparin), and DOAC (Apixaban and Rivaroxaban) and the rate of tumour formation, growth and invasion were measured in vitro. In addition, the influence of these anticoagulants on vascularisation was examined using the chorioallantoic membrane assay (CAM) model and compared to the outcome of treatment with Bevacizumab. Using this model the influence of pharmacological concentrations of the anticoagulant on the growth, invasion and vascularisation of tumours derived from WM-266-4 and AsPC-1 cells was also measured in vivo. Tinzaparin and Daltepain reduced tumour formation and invasion by the cell lines in vitro, but with dissimilar potencies. In addition, treatment of CAM with LMWH reduced the local vascular density beyond that achievable with Bevacizumab, particularly suppressing the formation of larger-diameter blood vessels. In contrast, treatment with DOAC was largely ineffective. Treatment of CAM-implanted tumours with LMWH also reduced tumour vascularisation, while treatment of tumours with Apixaban reduced tumour growth in vivo. In conclusion, LMWH and DOAC appear to have anti-cancer properties that are exerted through different mechanisms.
Collapse
Affiliation(s)
- Sophie Featherby
- Biomedical Section, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Yu Pei Xiao
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Camille Ettelaie
- Biomedical Section, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Leonid L Nikitenko
- Biomedical Section, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - John Greenman
- Biomedical Section, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| |
Collapse
|
10
|
Andrgie AT, Mekuria SL, Addisu KD, Hailemeskel BZ, Hsu WH, Tsai HC, Lai JY. Non-Anticoagulant Heparin Prodrug Loaded Biodegradable and Injectable Thermoresponsive Hydrogels for Enhanced Anti-Metastasis Therapy. Macromol Biosci 2019; 19:e1800409. [PMID: 30821920 DOI: 10.1002/mabi.201800409] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/12/2019] [Indexed: 12/21/2022]
Abstract
Metastasis is a pathogenic spread of cancer cells from the primary site to surrounding tissues and distant organs, making it one of the primary challenges for effective cancer treatment and the major cause of cancer mortality. Heparin-based biomaterials exhibit significant inhibition of cancer cell metastasis. In this study, a non-anticoagulate heparin prodrug is developed for metastasis treatment with a localized treatment system using temperature sensitive, injectable, and biodegradable (poly-(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) polymeric hydrogel. The drug molecule (heparin) is conjugated with the polymer via esterification, and its sustained release is ensured by hydrolysis and polymeric biodegradation. An aqueous solution of the polymer could be used as an injectable solution at below 25 °C and it achieves gel formation at 37 °C. The anti-metastasis effect of the hydrogels is investigated both in vitro and in vivo. The results demonstrated that local administration of injectable heparin-loaded hydrogels effectively promote an inhibitory effect on cancer metastasis.
Collapse
Affiliation(s)
- Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C
| | - Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C
| | - Balkew Zewge Hailemeskel
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C
| | - Wei-Hsin Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, R.O.C.,R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung-Li, 320, Taiwan
| |
Collapse
|
11
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
12
|
Ghonim MA, Wang J, Ibba SV, Luu HH, Pyakurel K, Benslimane I, Mousa S, Boulares AH. Sulfated non-anticoagulant heparin blocks Th2-induced asthma by modulating the IL-4/signal transducer and activator of transcription 6/Janus kinase 1 pathway. J Transl Med 2018; 16:243. [PMID: 30172259 PMCID: PMC6119587 DOI: 10.1186/s12967-018-1621-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/25/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The efficacy of heparins and low-MW-heparins (LMWH) against human asthma has been known for decades. However, the clinical utility of these compounds has been hampered by their anticoagulant properties. Much effort has been put into harnessing the anti-inflammatory properties of LMWH but none have been used as therapy for asthma. Sulfated-non-anticoagulant heparin (S-NACH) is an ultra-LMWH with no systemic anticoagulant effects. OBJECTIVE The present study explored the potential of S-NACH in blocking allergic asthma and examined the potential mechanism by which it exerts its effects. METHODS