1
|
Linacre A, Petcharoen P. Latent DNA detection on items of forensic relevance. Forensic Sci Int 2025; 370:112460. [PMID: 40188736 DOI: 10.1016/j.forsciint.2025.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
This review focusses on the use of DNA binding dyes to detect and record the presence of latent DNA on items of forensic relevance. Latent DNA can be crucial in forensic investigations and remains invisible unless an enhancement method is applied. Latent DNA is deposited on items of forensic relevance through various modes of transfer, with direct contact between skin and the item being the most common. Skin cells, otherwise called dead keratinocytes or corneocytes, have been shown to contain highly variable amounts of DNA. There is no standardised presumptive test for skin cells, but the advent of DNA-binding dyes allowed for the first time, the presence and number of stained corneocytes to be recorded. A commonly used DNA binding dye is Diamond™ Nucleic Acid Dye (DD). The dye has been used to detect the presence of latent DNA within biological deposits on a range of substrates and has been used to assess shedder status. This review discusses the many potential benefits of staining a substrate with a dye to detect latent DNA and then being able to target collection of a sample only where there is cellular material present. Despite advantages, the use of dyes to detect cellular material has not transitioned into forensic science practice; the reasons for this are discussed including some of the problems of dye staining of substrates. The review concludes by highlighting opportunities for conducting research to monitor cell deposition, persistence and transfer.
Collapse
Affiliation(s)
- Adrian Linacre
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Piyamas Petcharoen
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
2
|
Goray M, Hartog M, Monkman H. The efficacy of Diamond™ nucleic acid dye-stained cell counting techniques for forensic application. Sci Justice 2024; 64:585-598. [PMID: 39638477 DOI: 10.1016/j.scijus.2024.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024]
Abstract
Touch DNA is one of the most common types of biological material collected during criminal investigations. Diamond™ Nucleic Acid Dye (DD) has been shown to aid in touch sample visualisation and target sampling. It has also been used as a method of shedder categorisation that is cheaper and quicker than DNA methods. However, the DD method routinely involves manual cell counting, which can result in intra and inter-person variability similar to other manual techniques used in forensic science, for example, fingerprint identification. Additionally, DD based shedder categorisation involves counting cells in a portion of the touch deposit to extrapolate an individual's shedder status, and the sampling effect of such estimations is currently unknown. The present study tested different data analysis aspects of the DD method, including counting variability within and between people, shedder classification differences based on different counting methods (entire thumbprint, sub-section of a print with most cells, sub-section of a print deemed most representative of the entire thumbprint, and random sections), the use of ImageJ software to semi-automate counting and the use and extension of the DD method for investigating DNA Transfer, Persistence, Prevalence and Recovery (DNA-TPPR). The results of this study show that there are meaningful differences observed during counting processes both between and within people. These differences tended to increase as the factor of time, or the duration of counting, rather than the complexity of cell deposits being assessed. Investment in cell counting software that eliminates personal factors, such as boredom fatigue, can remedy most of these issues, however, will require optimisation, such as fibre recognition. Shedder testing was shown to be affected by the choice of sampling and categorisation methods, and suggested that using an entire finger or larger section size can provide increased precision. Finally, inverted worn gloves stained with DD may provide an acceptable alternative for hands in DNA-TPPR investigations, providing an interesting alternative for future research.
Collapse
Affiliation(s)
- Mariya Goray
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
| | - Mike Hartog
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia; University Van Hall Larenstein, Leeuwarden, Netherlands
| | - Heidi Monkman
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
3
|
Harihar S, Welch DR. KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers? Cancer Metastasis Rev 2023; 42:183-196. [PMID: 36720764 PMCID: PMC10103016 DOI: 10.1007/s10555-023-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Present therapeutic approaches do not effectively target metastatic cancers, often limited by their inability to eliminate already-seeded non-proliferative, growth-arrested, or therapy-resistant tumor cells. Devising effective approaches targeting dormant tumor cells has been a focus of cancer clinicians for decades. However, progress has been limited due to limited understanding of the tumor dormancy process. Studies on tumor dormancy have picked up pace and have resulted in the identification of several regulators. This review focuses on KISS1, a metastasis suppressor gene that suppresses metastasis by keeping tumor cells in a state of dormancy at ectopic sites. The review explores mechanistic insights of KISS1 and discusses its potential application as a therapeutic against metastatic cancers by eliminating quiescent cells or inducing long-term dormancy in tumor cells.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Danny R. Welch
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, USA
- The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Blvd. Kansas City, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Abstract
The significance of KISS1 goes beyond its original discovery as a metastasis suppressor. Its function as a neuropeptide involved in diverse physiologic processes is more well studied. Enthusiasm regarding KISS1 has cumulated in clinical trials in multiple fields related to reproduction and metabolism. But its cancer therapeutic space is unsettled. This review focuses on collating data from cancer and non-cancer fields in order to understand shared and disparate signaling that might inform clinical development in the cancer therapeutic and biomarker space. Research has focused on amino acid residues 68-121 (kisspeptin 54), binding to the KISS1 receptor and cellular responses. Evidence and counterevidence regarding this canonical pathway require closer look at the covariates so that the incredible potential of KISS1 can be realized.
