1
|
Ahmadi S, Yazdi F, Khastar S, Kaur I, Ahmed MH, Kumar A, Rathore G, Kaur P, Shahsavan M, Dehghani-Ghorbi M, Akhavan-Sigari R. Molecular Mechanism of lncRNAs in Regulation of Breast Cancer Metastasis; a Comprehensive Review. Cell Biochem Biophys 2025; 83:229-245. [PMID: 39367197 DOI: 10.1007/s12013-024-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/06/2024]
Abstract
Although the number of breast cancer deaths has decreased, and there have been developments in targeted therapies and combination treatments for the management of metastatic illness, metastatic breast cancer is still the second most common cause of cancer-related deaths in U.S. women. Numerous phases and a vast number of proteins and signaling molecules are involved in the invasion-metastasis cascade. The tumor cells penetrate and enter the blood or lymphatic vessels, and travel to distant organs via the lymphatic or blood vessels. Tumor cells enter cell cycle arrest, adhere to capillary beds in the target organ, and then disseminate throughout the organ's parenchyma, proliferating and enhancing angiogenesis. Each of these processes is regulated by changes in the expression of different genes, in which lncRNAs play a role in this regulation. Transcripts that are longer than 200 nucleotides and do not translate into proteins are called RNAs. LncRNA molecules, whose function depends on their unique molecular structure, play significant roles in controlling the expression of genes at various epigenetic levels, transcription, and so on. LncRNAs have essential functions in regulating the expression of genes linked to cell development in healthy and pathological processes, specialization, programmed cell death, cell division, invasion, DNA damage, and spread to other parts of the body. A number of cancer types have been shown to exhibit aberrant expression of lncRNAs. In this review, we describe the general characteristics, potential molecular mechanisms and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer.
Collapse
Affiliation(s)
- Shokoufeh Ahmadi
- Department of Microbiology, Rabe'Rashidi University, Tabriz, Iran
| | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand-831001, India
| | - Gulshan Rathore
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Mohammad Shahsavan
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Zhao C, Li X, Pan X, Xu J, Jiang R, Li Y. LINC02532 by Mediating miR-541-3p/HMGA1 Axis Exerts a Tumor Promoter in Breast cancer. Mol Biotechnol 2025; 67:196-208. [PMID: 38030946 DOI: 10.1007/s12033-023-00995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The newly discovered LINC02532 is abnormally expressed in a variety of cancers and promotes cancer progression. The research proposed to discover the biological and molecular mechanisms of LINC02532 in breast cancer (BCa). In the resected BCa tissue samples and adjacent normal tissues, LINC02532, miR-541-3p, and High Mobility Group A1 (HMGA1) levels were determined. Cell function experiments were carried out on the premise of cell transfection with relevant plasmids. Based on that, the influence of LINC02532, miR-541-3p, and HMGA1 on MCF-7 cell activities (proliferation, migration, invasion, cell cycle, and apoptosis) was determined, as well as on EMT. Additionally, animal experiments were allowed to support cell experimental conclusions on LINC02532. Finally, the mechanistic network of LINC02532, miR-541-3p, and HMGA1 was identified. It was BCa tissues highly expressing LINC02532 and HMGA1, while lowly expressing miR-541-3p. Functionally, LINC02532 depletion repressed the activities and EMT process of MCF-7 cells. Silencing LINC02532 delayed tumor growth in mice. In terms of mechanism, LINC02532 mainly existed in the cytoplasm and could mediate HMGA1 expression by absorbing miR-541-3p. The findings offer new insights into the molecular mechanisms of LINC02532 in BCa and, more importantly, new strategies for the clinical treatment of BCa.