Acute and chronic ovalbumin-based mouse models of asthma, splenocytes, and a lung epithelial cell line were used. Mice were challenged with aerosolized ovalbumin and administered S-NACH or saline 30 min after each ovalbumin challenge. RESULTS Sulfated-non-anticoagulant heparin administration in mice promoted a robust reduction in airway eosinophilia, mucus production, and airway hyperresponsiveness even after chronic repeated challenges with ovalbumin. Such effects were linked to suppression of Th2 cytokines IL-4/IL-5/IL-13/GM-CSF and ovalbumin-specific IgE without any effect on IFN-γ. S-NACH also reduced lung fibrosis in mice that were chronically-exposed to ovalbumin. These protective effects of S-NACH may be attributed to modulation of the IL-4/JAK1 signal transduction pathway through an inhibition of STAT6 phosphorylation and a subsequent inhibition of GATA-3 and inducible NO synthase expression. The effect of the drug on STAT6 phosphorylation coincided with a reduction in JAK1 phosphorylation upon IL-4 treatment. The protective effects of S-NACH treatment was associated with reduction of the basal expression of the two isoforms of arginase ARG1 and ARG2 in lung epithelial cells. CONCLUSIONS Our study demonstrates that S-NACH constitutes an opportunity to benefit from the well-known anti-asthma properties of heparins/LMWH while bypassing the risk of bleeding. Our results show, for the first time, that such anti-asthma effects may be associated with reduction of the IL-4/JAK1/STAT6 pathway.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA.,The Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jeffrey Wang
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Salome V Ibba
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Hanh H Luu
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Kusma Pyakurel
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Ilyes Benslimane
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Shaker Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.,Vascular Vision Pharmaceuticals Co., Rensselaer, NY, USA
| | - A Hamid Boulares
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
Zhuang X, Qiao T, Yuan S, Zhang Q, Chen W, Luo Y, Xu G. Antitumor effects of nadroparin combined with radiotherapy in Lewis lung cancer models. Onco Targets Ther 2018; 11:5133-5142. [PMID: 30210234 PMCID: PMC6114476 DOI: 10.2147/ott.s176526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The beneficial antitumor effects of low-molecular-weight heparins (LMWHs) have previously been investigated in basic and clinical studies. In this study, the antitumor efficacy of nadroparin combined with radiotherapy was investigated in vivo. Methods A total of 48 tumor-bearing mice were randomly divided into six groups (n=8 per group): control group, irradiation group (X), LMWH1,000 group, LMWH2,000 group, LMWH1,000+X group and LMWH2,000+X group. Following this, tumor growth, weight and inhibitory rate, as well as the survival of mice in each group, were determined. Levels of serum interleukin (IL)-6 and transforming growth factor (TGF)-β1 were determined via enzyme-linked immunosorbent assay (ELISA) analyses. The expression levels of CD34 were investigated using immunohistochemistry analyses to represent the microvascular density (MVD) values of tumor tissues. In addition, tumor cell apoptosis was investigated using TdT-mediated dUTP nick end labeling (TUNEL) analysis post treatment. The expression levels of survivin were analyzed by Western blotting. Results The volumes and weights of tumors in the treatment groups were demonstrated to be significantly decreased, which was most obvious in the LMWH2,000+X group. The tumor inhibitory rate was significantly increased in the treated mice. ELISA assays demonstrated that the concentrations of serum IL-6 and TGF-β1 were significantly decreased in the LMWH2,000+X group. In addition, the decreased CD34 expression was found in the combined treatment groups. TUNEL assays demonstrated that the apoptosis rate was increased in treated mice, and the highest apoptosis rate was exhibited by the LMWH2,000+X group. Results of Western blotting demonstrated that combinatory treatment with both nadroparin and X-ray irradiation significantly inhibited the expression of survivin. Conclusion These results demonstrated that a combinatory treatment strategy of nadroparin with fractionated irradiation had a strong synergistic antitumor effect in vivo, which may be associated with the promotion of apoptosis, inhibited secretion of TGF-β1 and IL-6 and down-regulation of CD34 and survivin expression.