Collapse
Affiliation(s)
- Thuc Ly
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Danny R Welch
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Harihar S, Ray S, Narayanan S, Santhoshkumar A, Ly T, Welch DR. Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clin Exp Metastasis 2020; 37:209-223. [PMID: 32088827 PMCID: PMC7339126 DOI: 10.1007/s10585-020-10030-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/29/2022]
Abstract
KISS1, a metastasis suppressor gene, has been shown to block metastasis without affecting primary tumor formation. Loss of KISS1 leads to invasion and metastasis in multiple cancers, which is the leading cause of cancer morbidity and mortality. The discovery of KISS1 has provided a ray of hope for early clinical diagnosis and for designing effective treatments targeting metastatic cancer. However, this goal requires greater holistic understanding of its mechanism of action. In this review, we go back into history and highlight some key developments, from the discovery of KISS1 to its role in regulating multiple physiological processes including cancer. We discuss key emerging roles for KISS1, specifically interactions with tissue microenvironment to promote dormancy and regulation of tumor cell metabolism, acknowledged as some of the key players in tumor progression and metastasis. We finally discuss strategies whereby KISS1 might be exploited clinically to treat metastasis.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Srijit Ray
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Samyukta Narayanan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anirudh Santhoshkumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| |
Collapse
|
6
|
IoT Utilized Gas-Leakage Monitoring System with Adaptive Controls Applicable to Dual Fuel Powered Naval Vessels/Ships: Development & Implementation. CYBERNETICS AND INFORMATION TECHNOLOGIES 2020. [DOI: 10.2478/cait-2020-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Leakage of Liquefied Petroleum Gas and Liquified Natural Gas (LPG/LNG) produces hazardous and toxic impact on humans and other living creatures. The authors developed a system to monitor and control the gas leakage concentration. MQ-6 gas sensor is used for sensing the level of gas concentration in a closed volume. To monitor the consequences of environmental changes an IoT platform hosted by “Thingspeak” platform has been introduced. Both robust and cloud-forwarded controls have been applied to prevent uncontrolled leakage of those gases and auto-ignition. This type of system can be directly applied to the engine chamber/ fuel chamber of the modern marine vessels using dual fuel power cycle with LPG/LNG as secondary fuel-flamer. The results from the experiments clearly indicate satisfactory actuation speed and accuracy. The trials performed by the authors showed about 99% efficiency of signal transmission and actuation.
Collapse
|
7
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Roberts RD, Lizardo MM, Reed DR, Hingorani P, Glover J, Allen-Rhoades W, Fan T, Khanna C, Sweet-Cordero EA, Cash T, Bishop MW, Hegde M, Sertil AR, Koelsche C, Mirabello L, Malkin D, Sorensen PH, Meltzer PS, Janeway KA, Gorlick R, Crompton BD. Provocative questions in osteosarcoma basic and translational biology: A report from the Children's Oncology Group. Cancer 2019; 125:3514-3525. [PMID: 31355930 PMCID: PMC6948723 DOI: 10.1002/cncr.32351] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
Abstract
Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.
Collapse
Affiliation(s)
- Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Michael M Lizardo
- Department of Molecular Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Damon R Reed
- Sarcoma Department, Chemical Biology and Molecular Medicine Program and Adolescent and Young Adult Oncology Program, Moffitt Cancer Center, Tampa, Florida
| | - Pooja Hingorani
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Jason Glover
- Children's Cancer and Blood Disorders Program, Randall Children's Hospital, Portland, Oregon
| | - Wendy Allen-Rhoades
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Cancer and Hematology Centers, Houston, Texas
| | - Timothy Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | - Chand Khanna
- Ethos Vet Health, Woburn, Massachusetts.,Ethos Discovery (501c3), Washington, DC
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Thomas Cash
- Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael W Bishop
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Aparna R Sertil
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Christian Koelsche
- Department of General Pathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Malkin
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Hematology/Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian D Crompton
- Dana-Farber Cancer Institute, Boston, and Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|