Collapse
Affiliation(s)
- ChunMing Zhao
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Xiao Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China
| | - XueQiang Pan
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China
| | - JiaWen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Rui Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China.
| | - YuYang Li
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China.
| |
Collapse
|
3
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| |
Collapse
|
5
|
Lin X, Zhuang S, Chen X, Du J, Zhong L, Ding J, Wang L, Yi J, Hu G, Tang G, Luo X, Liu W, Ye F. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther 2022; 30:688-702. [PMID: 34371180 PMCID: PMC8821934 DOI: 10.1016/j.ymthe.2021.08.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/16/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and progression of colorectal cancer (CRC). However, functions of most lncRNAs in CRC and their molecular mechanisms remain uncharacterized. Here we found that lncRNA ITGB8-AS1 was highly expressed in CRC. Knockdown of ITGB8-AS1 suppressed cell proliferation, colony formation, and tumor growth in CRC, suggesting oncogenic roles of ITGB8-AS1. Transcriptomic analysis followed by KEGG analysis revealed that focal adhesion signaling was the most significantly enriched pathway for genes positively regulated by ITGB8-AS1. Consistently, knockdown of ITGB8-AS1 attenuated the phosphorylation of SRC, ERK, and p38 MAPK. Mechanistically, ITGB8-AS1 could sponge miR-33b-5p and let-7c-5p/let-7d-5p to regulate the expression of integrin family genes ITGA3 and ITGB3, respectively, in the cytosol of cells. Targeting ITGB8-AS1 using antisense oligonucleotide (ASO) markedly reduced cell proliferation and tumor growth in CRC, indicating the therapeutic potential of ITGB8-AS1 in CRC. Furthermore, ITGB8-AS1 was easily detected in plasma of CRC patients, which was positively correlated with differentiation and TNM stage, as well as plasma levels of ITGA3 and ITGB3. In conclusion, ITGB8-AS1 functions as a competing endogenous RNA (ceRNA) to regulate cell proliferation and tumor growth of CRC via regulating focal adhesion signaling. Targeting ITGB8-AS1 is effective in suppressing CRC cell growth and tumor growth. Elevated plasma levels of ITGB8-AS1 were detected in advanced-stage CRC. Thus, ITGB8-AS1 could serve as a potential therapeutic target and circulating biomarker in CRC.
Collapse
Affiliation(s)
- Xiaoting Lin
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Shiwen Zhuang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Xue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Jun Du
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Longhua Zhong
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jiancheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Lei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Guosheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Guohui Tang
- Department of Anus and Bowels, Affiliated Nanhua Hospital, University of South China, Hengyang 421010, China
| | - Xi Luo
- BE/Phase I Clinical Center, First Affiliated Hospital of Xiamen University, Xiamen 361003 China,Corresponding author: Xi Luo, BE/Phase I Clinical Center, First Affiliated Hospital of Xiamen University, Xiamen 361003 China.
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China,Corresponding author: Wen Liu, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China.
| | - Feng Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China,Corresponding author: Feng Ye, Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
6
|
Zhai D, Li T, Ye R, Bi J, Kuang X, Shi Y, Shao N, Lin Y. LncRNA LGALS8-AS1 Promotes Breast Cancer Metastasis Through miR-125b-5p/SOX12 Feedback Regulatory Network. Front Oncol 2021; 11:711684. [PMID: 34745940 PMCID: PMC8570098 DOI: 10.3389/fonc.2021.711684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
Background Metastasis is a major factor weakening the long-term survival of breast cancer patients. Increasing evidence revealed that long non-coding RNAs (lncRNAs) were involved in the occurrence and development of breast cancer. In this study, we aimed to investigate the role of LGALS8-AS1 in the metastatic progression of breast cancer cells and its potential mechanisms. Results The lncRNA LGALS8-AS1 was highly expressed in breast cancer and associated with poor survival. LGALS8-AS1 functioned as an oncogenic lncRNA that promoted the metastasis of breast cancer both in vitro and in vivo. It upregulated SOX12 via competing as a competing endogenous RNA (ceRNA) for sponging miR-125b-5p and acted on the PI3K/AKT signaling pathway to promote the metastasis of breast cancer. Furthermore, SOX12, in turn, activated LGALS8-AS1 expression via direct recognition of its sequence binding enrichment motif on the LGALS8-AS1 promoter, thereby forming a positive feedback regulatory loop. Conclusion This study manifested a novel mechanism of LGALS8-AS1 facilitating the metastasis of breast cancer. The LGALS8-AS1/miR-125b-5p/SOX12 reciprocal regulatory loop dyscrasia promoted the migration and invasion of breast cancer cells. This signaling axis could be applicable to the design of novel therapeutic strategies against this malignancy.