Collapse
Affiliation(s)
- Xibing Zhuang
- Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Tiankui Qiao
- Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Sujuan Yuan
- Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Qi Zhang
- Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Wei Chen
- Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Youjun Luo
- Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Guoxiong Xu
- Department of Central Laboratory, Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Samuel P, Mulcahy LA, Furlong F, McCarthy HO, Brooks SA, Fabbri M, Pink RC, Carter DRF. Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0065. [PMID: 29158318 DOI: 10.1098/rstb.2017.0065] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer has a poor overall survival that is partly caused by resistance to drugs such as cisplatin. Resistance can be acquired as a result of changes to the tumour or due to altered interactions within the tumour microenvironment. Extracellular vesicles (EVs), small lipid-bound vesicles that are loaded with macromolecular cargo and released by cells, are emerging as mediators of communication in the tumour microenvironment. We previously showed that EVs mediate the bystander effect, a phenomenon in which stressed cells can communicate with neighbouring naive cells leading to various effects including DNA damage; however, the role of EVs released following cisplatin treatment has not been tested. Here we show that treatment of cells with cisplatin led to the release of EVs that could induce invasion and increased resistance when taken up by bystander cells. This coincided with changes in p38 and JNK signalling, suggesting that these pathways may be involved in mediating the effects. We also show that EV uptake inhibitors could prevent this EV-mediated adaptive response and thus sensitize cells in vitro to the effects of cisplatin. Our results suggest that preventing pro-tumourigenic EV cross-talk during chemotherapy is a potential therapeutic target for improving outcome in ovarian cancer patients.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Priya Samuel
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Laura Ann Mulcahy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Fiona Furlong
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Susan Ann Brooks
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and Molecular Microbiology & Immunology, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA 90027, USA
| | - Ryan Charles Pink
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - David Raul Francisco Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| |
Collapse
|
15
|
Lin YP, Li L, Zhang F, Linhardt RJ. Borrelia burgdorferi glycosaminoglycan-binding proteins: a potential target for new therapeutics against Lyme disease. MICROBIOLOGY-SGM 2017; 163:1759-1766. [PMID: 29116038 DOI: 10.1099/mic.0.000571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spirochete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common vector-borne disease in Europe and the United States. The spirochetes can be transmitted to humans via ticks, and then spread to different tissues, leading to arthritis, carditis and neuroborreliosis. Although antibiotics have commonly been used to treat infected individuals, some treated patients do not respond to antibiotics and experience persistent, long-term arthritis. Thus, there is a need to investigate alternative therapeutics against Lyme disease. The spirochete bacterium colonization is partly attributed to the binding of the bacterial outer-surface proteins to the glycosaminoglycan (GAG) chains of host proteoglycans. Blocking the binding of these proteins to GAGs is a potential strategy to prevent infection. In this review, we have summarized the recent reports of B. burgdorferi sensu lato GAG-binding proteins and discussed the potential use of synthetic and semi-synthetic compounds, including GAG analogues, to block pathogen interaction with GAGs. Such information should motivate the discovery and development of novel GAG analogues as new therapeutics for Lyme disease. New therapeutic approaches should eventually reduce the burden of Lyme disease and improve human health.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Department of Biomedical Science, State University of New York at Albany, Albany, NY, USA.,Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Lingyun Li
- Division of Environmental Health Science, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Departments of Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
16
|
Abstract
Current guidelines recommend low-molecular-weight heparin treatment in patients with cancer with established venous thromboembolism (VTE). The aim of this article was to study the pharmacological properties and effectiveness of tinzaparin in patients with cancer as well as its potential anticancer properties. A search of PubMed and ScienceDirect databases up to March 2016 was carried out to identify published studies that detect the properties and use of tinzaparin in oncology. Protamine sulfate partially (60% to 65%) neutralized tinzaparin’s anti-Xa activity. No dose adjustment of tinzaparin is needed even in patients with severe renal impairment and Creatinine Clearance ≥20 mL/min. Tinzaparin demonstrated a statistically significant decline in VTE recurrence at 1 year post the index thromboembolic event. A statistically significant reduction in minor bleeding rates was also described, whereas major bleeding events did not decrease in patients with cancer treated with tinzaparin versus those who received vitamin K antagonists. Tinzaparin treatment in patients suffering from deep vein thrombosis reduced the incidence of postthrombotic syndrome and venous ulcers. Tinzaparin’s ability to prevent both metastatic dissemination of cancer cells and tumor angiogenesis has been delineated in preclinical research. Current data show that tinzaparin is safe and efficacious either for short-term or for long-term treatment of VTE in patients with cancer. Clinical trials are needed in order to examine the utility of tinzaparin in primary prevention of VTE and validate its potential anticancer advantages exhibited in preclinical research.
