1
|
Cheng JN, Frye JB, Whitman SA, Ehsani S, Ali S, Funk JL. Interrogating Estrogen Signaling Pathways in Human ER-Positive Breast Cancer Cells Forming Bone Metastases in Mice. Endocrinology 2024; 165:bqae038. [PMID: 38715255 PMCID: PMC11076418 DOI: 10.1210/endocr/bqae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 05/12/2024]
Abstract
Breast cancer bone metastases (BMET) are incurable, primarily osteolytic, and occur most commonly in estrogen receptor-α positive (ER+) breast cancer. ER+ human breast cancer BMET modeling in mice has demonstrated an estrogen (E2)-dependent increase in tumor-associated osteolysis and bone-resorbing osteoclasts, independent of estrogenic effects on tumor proliferation or bone turnover, suggesting a possible mechanistic link between tumoral ERα-driven osteolysis and ER+ bone progression. To explore this question, inducible secretion of the osteolytic factor, parathyroid hormone-related protein (PTHrP), was utilized as an in vitro screening bioassay to query the osteolytic potential of estrogen receptor- and signaling pathway-specific ligands in BMET-forming ER+ human breast cancer cells expressing ERα, ERß, and G protein-coupled ER. After identifying genomic ERα signaling, also responsibility for estrogen's proliferative effects, as necessary and sufficient for osteolytic PTHrP secretion, in vivo effects of a genomic-only ER agonist, estetrol (E4), on osteolytic ER+ BMET progression were examined. Surprisingly, while pharmacologic effects of E4 on estrogen-dependent tissues, including bone, were evident, E4 did not support osteolytic BMET progression (vs robust E2 effects), suggesting an important role for nongenomic ER signaling in ER+ metastatic progression at this site. Because bone effects of E4 did not completely recapitulate those of E2, the relative importance of nongenomic ER signaling in tumor vs bone cannot be ascertained here. Nonetheless, these intriguing findings suggest that targeted manipulation of estrogen signaling to mitigate ER+ metastatic progression in bone may require a nuanced approach, considering genomic and nongenomic effects of ER signaling on both sides of the tumor/bone interface.
Collapse
Affiliation(s)
- Julia N Cheng
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA
| | - Jennifer B Frye
- Department of Medicine, University of Arizona, Tucson, AZ 86724, USA
| | - Susan A Whitman
- Department of Medicine, University of Arizona, Tucson, AZ 86724, USA
| | - Sima Ehsani
- Department of Medicine, University of Arizona, Tucson, AZ 86724, USA
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, London W12 0NN, UK
| | - Janet L Funk
- Department of Medicine, University of Arizona, Tucson, AZ 86724, USA
| |
Collapse
|
2
|
Yang Z, Yu W, Xu A, Liu B, Jin L, Tao H, Wang D. mTORC1 accelerates osteosarcoma progression via m 6A-dependent stabilization of USP7 mRNA. Cell Death Discov 2024; 10:127. [PMID: 38467635 PMCID: PMC10928159 DOI: 10.1038/s41420-024-01893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Osteosarcoma (OS) is considered a sex steroid hormone-dependent bone tumor. The development and progression of OS are regulated by 17β-estradiol (E2). However, the detailed mechanisms of E2-modulated OS progression remained to be elucidated. Here, we found that E2-activated mammalian target of rapamycin (mTOR) signaling promoted N6-methyladenosine (m6A) modification through regulating WTAP. Inhibition of mTOR complex 1 (mTORC1) reversed E2-activated WTAP expression. Meanwhile, inhibition of mTORC1 suppressed OS cell proliferation and migration. Deficiency of TSC2 activated mTORC1 signaling and enhanced OS cell proliferation and migration, while abrogated by Rapamycin. Interestingly, mTOMC1 promoted mRNA stability of ubiquitin-specific protease 7 (USP7) through m6A modification. Loss of USP7 suppressed the proliferation, migration, and ASC specks, while promoted apoptosis of OS cells. USP7 interacted with NLRP3 and deubiquitinated NLRP3 through K48-ubiquitination. USP7 was upregulated and positive correlation with NLRP3 in OS patients with high level of E2. Loss of USP7 suppressed the progression of OS via inhibiting NLRP3 inflammasome signaling pathway. Our results demonstrated that E2-activtated mTORC1 promoted USP7 stability, which promoted OS cell proliferation and migration via upregulating NLRP3 expression and enhancing NLRP3 inflammasome signaling pathway. These results discover a novel mechanism of E2 regulating OS progression and provide a promising therapeutic target for OS progression.