Collapse
Affiliation(s)
- Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tianfu Li
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Runyi Ye
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiong Bi
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaying Kuang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
9
|
Transcriptome-wide high-throughput mapping of protein-RNA occupancy profiles using POP-seq. Sci Rep 2021; 11:1175. [PMID: 33441968 PMCID: PMC7806670 DOI: 10.1038/s41598-020-80846-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Interaction between proteins and RNA is critical for post-transcriptional regulatory processes. Existing high throughput methods based on crosslinking of the protein–RNA complexes and poly-A pull down are reported to contribute to biases and are not readily amenable for identifying interaction sites on non poly-A RNAs. We present Protein Occupancy Profile-Sequencing (POP-seq), a phase separation based method in three versions, one of which does not require crosslinking, thus providing unbiased protein occupancy profiles on whole cell transcriptome without the requirement of poly-A pulldown. Our study demonstrates that ~ 68% of the total POP-seq peaks exhibited an overlap with publicly available protein–RNA interaction profiles of 97 RNA binding proteins (RBPs) in K562 cells. We show that POP-seq variants consistently capture protein–RNA interaction sites across a broad range of genes including on transcripts encoding for transcription factors (TFs), RNA-Binding Proteins (RBPs) and long non-coding RNAs (lncRNAs). POP-seq identified peaks exhibited a significant enrichment (p value < 2.2e−16) for GWAS SNPs, phenotypic, clinically relevant germline as well as somatic variants reported in cancer genomes, suggesting the prevalence of uncharacterized genomic variation in protein occupied sites on RNA. We demonstrate that the abundance of POP-seq peaks increases with an increase in expression of lncRNAs, suggesting that highly expressed lncRNA are likely to act as sponges for RBPs, contributing to the rewiring of protein–RNA interaction network in cancer cells. Overall, our data supports POP-seq as a robust and cost-effective method that could be applied to primary tissues for mapping global protein occupancies.
Collapse
|
10
|
Mondal P, Meeran SM. Long non-coding RNAs in breast cancer metastasis. Noncoding RNA Res 2020; 5:208-218. [PMID: 33294746 PMCID: PMC7689374 DOI: 10.1016/j.ncrna.2020.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death among women. Recurrence of primary tumor and metastasis to distant body parts are major causes of breast cancer-associated mortality. The 5-year survival rate for women with metastatic breast cancer is only 25-30%. Breast cancer metastasis is a series of processes involved with EMT, invasion, loss of cell to cell adhesion, alteration in cell phenotype, extravasation, microenvironment of the tumor, and colonization to the secondary sites. Epigenetic modification is involved in the transformation of the distant stromal cell into a secondary tumor. LncRNAs, are one the key epigenetic modifiers, are the largest endogenous non-coding RNAs with approximate base-pair lengths from 200 nt to 100 kb. LncRNA plays a crucial role in breast cancer metastasis by sponging miRNA, by degrading or silencing specific mRNA, or else by targeting the enzymes and microprocessor subunits involved in the biogenesis of miRNA. LncRNA also alters the expression of several genes involved in breast cancer metastasis and modulating different cell signaling pathways. The goal of this review is to provide a better understanding of the role of lncRNA in the regulation of breast cancer metastasis. We also summarized some of the key lncRNAs that regulate the genes and signaling pathways involved in breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
LncRNA MALAT1 promotes breast cancer progression and doxorubicin resistance via regulating miR-570–3p. Biomed J 2020; 44:S296-S304. [PMID: 35410813 PMCID: PMC9068547 DOI: 10.1016/j.bj.2020.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Background Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that regulates disease progression in various types of cancers. The aim of this study was to explore the role of MALAT1 in breast cancer (BC) progression and doxorubicin resistance. Methods Real-time polymerase chain reaction (RT-PCR) was used to determine the expression of MALAT1 in BC tissues and cells; MTT and Transwell assay were used to detect the proliferation, migration and invasion of BC cells, respectively; drug resistance test was performed to assess the sensitivity of BC cells to doxorubicin; dual-luciferase reporter gene assay was conducted to verify the interaction between MALAT1 and miR-570–3p. Results MALAT1 was highly expressed in BC tissues compared with normal tissues adjacent to cancer as well as in BC cells. In addition, inhibition the expression of MALAT1 could significantly suppress the proliferation, migration and invasion of BC cells. Meanwhile, down-regulation of MALAT1 sensitized BC cells to doxorubicin. Moreover, bioinformatics analysis suggested that miR-570–3p was the potential downstream target of MALAT1. Dual-luciferase reporter gene assay confirmed that MALAT1 could directly target miR-570–3p. Additionally, miR-570–3p was lowly expressed in BC tissues and cells. Up-regulation of miR-570–3p not only significantly inhibited the proliferation, metastasis, and invasion of BC cells, but also increased the sensitivity of BC cells to doxorubicin. Conclusion MALAT1 functions as a novel oncogenic lncRNA in regulating the progression and doxorubicin resistance of BC by targeting miR-570–3p.