Collapse
Affiliation(s)
- Evangelos P Dimakakos
- 1 Oncology Unit GPP, Sotiria General Hospital Athens School of Medicine, Athens, Greece
| | - Ioannis Vathiotis
- 1 Oncology Unit GPP, Sotiria General Hospital Athens School of Medicine, Athens, Greece
| | - Konstantinos Syrigos
- 1 Oncology Unit GPP, Sotiria General Hospital Athens School of Medicine, Athens, Greece
| |
Collapse
|
17
|
Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med 2017; 21:1668-1686. [PMID: 28244656 PMCID: PMC5571529 DOI: 10.1111/jcmm.13110] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
Nanoparticulate drug/gene carriers have gained much attention in the past decades because of their versatile and tunable properties. However, efficacy of the therapeutic agents can be further enhanced using naturally occurring materials-based nanoparticles. Polysaccharides are an emerging class of biopolymers; therefore, they are generally considered to be safe, non-toxic, biocompatible and biodegradable. Considering that the target of nanoparticle-based therapeutic strategies is localization of biomedical agents in subcellular compartments, a detailed understanding of the cellular mechanism involved in the uptake of polysaccharide-based nanoparticles is essential for safe and efficient therapeutic applications. Uptake of the nanoparticles by the cellular systems occurs with a process known as endocytosis and is influenced by the physicochemical characteristics of nanoparticles such as size, shape and surface chemistry as well as the employed experimental conditions. In this study, we highlight the main endocytosis mechanisms responsible for the cellular uptake of polysaccharide nanoparticles containing drug/gene.
Collapse
Affiliation(s)
- Sara Salatin
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Heparin and Heparin-Derivatives in Post-Subarachnoid Hemorrhage Brain Injury: A Multimodal Therapy for a Multimodal Disease. Molecules 2017; 22:molecules22050724. [PMID: 28468328 PMCID: PMC6154575 DOI: 10.3390/molecules22050724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Pharmacologic efforts to improve outcomes following aneurysmal subarachnoid hemorrhage (aSAH) remain disappointing, likely owing to the complex nature of post-hemorrhage brain injury. Previous work suggests that heparin, due to the multimodal nature of its actions, reduces the incidence of clinical vasospasm and delayed cerebral ischemia that accompany the disease. This narrative review examines how heparin may mitigate the non-vasospastic pathological aspects of aSAH, particularly those related to neuroinflammation. Following a brief review of early brain injury in aSAH and heparin’s general pharmacology, we discuss potential mechanistic roles of heparin therapy in treating post-aSAH inflammatory injury. These roles include reducing ischemia-reperfusion injury, preventing leukocyte extravasation, modulating phagocyte activation, countering oxidative stress, and correcting blood-brain barrier dysfunction. Following a discussion of evidence to support these mechanistic roles, we provide a brief discussion of potential complications of heparin usage in aSAH. Our review suggests that heparin’s use in aSAH is not only safe, but effectively addresses a number of pathologies initiated by aSAH.
Collapse
|
19
|
Abstract
Venous thromboembolism (VTE) and cancer are strongly associated, and present a major challenge in cancer patient treatment. Cancer patients have a higher risk of developing VTE, although the risk differs widely between tumour types. VTE prophylaxis is routinely given to cancer patients, in the form of vitamin K antagonists (VKA) or low molecular weight heparin (LMWH). Several studies have reported that cancer patients receiving anticoagulants show prolonged survival and this effect was more pronounced in patients with a good prognosis, although the mechanism is poorly understood. Tissue Factor (TF) is the initiator of extrinsic coagulation, but its non-haemostatic signalling via protease-activated receptors (PARs) is a potent driver of tumour angiogenesis. Furthermore, coagulation activation is strongly implicated in tumour cell migration and metastasis. This review discusses the effects of anticoagulants on cancer progression in patients, tumour cell behaviour, angiogenesis, and metastasis in in vitro and in vivo models. Inhibition of TF signalling shows great promise in curbing angiogenesis and in vivo tumour growth, but whether this translates to patients is not yet known. Furthermore, non-haemostatic properties of coagulation factors in cancer progression are discussed, which provide exciting opportunities on limiting oncologic processes without affecting blood coagulation.
