1
|
Lambertucci F, Li S, Motiño O, Montégut L, Nogueira-Recalde U, Chen H, Anagnostopoulos G, Maiuri MC, Kroemer G, Martins I. Orthotopic Model of Hepatocellular Carcinoma in Mice. Methods Mol Biol 2024; 2769:1-13. [PMID: 38315385 DOI: 10.1007/978-1-0716-3694-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Orthotopic models of hepatocellular carcinoma (HCC) consist in the implantation of tumor cells into the liver by direct intrahepatic injection. In this model, tumorigenesis is triggered within the hepatic microenvironment, thus mimicking the metastatic behavior of HCC. Herein, we detail a surgically mediated methodology that allows the reproducible and effective induction of liver-sessile tumors in mice. We enumerate the steps to be followed before and after the surgical procedure, including HCC cell preparation, the quantity of cancer cells to be injected, presurgical preparation of the mice, and finally, postoperative care. The surgical procedure involves laparotomy to expose the liver, injection of cells into the left-lateral hepatic lobe, and closure of the incision with sutures followed by wound clips. We also provide information concerning the subsequent tumor growth follow-up, as well as the application of bioluminescence imaging to monitor tumor development.
Collapse
Affiliation(s)
- Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Rheumatology Research Group (GIR), Biomedical Research Institute of A Coruña (INIBIC), Professor Novoa Santos Foundation, A Coruña, Spain
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Gerasimos Anagnostopoulos
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Naples, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy, Villejuif, France.
| |
Collapse
|
2
|
Hyldbakk A, Fleten KG, Snipstad S, Åslund AKO, Davies CDL, Flatmark K, Mørch Y. Intraperitoneal administration of cabazitaxel-loaded nanoparticles in peritoneal metastasis models. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102656. [PMID: 36646195 DOI: 10.1016/j.nano.2023.102656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
Colorectal and ovarian cancers frequently develop peritoneal metastases with few treatment options. Intraperitoneal chemotherapy has shown promising therapeutic effects, but is limited by rapid drug clearance and systemic toxicity. We therefore encapsulated the cabazitaxel taxane in poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs), designed to improve intraperitoneal delivery. Toxicity of free and encapsulated cabazitaxel was investigated in rats by monitoring clinical signs, organ weight and blood hematological and biochemical parameters. Pharmacokinetics, biodistribution and treatment response were evaluated in mice. Biodistribution was investigated by measuring both cabazitaxel and the 2-ethylbutanol NP degradation product. Drug encapsulation was shown to increase intraperitoneal drug retention, leading to prolonged intraperitoneal drug residence time and higher drug concentrations in peritoneal tumors. As a result, encapsulation of cabazitaxel improved the treatment response in two in vivo models bearing intraperitoneal tumors. Together, these observations indicate a strong therapeutic potential of NP-based cabazitaxel encapsulation as a novel treatment for peritoneal metastases.
Collapse
Affiliation(s)
- Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Karianne Giller Fleten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sofie Snipstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Andreas K O Åslund
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
| | | | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
| |
Collapse
|
3
|
Rojas JD, Joiner JB, Velasco B, Bautista KJB, Aji AM, Moore CJ, Beaumont NJ, Pylayeva-Gupta Y, Dayton PA, Gessner RC, Czernuszewicz TJ. Validation of a combined ultrasound and bioluminescence imaging system with magnetic resonance imaging in orthotopic pancreatic murine tumors. Sci Rep 2022; 12:102. [PMID: 34996939 PMCID: PMC8741958 DOI: 10.1038/s41598-021-03684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Preclinical mouse solid tumor models are widely used to evaluate efficacy of novel cancer therapeutics. Recent reports have highlighted the need for utilizing orthotopic implantation to represent clinical disease more accurately, however the deep tissue location of these tumors makes longitudinal assessment challenging without the use of imaging techniques. The purpose of this study was to evaluate the performance of a new multi-modality high-throughput in vivo imaging system that combines bioluminescence imaging (BLI) with robotic, hands-free ultrasound (US) for evaluating orthotopic mouse models. Long utilized in cancer research as independent modalities, we hypothesized that the combination of BLI and US would offer complementary advantages of detection sensitivity and quantification accuracy, while mitigating individual technological weaknesses. Bioluminescent pancreatic tumor cells were injected into the pancreas tail of C57BL/6 mice and imaged weekly with the combination system and magnetic resonance imaging (MRI) to serve as a gold standard. BLI photon flux was quantified to assess tumor activity and distribution, and US and MRI datasets were manually segmented for gross tumor volume. Robotic US and MRI demonstrated a strong agreement (R2 = 0.94) for tumor volume measurement. BLI showed a weak overall agreement with MRI (R2 = 0.21), however, it offered the greatest sensitivity to detecting the presence of tumors. We conclude that combining BLI with robotic US offers an efficient screening tool for orthotopic tumor models.