Collapse
|
12
|
Shi W, Hu D, Lin S, Zhuo R. Five-mRNA Signature for the Prognosis of Breast Cancer Based on the ceRNA Network. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9081852. [PMID: 32964046 PMCID: PMC7486635 DOI: 10.1155/2020/9081852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the regulatory mechanisms of ceRNAs in breast cancer (BC) and construct a new five-mRNA prognostic signature. METHODS The ceRNA network was constructed by different RNAs screened by the edgeR package. The BC prognostic signature was built based on the Cox regression analysis. The log-rank method was used to analyse the survival rate of BC patients with different risk scores. The expression of the 5 genes was verified by the GSE81540 dataset and CPTAC database. RESULTS A total of 41 BC-adjacent tissues and 473 BC tissues were included in this study. A total of 2,966 differentially expressed lncRNAs, 5,370 differentially expressed mRNAs, and 359 differentially expressed miRNAs were screened. The ceRNA network was constructed using 13 lncRNAs, 267 mRNAs, and 35 miRNAs. Kaplan-Meier (K-M) methods showed that two lncRNAs (AC037487.1 and MIR22HG) are related to prognosis. Five mRNAs (VPS28, COL17A1, HSF1, PUF60, and SMOC1) in the ceRNA network were used to establish a prognostic signature. Survival analysis showed that the prognosis of patients in the low-risk group was significantly better than that in the high-risk group (p = 0.0022). ROC analysis showed that this signature has a good diagnostic ability (AUC = 0.77). Compared with clinical features, this signature was also an independent prognostic factor (HR: 1.206, 95% CI 1.108-1.311; p < 0.001). External verification results showed that the expression of the 5 mRNAs differed between the normal and tumour groups at the chip and protein levels (p < 0.001). CONCLUSIONS These ceRNAs may play a key role in the development of BC, and the new 5-mRNA prognostic signature can improve the prediction of survival for BC patients.
Collapse
Affiliation(s)
- Wenjie Shi
- Department of Breast Surgery, Guilin TCM Hospital of China, Affiliated to Guang Xi University of Chinese Medicine, Guilin, 541000 Guangxi, China
| | - Daojun Hu
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai 202150, China
| | - Sen Lin
- Department of Breast Surgery, Guilin TCM Hospital of China, Affiliated to Guang Xi University of Chinese Medicine, Guilin, 541000 Guangxi, China
| | - Rui Zhuo
- Department of Breast Surgery, Guilin TCM Hospital of China, Affiliated to Guang Xi University of Chinese Medicine, Guilin, 541000 Guangxi, China
| |
Collapse
|
13
|
Zhang T, Hu H, Yan G, Wu T, Liu S, Chen W, Ning Y, Lu Z. Long Non-Coding RNA and Breast Cancer. Technol Cancer Res Treat 2020; 18:1533033819843889. [PMID: 30983509 PMCID: PMC6466467 DOI: 10.1177/1533033819843889] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer, one of the most common diseases among women, is regarded as a
heterogeneous and complicated disease that remains a major public health concern.
Recently, owing to the development of next-generation sequencing technologies, long
non-coding RNAs have received extensive attention. Numerous studies reveal that long
non-coding RNAs are playing important roles in tumor development. Although the biological
function and molecular mechanisms of long non-coding RNAs remain enigmatic, recent
researchers have demonstrated that an array of long non-coding RNAs express abnormally in
cancers, including breast cancer. Herein, we summarized the latest literature about long
non-coding RNAs in breast cancer, with a particular focus on the multiple molecular roles
of regulatory long non-coding RNAs that regulate cell proliferation, invasion, metastasis,
and apoptosis.