Collapse
Affiliation(s)
- Chris Tieken
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
20
|
Oduah EI, Linhardt RJ, Sharfstein ST. Heparin: Past, Present, and Future. Pharmaceuticals (Basel) 2016; 9:E38. [PMID: 27384570 PMCID: PMC5039491 DOI: 10.3390/ph9030038] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/19/2023] Open
Abstract
Heparin, the most widely used anticoagulant drug in the world today, remains an animal-derived product with the attendant risks of adulteration and contamination. A contamination crisis in 2007-2008 increased the impetus to provide non-animal-derived sources of heparin, produced under cGMP conditions. In addition, recent studies suggest that heparin may have significant antineoplastic activity, separate and distinct from its anticoagulant activity, while other studies indicate a role for heparin in treating inflammation, infertility, and infectious disease. A variety of strategies have been proposed to produce a bioengineered heparin. In this review, we discuss several of these strategies including microbial production, mammalian cell production, and chemoenzymatic modification. We also propose strategies for creating "designer" heparins and heparan-sulfates with various biochemical and physiological properties.
Collapse
Affiliation(s)
- Eziafa I Oduah
- SUNY Polytechnic Institute, Albany, NY 12203, USA.
- Department of Medicine, Berkshire Medical Center, Pittsfield, MA 01201, USA.
| | | | | |
Collapse
|
21
|
Shi H, Li J, Fu D. Process of hepatic metastasis from pancreatic cancer: biology with clinical significance. J Cancer Res Clin Oncol 2016; 142:1137-1161. [PMID: 26250876 DOI: 10.1007/s00432-015-2024-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/23/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Pancreatic cancer shows a remarkable preference for the liver to establish secondary tumors. Selective metastasis to the liver is attributed to the development of potential microenvironment for the survival of pancreatic cancer cells. This review aims to provide a full understanding of the hepatic metastatic process from circulating pancreatic cancer cells to their settlement in the liver, serving as a basic theory for efficient prediction and treatment of metastatic diseases. METHODS A systematic search of relevant original articles and reviews was performed on PubMed, EMBASE and Cochrane Library for the purpose of this review. RESULTS Three interrelated phases are delineated as the contributions of the interaction between pancreatic cancer cells and the liver to hepatic metastasis process. Chemotaxis of disseminated pancreatic cancer cells and simultaneous defensive formation of platelets or neutrophils facilitate specific metastasis toward the liver. Remodeling of extracellular matrix and stromal cells in hepatic lobules and angiogenesis induced by proangiogenic factors support the survival and growth of clinical micrometastasis colonizing the liver. The bimodal role of the immune system or prevalence of cancer cells over the immune system makes metastatic progression successfully proceed from micrometastasis to macrometastasis. CONCLUSIONS Pancreatic cancer is an appropriate research object of cancer metastasis representing more than a straight cascade. If any of the successive or simultaneous phases, especially tumor-induced immunosuppression, is totally disrupted, hepatic metastasis will be temporarily under control or even cancelled forever. To shrink cancers on multiple fronts and prolong survival for patients, novel oral or intravenous anti-cancer agents covering one or different phases of metastatic pancreatic cancer are expected to be integrated into innovative strategies on the premise of safety and efficacious biostability.