Collapse
Affiliation(s)
| | - Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Brian Velasco
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Kathlyne Jayne B Bautista
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | | | | | | | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Tomasz J Czernuszewicz
- SonoVol, Inc, Durham, NC, USA.
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Oncolytic peptides DTT-205 and DTT-304 induce complete regression and protective immune response in experimental murine colorectal cancer. Sci Rep 2021; 11:6731. [PMID: 33762676 PMCID: PMC7991660 DOI: 10.1038/s41598-021-86239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 11/09/2022] Open
Abstract
Oncolytic peptides represent a novel, promising cancer treatment strategy with activity in a broad spectrum of cancer entities, including colorectal cancer (CRC). Cancer cells are killed by immunogenic cell death, causing long-lasting anticancer immune responses, a feature of particular interest in non-immunogenic CRC. Oncolytic peptides DTT-205 and DTT-304 were administered by intratumoral injection in subcutaneous tumors established from murine CRC cell lines CT26 and MC38, and complete regression was obtained in the majority of animals. When cured animals were rechallenged by splenic injection of tumor cells, 1/23 animals developed liver metastases, compared to 19/22 naïve animals. Treatment with both peptides was well tolerated, but monitoring post-injection hemodynamic parameters in rats, less extensive changes were observed with DTT-205 than DTT-304, favoring DTT-205 for future drug development. DTT-205 was subsequently shown to have strong in vitro activity in a panel of 33 cancer cell lines. In conclusion, both peptides exerted a strong inhibitory effect in two immunocompetent CRC models and induced a systemic effect preventing development of liver metastases upon splenic rechallenge. If a similar effect could be obtained in humans, these drugs would be of particular interest for combinatory treatment with immune checkpoint inhibitors in metastatic CRC.
Collapse
|
5
|
Cancer Detection and Quantification of Treatment Response Using Diffusion-Weighted MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient's CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development - even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
7
|
Zhang P, Shi L, Song L, Long Y, Yuan K, Ding W, Deng L. LncRNA CRNDE and lncRNA SNHG7 are Promising Biomarkers for Prognosis in Synchronous Colorectal Liver Metastasis Following Hepatectomy. Cancer Manag Res 2020; 12:1681-1692. [PMID: 32210611 PMCID: PMC7069563 DOI: 10.2147/cmar.s233147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose Synchronous colorectal liver metastasis (SCLM) had limited availability of tools to predict survival and tumor recurrence. LncRNA CRNDE and lncRNA SNHG7 have been proven to be closely related to cancer progression. However, the predictive value of lncRNA CRNDE and lncRNA SNHG7 in cancer prognosis is still unclear. The purpose of this study was to investigate whether lncRNA CRNDE and lncRNA SNHG7 could be used as promising biomarkers for prognosis prediction of SCLM patients who underwent hepatectomy. Methods The expression profile of lncRNA CRNDE and lncRNA SNHG7 in serum of SCLM patients was examined by qRT-PCR. The relationship between lncRNA expression and clinicopathological characteristics was analyzed. The Cox proportional-hazards regression model and Kaplan-Meier analysis were performed to analyze the association between lncRNA expression and overall survival (OS) and tumor recurrence of SCLM patients. Results Levels of lncRNA CRNDE and lncRNA SNHG7 in patients who underwent recurrence or death were significantly higher than that of patients with recurrence-free or survival (P<0.01). Both lncRNA CRNDE high level and lncRNA SNHG7 high level showed a significant correlation with differentiation of primary tumor, invasion depth of primary focus, lymph node metastases, number of liver metastases, and liver metastasis grade. High levels of lncRNA CRNDE or lncRNA SNHG7 predicted shorter recurrence time, shorter OS time, higher recurrence rate and lower OS rate. Furthermore, lncRNA CRNDE and lncRNA SNHG7 were independent risk factors for high recurrence and poor OS in SCLM underwent hepatectomy. Conclusion Taken together, lncRNA CRNDE and lncRNA SNHG7 could be promising biomarkers for prediction of OS and tumor recurrence in SCLM underwent hepatectomy.