Collapse
Affiliation(s)
- Tianzhu Zhang
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Hu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Yan
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Tangwei Wu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiyi Liu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqun Chen
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- 2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongxin Lu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Wang Y, Cai X. Long noncoding RNA HAND2-AS1 restrains proliferation and metastasis of breast cancer cells through sponging miR-1275 and promoting SOX7. Cancer Biomark 2019; 27:85-94. [DOI: 10.3233/cbm-190530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Wu J, Liu L, Jin H, Li Q, Wang S, Peng B. LncSNHG3/miR-139-5p/BMI1 axis regulates proliferation, migration, and invasion in hepatocellular carcinoma. Onco Targets Ther 2019; 12:6623-6638. [PMID: 31692508 PMCID: PMC6708045 DOI: 10.2147/ott.s196630] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Emerging evidence has revealed that lncRNA small nucleolar RNA host gene 3 (SNHG3) is involved in cell proliferation, migration, and invasion in various tumors. However, the underlying molecular mechanism of SNHG3 in hepatocellular carcinoma (HCC) is still not fully explored. METHODS Quantitative reverse transcriptase PCR was employed to detect the expression of SNHG3, miR-139-5p, and BMI1. Colony assay and MTT assay were used to detect the proliferation. Transwell assay was introduced to measure the migration and invasion ability. Bioinformatics analysis and luciferase reporter assay were used to confirm the relationship between SNHG3, miR-139-5p, and BMI1. An animal experiment was adopted to detect the function of SNHG3 in vivo. RESULTS SNHG3 and BMI1 were upregulated in HCC, while miR-139-5p was downregulated. Knockdown of SNHG3 or BMI1 and overexpression of miR-139-5p could inhibit cell proliferation, migration, and invasion in HCC. miR-139-5p was a target of SNHG3 and BMI1 was a direct target mRNA of miR-139-5p. Silencing SNHG3 could impair the tumor progression in vivo. CONCLUSION The lncRNA SNHG3/miR-139-5p/BMI1 axis plays an important role in cell proliferation, migration, and invasion in HCC.
Collapse
Affiliation(s)
- Jian Wu
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lingyun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Huilin Jin
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qiao Li
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shutong Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Baogang Peng
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Fang X, Liu CX, Zeng XR, Huang XM, Chen WL, Wang Y, Ai F. Orphan nuclear receptor COUP-TFII is an oncogenic gene in renal cell carcinoma. Clin Transl Oncol 2019; 22:772-781. [PMID: 31368079 DOI: 10.1007/s12094-019-02190-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) may be an oncogenic gene in renal cell carcinoma (RCC). However, the direct association between COUP-TFII expression and patient survival has not been investigated in patients with RCC, and the molecular oncogenesis of COUP-TFII in RCC remains unclear. METHODS The mRNA expression levels of COUP-TFII in the tumors of 283 patients with RCC were determined by RT-qPCR. The remaining 266 patients were categorized into low- and high-expression groups according to the cut off value generated by receiver operating curve (ROC) analysis. The function of COUP-TFII in RCC cells was tested by knockdown experiments in vitro. RESULTS In the present study, it was revealed that the mRNA expression levels of COUP-TFII were significantly higher in tumors compared with those in adjacent non-cancerous tissues, and that the overexpression of COUP-TFII was strongly associated with poor patient survival. It was further demonstrated that knockdown of COUP-TFII suppressed proliferation, and induced apoptosis and cell cycle arrest in RCC cells in vitro. This also resulted in the activation of the mitochondria-mediated apoptosis pathway, impaired migration and invasion of RCC cells through epithelial-mesenchymal transition in vitro, and suppressed tumor growth in vivo. In addition, it was revealed that the induction of cell migration and invasion by COUP-TFII was mediated, at least in part, by integrin subunit β1. CONCLUSIONS In summary, the present study indicated that COUP-TFII is an oncogenic gene in RCC, and a potential therapeutic target for the treatment of the disease.