Collapse
Affiliation(s)
- Haojun Shi
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
22
|
Alshaiban A, Muralidharan-Chari V, Nepo A, Mousa SA. Modulation of Sickle Red Blood Cell Adhesion and its Associated Changes in Biomarkers by Sulfated Nonanticoagulant Heparin Derivative. Clin Appl Thromb Hemost 2015; 22:230-8. [PMID: 25601897 DOI: 10.1177/1076029614565880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abnormal cellular adhesion is one of the primary causes of vaso-occlusive crisis in sickle cell disease (SCD). Levels of intercellular adhesion molecule 1 (ICAM-1) and P-selectin are upregulated, resulting in increased adhesion of leukocytes and sickle red blood cells (RBCs) to endothelium. This study compares the inhibitory effect of a sulfated nonanticoagulant heparin (S-NACH) derivative with a low-molecular-weight heparin, tinzaparin, on the adhesion of sickle RBCs to endothelium. The S-NACH exhibits minimum effects on hemostasis and bleeding and interferes with the binding of pancreatic cancer cells to endothelial cells via P-selectin. We show by static binding assay that pretreatment of both erythrocytes and endothelial cells with S-NACH significantly inhibits the increased adhesion of sickle RBCs to endothelial cells. The S-NACH treatment also decreases the higher plasma levels of (adhesion biomarkers) ICAM-1 and P-selectin in SCD mice. This investigation signals further research into the potential use of S-NACH in treating vaso-occlusions with minimal bleeding events in patients with SCD.
Collapse
Affiliation(s)
- Abdulelah Alshaiban
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | | | - Anne Nepo
- Pediatric Hematology/Oncology, Albany Medical College, Albany, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
23
|
Alyahya R, Sudha T, Racz M, Stain SC, Mousa SA. Anti-metastasis efficacy and safety of non-anticoagulant heparin derivative versus low molecular weight heparin in surgical pancreatic cancer models. Int J Oncol 2014; 46:1225-31. [PMID: 25530018 DOI: 10.3892/ijo.2014.2803] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/27/2014] [Indexed: 11/06/2022] Open
Abstract
Heparin and its derivatives are known to attenuate cancer metastasis in preclinical models, but have not been used clinically due to adverse bleeding effects. This study compared the efficacy of S-NACH (a sulfated non-anticoagulant heparin) versus tinzaparin (a low molecular weight heparin) in inhibiting metastasis of a growing primary tumor and following surgical excision of primary tumor in a pancreatic cancer mouse model. The efficacy of S-NACH versus tinzaparin on metastasis of the primary tumor was evaluated in each experiment using IVIS imaging. Athymic female mice were treated with S-NACH or tinzaparin, and 30 min later luciferase-transfected pancreatic cancer cells (Mpanc96) were implanted into the spleen; treatment was continued daily until termination. Next we studied the effect of S-NACH versus tinzaparin on metastasis after surgical excision of the primary tumor after 3 weeks of daily treatment with S-NACH or tinzaparin. S-NACH reduced surgically induced metastasis (p<0.01) and tumor recurrence (p<0.05) relative to control. Histopathological studies demonstrated significant increase in tumor necrosis mediated by S-NACH and to lesser extent by tinzaparin as compared to control group. Furthermore, either S-NACH or tinzaparin upregulated the expression of the junctional adhesion molecule E-cadherin in pancreatic cancer cells where its low expression enhances cancer cell migration and invasion. In terms of bleeding time (BT), S-NACH did not affect BT as compared to tinzaparin, which doubled BT. These data suggest that S-NACH is an effective and safe anti-metastatic agent and warrants further clinical evaluation.
Collapse
Affiliation(s)
- Reem Alyahya
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Michael Racz
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Steven C Stain
- Department of Surgery, Albany Medical College, Albany, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
24
|
Chiu JW, Wong H, Leung R, Pang R, Cheung TT, Fan ST, Poon R, Yau T. Advanced pancreatic cancer: flourishing novel approaches in the era of biological therapy. Oncologist 2014; 19:937-50. [PMID: 25117068 PMCID: PMC4153449 DOI: 10.1634/theoncologist.2012-0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/06/2014] [Indexed: 12/13/2022] Open
Abstract
The progress in the development of systemic treatment for advanced pancreatic cancer (APC) has been slow. The mainstream treatment remains using chemotherapy including gemcitabine, FOLFIRINOX, and nab-paclitaxel. Erlotinib is the only approved biological therapy with marginal benefit. Studies of agents targeting epidermal growth factor receptor, angiogenesis, and RAS signaling have not been satisfying, and the usefulness of targeted therapy in APC is uncertain. Understanding in molecular processes and tumor biology has opened the door for new treatment strategies such as targeting insulin-like growth factor 1 receptor, transforming growth factor β, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin pathway, and Notch pathway. New directions also include the upcoming immunotherapy and many novel agents that act on the microenvironment. The practice of personalized medicine using predictive biomarkers and pharmacogenomics signatures may also enhance the effectiveness of existing treatment. Future treatment approaches may involve comprehensive genomic assessment of tumor and integrated combinations of multiple agents to overcome treatment resistance.