Collapse
Affiliation(s)
- Peixian Zhang
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Lan Shi
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Linjing Song
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yi Long
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Kehua Yuan
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Wanbao Ding
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Lei Deng
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
8
|
ZeOncoTest: Refining and Automating the Zebrafish Xenograft Model for Drug Discovery in Cancer. Pharmaceuticals (Basel) 2019; 13:ph13010001. [PMID: 31878274 PMCID: PMC7169390 DOI: 10.3390/ph13010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The xenograft of human cancer cells in model animals is a powerful tool for understanding tumor progression and metastatic potential. Mice represent a validated host, but their use is limited by the elevated experimental costs and low throughput. To overcome these restrictions, zebrafish larvae might represent a valuable alternative. Their small size and transparency allow the tracking of transplanted cells. Therefore, tumor growth and early steps of metastasis, which are difficult to evaluate in mice, can be addressed. In spite of its advantages, the use of this model has been hindered by lack of experimental homogeneity and validation. Considering these facts, the aim of our work was to standardize, automate, and validate a zebrafish larvae xenograft assay with increased translatability and higher drug screening throughput. The ZeOncoTest reliability is based on the optimization of different experimental parameters, such as cell labeling, injection site, automated individual sample image acquisition, and analysis. This workflow implementation finally allows a higher precision and experimental throughput increase, when compared to previous reports. The approach was validated with the breast cancer cell line MDA-MB-231, the colorectal cancer cells HCT116, and the prostate cancer cells PC3; and known drugs, respectively RKI-1447, Docetaxel, and Mitoxantrone. The results recapitulate growth and invasion for all tested tumor cells, along with expected efficacy of the compounds. Finally, the methodology has proven useful for understanding specific drugs mode of action. The insights gained bring a step further for zebrafish larvae xenografts to enter the regulated preclinical drug discovery path.
Collapse
|
9
|
Mouse Models for Immunotherapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111800. [PMID: 31731753 PMCID: PMC6896030 DOI: 10.3390/cancers11111800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is one of the dominant causes of cancer-related mortality, and the survival rate of liver cancer is among the lowest for all cancers. Immunotherapy for hepatocellular carcinoma (HCC) has yielded some encouraging results, but the percentage of patients responding to single-agent therapies remains low. Therefore, potential directions for improved immunotherapies include identifying new immune targets and checkpoints and customizing treatment procedures for individual patients. The development of combination therapies for HCC is also crucial and urgent and, thus, further studies are required. Mice have been utilized in immunotherapy research due to several advantages, for example, being low in cost, having high success rates for inducing tumor growth, and so on. Moreover, immune-competent mice are used in immunotherapy research to clarify the role that the immune system plays in cancer growth. In this review paper, the advantages and disadvantages of mouse models for immunotherapy, the equipment that are used for monitoring HCC, and the cell strains used for inducing HCC are reviewed.