Collapse
Affiliation(s)
- X Fang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - C-X Liu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - X-R Zeng
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - X-M Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - W-L Chen
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Y Wang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China.
| | - F Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
17
|
Genome-wide analysis of Chongqing native intersexual goats using next-generation sequencing. 3 Biotech 2019; 9:99. [PMID: 30800610 DOI: 10.1007/s13205-019-1612-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022] Open
Abstract
Sex reversal has been studied extensively in vertebrate species, particularly in domestic goats, because polled intersex syndrome (PIS) has seriously affected their production efficiency. In the present study, we used histopathologically diagnosed cases of PIS to identify correlated genomic regions and variants using representative selection signatures and performed GWAS using Restriction-Site Associated Resequencing DNA. We identified 171 single-nucleotide polymorphisms (SNPs) that may have contributed to this phenotype, and 53 SNPs were determined to be located in coding regions using a general linear model. The transcriptome data sets of differentially expressed genes (DEGs) in the pituitary tissues of intersexual and nonintersexual goats were examined using high-throughput technology. A total of 10,063 DEGs and 337 long noncoding RNAs were identified. The DEGs were clustered into 56 GO categories and determined to be significantly enriched in 53 signaling pathways by KEGG analysis. In addition, according to qPCR results, PSPO2 and FSH were significantly more highly expressed in sexually mature pituitary tissues of intersexual goats compared to healthy controls (nonintersexual). These results demonstrate that certain novel potential genomic regions may be responsible for intersexual goats, and the transcriptome data indicate that the regulation of various physiological systems is involved in intersexual goat development. Therefore, these results provide helpful data for understanding the molecular mechanisms of intersex syndrome in goats.
Collapse
|
18
|
Xiu DH, Liu GF, Yu SN, Li LY, Zhao GQ, Liu L, Li XF. Long non-coding RNA LINC00968 attenuates drug resistance of breast cancer cells through inhibiting the Wnt2/β-catenin signaling pathway by regulating WNT2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:94. [PMID: 30791958 PMCID: PMC6385430 DOI: 10.1186/s13046-019-1100-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/11/2019] [Indexed: 01/17/2023]
Abstract
Background Breast cancer is one the most common cancers, making it the second leading cause of cancer-related death among women. Long non-coding RNAs (lncRNAs), with tightly regulated expression patterns, also serve as tumor suppressor during tumorigenesis. The present study aimed to elucidate the role of LINC00968 in breast cancer via WNT2-mediated Wnt2/β-catenin signaling pathway. Methods Breast cancer chip GSE26910 was utilized to identify differential expression in LINC00968 and WNT2. The possible relationship among LINC00968, transcriptional repressor HEY and WNT2 was analyzed and then verified. Effects of LINC00968 on activation of the Wnt2/β-catenin signaling pathway was also tested. Drug resistance, colony formation, cell migration, invasion ability and cell apoptosis after transfection were also determined. Furthermore, tumor xenograft in nude mice was performed to test tumor growth and weight in vivo. Results WNT2 expression exhibited at a high level, whereas LINC00968 at a low expression in breast cancer which was also associated with poor prognosis in patients. LINC00968 targeted and negatively regulated WNT2 potentially via HEY1. Either overexpressed LINC00968 or silenced inhibited activation of the Wnt2/β-catenin signaling pathway, thereby reducing drug resistance, decreasing colony formation ability, as well as suppressing migration and invasion abilities of breast cancer cells in addition to inducing apoptosis. Lastly, in vivo experiment suggested that LINC00968 overexpression also suppressed transplanted tumor growth in nude mice. Conclusion Collectively, overexpressed LINC00968 contributes to reduced drug resistance in breast cancer cells by inhibiting the activation of the Wnt2/β-catenin signaling pathway through silencing WNT2. This study offers a new target for the development of breast cancer treatment.