Collapse
Affiliation(s)
- Joanne W Chiu
- University Departments of Medicine and Surgery, Queen Mary Hospital, Hong Kong, People's Republic of China; Centre for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| | - Hilda Wong
- University Departments of Medicine and Surgery, Queen Mary Hospital, Hong Kong, People's Republic of China; Centre for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| | - Roland Leung
- University Departments of Medicine and Surgery, Queen Mary Hospital, Hong Kong, People's Republic of China; Centre for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| | - Roberta Pang
- University Departments of Medicine and Surgery, Queen Mary Hospital, Hong Kong, People's Republic of China; Centre for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| | - Tan-To Cheung
- University Departments of Medicine and Surgery, Queen Mary Hospital, Hong Kong, People's Republic of China; Centre for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| | - Sheung-Tat Fan
- University Departments of Medicine and Surgery, Queen Mary Hospital, Hong Kong, People's Republic of China; Centre for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| | - Ronnie Poon
- University Departments of Medicine and Surgery, Queen Mary Hospital, Hong Kong, People's Republic of China; Centre for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| | - Thomas Yau
- University Departments of Medicine and Surgery, Queen Mary Hospital, Hong Kong, People's Republic of China; Centre for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
25
|
Zhao Y, Zhang D, Wang S, Tao L, Wang A, Chen W, Zhu Z, Zheng S, Gao X, Lu Y. Holothurian glycosaminoglycan inhibits metastasis and thrombosis via targeting of nuclear factor-κB/tissue factor/Factor Xa pathway in melanoma B16F10 cells. PLoS One 2013; 8:e56557. [PMID: 23437168 PMCID: PMC3578936 DOI: 10.1371/journal.pone.0056557] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/10/2013] [Indexed: 12/17/2022] Open
Abstract
Holothurian glycosaminoglycan (hGAG) is a high-molecular-weight form of fucosylated chondroitin sulfate and has an antithrombotic effect. Our previous studies demonstrated that hGAG efficiently inhibited tumor cell metastasis. The interplays between thrombosis and tumor progression may have a major impact on hematogenous metastasis. In this study, we demonstrated that the mouse melanoma B16F10 cells treated with hGAG displayed a significant reduction of metastasis and coagulation capacity in vitro and in vivo. Mechanistic studies revealed that hGAG treatment in B16F10 cells remarkably inhibited the formation of fibrin through attenuating the generation of activated Factor Xa (FXa), without affecting the expression of urokinase (uPA) and plasminogen activator inhibitor 1 (PAI-1) that involved in fibrinolysis. Moreover, hGAG treatment downregulated the transcription and protein expression of tissue factor (TF). Promoter deletions, site mutations and functional studies identified that the nuclear transcription factor NF-κB binding region is responsible for hGAG-induced inhibition of TF expression. While the hGAG treatment of B16F10 cells was unable to inhibit NF-κB expression and phosphorylation, hGAG significantly prevented nuclear translocation of NF-κB from the cytosol, a potential mechanism underlying the transcriptional suppression of TF. Moreover, hGAG markedly suppressed the activation of p38MAPK and ERK1/2 signaling pathways, the central regulators for the expression of metastasis-related matrix metalloproteinases (MMPs). Consequently, hGAG exerts a dual function in the inhibition of metastasis and coagulation activity in mouse melanoma B16F10 cells. Our studies suggest hGAG to be a promising therapeutic agent for metastatic cancer treatment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Daohai Zhang
- Department of Pathology, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Sheng Wang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Li Tao
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Aiyun Wang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wenxing Chen
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zhijie Zhu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shizhong Zheng
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xiang Gao
- Model Animal Research Center of Nanjing University, Nanjing, People’s Republic of China
| | - Yin Lu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|