Collapse
|
10
|
Ravoori MK, Margalit O, Singh S, Kim SH, Wei W, Menter DG, DuBois RN, Kundra V. Magnetic Resonance Imaging and Bioluminescence Imaging for Evaluating Tumor Burden in Orthotopic Colon Cancer. Sci Rep 2019; 9:6100. [PMID: 30988343 PMCID: PMC6465293 DOI: 10.1038/s41598-019-42230-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Quantifying tumor burden is important for following the natural history of orthotopic colon cancer and therapeutic efficacy. Bioluminescence imaging (BLI) is commonly used for such assessment and has both advantages and limitations. We compared BLI and magnetic resonance imaging (MRI) for quantifying orthotopic tumors in a mouse model of colon cancer. Among sequences tested, T2-based MRI imaging ranked best overall for colon cancer border delineation, contrast, and conspicuity. Longitudinal MRI detected tumor outside the colon, indistinguished by BLI. Colon tumor weights calculated from MRI in vivo correlated highly with tumor weights measured ex vivo whereas the BLI signal intensities correlated relatively poorly and this difference in correlations was highly significant. This suggests that MRI may more accurately assess tumor burden in longitudinal monitoring of orthotopic colon cancer in this model as well as in other models.
Collapse
Affiliation(s)
- M K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - O Margalit
- Department of Oncology, Chaim Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-HaShomer, 52621, Israel
| | - S Singh
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - W Wei
- Department of Biostatistics, U.T.-M.D. Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - D G Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, U.T.-M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - R N DuBois
- MUSC College of Medicine, Dean's Office, 96 Jonathan Lucas Street, Suite 601, MSC 617, Charleston, SC, 29425, USA
| | - V Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA. .,Department of Radiology, U.T.-M.D. Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15:536-554. [PMID: 29904153 DOI: 10.1038/s41575-018-0033-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Brown ZJ, Heinrich B, Greten TF. Establishment of Orthotopic Liver Tumors by Surgical Intrahepatic Tumor Injection in Mice with Underlying Non-Alcoholic Fatty Liver Disease. Methods Protoc 2018; 1:mps1020021. [PMID: 31164564 PMCID: PMC6526445 DOI: 10.3390/mps1020021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and its advanced form, nonalcoholic steatohepatitis (NASH), is increasing, and as such its contribution to the development of hepatocellular carcinoma is also rising. NAFLD has been shown to influence the immune tumor microenvironment. Therefore, development of pre-clinical mouse models in the context of NAFLD are increasingly important. Here, we describe a mouse model designed to recapitulate the findings of NAFLD followed by rapid induction of orthotopic liver tumors with intrahepatic tumor injection. Additionally, we utilized bioluminescent imaging to monitor tumor growth and response to therapy. The development of one dominant tumor nodule allows precise separation of tumor and liver tissue. This is useful for immunotherapy studies as mononuclear cells from the tumor and the surrounding liver tissue can be analyzed separately.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Gómez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech 2017; 10:1061-1074. [PMID: 28883015 PMCID: PMC5611969 DOI: 10.1242/dmm.030403] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the spread of cancer cells from a primary tumor to distant sites within the body to establish secondary tumors. Although this is an inefficient process, the consequences are devastating as metastatic disease accounts for >90% of cancer-related deaths. The formation of metastases is the result of a series of events that allow cancer cells to escape from the primary site, survive in the lymphatic system or blood vessels, extravasate and grow at distant sites. The metastatic capacity of a tumor is determined by genetic and epigenetic changes within the cancer cells as well as contributions from cells in the tumor microenvironment. Mouse models have proven to be an important tool for unraveling the complex interactions involved in the metastatic cascade and delineating its many stages. Here, we critically appraise the strengths and weaknesses of the current mouse models and highlight the recent advances that have been made using these models in our understanding of metastasis. We also discuss the use of these models for testing potential therapies and the challenges associated with the translation of these findings into the provision of new and effective treatments for cancer patients.
Collapse
Affiliation(s)
- Laura Gómez-Cuadrado
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| | - Natasha Tracey
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| | - Ruoyu Ma
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Binzhi Qian
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research UK Centre, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research Centre, Institute for Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| |
Collapse
|