Collapse
Affiliation(s)
- Dian-Hui Xiu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Shao-Nan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Long-Yun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Xue-Feng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China.
| |
Collapse
|
19
|
Guo X, Lee S, Cao P. The inhibitive effect of sh-HIF1A-AS2 on the proliferation, invasion, and pathological damage of breast cancer via targeting miR-548c-3p through regulating HIF-1α/VEGF pathway in vitro and vivo. Onco Targets Ther 2019; 12:825-834. [PMID: 30774370 PMCID: PMC6352864 DOI: 10.2147/ott.s192377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer (BC) has been the commonest malignant tumor with a low survival rate among woman. Long non-coding RNA hypoxia-inducible factor-1 alpha antisense RNA-2 (HIF1A-AS2) was correlated with various cancers. Purpose The study aimed to investigate the roles and related underlying molecular mechanisms of HIF1A-AS2 in BC. Material and methods Target relationships were speculated by Targetscan 7.0 and confirmed by dual luciferase reporter assay. Proteins levels were monitored by RT-qPCR, Western blot and immunohistochemistry assays. CCK-8 assay, SA-β-gal staining and transwell assay were used to detect proliferation, senescence and invasion, respectively. Xenograft nude mice were put into use to evaluate the tumor growth and motility. Results The present study exhibited that HIF1A-AS2 and hypoxia-inducible factor-1 alpha (HIF-1α) were upregulated while miR-548c-3p was downregulated in MDA-MB-231, MCF-7, ZR-75-1, and BT-549 BC cell lines. Bioinformatics analysis showed HIF1A-AS2 and HIF-1α were two targets of miR-548c-3p, and the target relationship was further confirmed by dual luciferase reporter assay. Moreover, knockdown of HIF1A-AS2 by shRNA (sh-HIF1A-AS2) markedly elevated miR-548c-3p level, and the enhanced miR-548c-3p noticeably suppressed cell proliferation, invasion, and epithelial–mesenchymal transition, and promoted senescence in vitro. In addition, overexpression of HIF-1α promoted MCF-7 cell invasion. Intriguingly, low expression of HIF1A-AS2 reduced HIF-1α level by upregulating the expression of miR-548c-3p. Furthermore, experiment in xenograft nude mice has indicated that sh-HIF1A-AS2 inhibited tumor growth and motility by targeting miR-548c-3p through regulating HIF-1α/vascular endothelial growth factor (VEGF) pathway in vivo. Conclusion The inhibitive effect of HIF-1α/VEGF pathway by sh-HIF1A-AS2 through targeting miR-548c-3p plays crucial regulatory roles in BC. Therefore, designing targeted drugs against HIF1A-AS2 provides a new direction for the treatment of BC.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Breast Surgery, Central Clinical College of Gynecology Obstetrics, Tianjin Medical University, Tianjin 300110, China
| | - Shenghai Lee
- Department of Surgery, Zhaoqing Medical College, Zhaoqing, Guangdong 526020, China
| | - Peilong Cao
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China,
| |
Collapse
|
20
|
Zhou S, He Y, Yang S, Hu J, Zhang Q, Chen W, Xu H, Zhang H, Zhong S, Zhao J, Tang J. The regulatory roles of lncRNAs in the process of breast cancer invasion and metastasis. Biosci Rep 2018; 38:BSR20180772. [PMID: 30217944 PMCID: PMC6165837 DOI: 10.1042/bsr20180772] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and principal cause of death among females worldwide. Invasion and metastasis are major causes which influence the survival and prognosis of BC. Therefore, to understand the molecule mechanism underlying invasion and metastasis is paramount for developing strategies to improve survival and prognosis in BC patients. Recent studies have reported that long non-coding RNAs (lncRNAs) play critical roles in the regulation of BC invasion and metastasis through a variety of molecule mechanisms that endow cells with an aggressive phenotype. In this article, we focused on the function of lncRNAs on BC invasion and metastasis through participating in epithelial-to-mesenchymal transition, strengthening cancer stem cells generation, serving as competing endogenous lncRNAs, influencing multiple signaling pathways as well as regulating expressions of invasion-metastasis related factors, including cells adhesion molecules, extracellular matrix, and matrix metallo-proteinases. The published work described has provided a better understanding of the mechanisms underpinning the contribution of lncRNAs to BC invasion and metastasis, which may lay the foundation for the development of new strategies to prevent BC invasion and metastasis.
Collapse
Affiliation(s)
- Siying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| | - Yunjie He
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Sujin Yang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jiahua Hu
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Qian Zhang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Heda Zhang
- Department of General Surgery, School of Medicine, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, P.R. China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| |
Collapse
|