Collapse
Affiliation(s)
- Zhengming Yang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Libin Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Dimin Wang
- Department of Reproductive endocrinology, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Popova E, Tkachev S, Reshetov I, Timashev P, Ulasov I. Imaging Hallmarks of Sarcoma Progression Via X-ray Computed Tomography: Beholding the Flower of Evil. Cancers (Basel) 2022; 14:cancers14205112. [PMID: 36291896 PMCID: PMC9600487 DOI: 10.3390/cancers14205112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Sarcomas represent the largest group of rare solid tumors that arise from mesenchymal stem cells and are a leading cause of cancer death in individuals younger than 20 years of age. There is an immediate need for the development of an algorithm for the early accurate diagnosis of sarcomas due to the high rate of diagnostic inaccuracy, which reaches up to 30%. X-ray computed tomography is a non-invasive imaging technique used to obtain detailed internal images of the human or animal body in clinical practice and preclinical studies. We summarized the main imaging features of soft tissue and bone sarcomas, and noted the development of new molecular markers to reach tumor type-specific imaging. Also, we demonstrated the possibility of the use X-ray computed microtomography for non-destructive 3D visualization of sarcoma progression in preclinical studies. Finding correlations between X-ray computed tomography modalities and the results of the histopathological specimen examination may significantly increase the accuracy of diagnostics, which leads to the initiation of appropriate management in a timely manner and, consequently, to improved outcomes. Abstract Sarcomas are a leading cause of cancer death in individuals younger than 20 years of age and represent the largest group of rare solid tumors. To date, more than 100 morphological subtypes of sarcomas have been described, among which epidemiology, clinical features, management, and prognosis differ significantly. Delays and errors in the diagnosis of sarcomas limit the number of effective therapeutic modalities and catastrophically worsen the prognosis. Therefore, the development of an algorithm for the early accurate diagnosis of sarcomas seems to be as important as the development of novel therapeutic advances. This literature review aims to summarize the results of recent investigations regarding the imaging of sarcoma progression based on the use of X-ray computed tomography (CT) in preclinical studies and in current clinical practice through the lens of cancer hallmarks. We attempted to summarize the main CT imaging features of soft-tissue and bone sarcomas. We noted the development of new molecular markers with high specificity to antibodies and chemokines, which are expressed in particular sarcoma subtypes to reach tumor type-specific imaging. We demonstrate the possibility of the use of X-ray computed microtomography (micro-CT) for non-destructive 3D visualization of solid tumors by increasing the visibility of soft tissues with X-ray scattering agents. Based on the results of recent studies, we hypothesize that micro-CT enables the visualization of neovascularization and stroma formation in sarcomas at high-resolution in vivo and ex vivo, including the novel techniques of whole-block and whole-tissue imaging. Finding correlations between CT, PET/CT, and micro-CT imaging features, the results of the histopathological specimen examination and clinical outcomes may significantly increase the accuracy of soft-tissue and bone tumor diagnostics, which leads to the initiation of appropriate histotype-specific management in a timely manner and, consequently, to improved outcomes.
Collapse
Affiliation(s)
- Elena Popova
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Sergey Tkachev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Igor Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-901-797-5406
| |
Collapse
|
4
|
Cheng JN, Frye JB, Whitman SA, Kunihiro AG, Pandey R, Funk JL. A Role for TGFβ Signaling in Preclinical Osteolytic Estrogen Receptor-Positive Breast Cancer Bone Metastases Progression. Int J Mol Sci 2021; 22:4463. [PMID: 33923316 PMCID: PMC8123146 DOI: 10.3390/ijms22094463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
While tumoral Smad-mediated transforming growth factor β (TGFβ) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFβ signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFβ receptors II and I, only cells with TGFβ-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFβ and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFβ neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFβ may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFβ signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.
Collapse
Affiliation(s)
- Julia N. Cheng
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Jennifer B. Frye
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
| | - Susan A. Whitman
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
| | - Andrew G. Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA;
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Janet L. Funk
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA; (J.B.F.); (S.A.W.)
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
5
|
Cheng JN, Frye JB, Whitman SA, Kunihiro AG, Brickey JA, Funk JL. Osteolytic effects of tumoral estrogen signaling in an estrogen receptor-positive breast cancer bone metastasis model. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:17. [PMID: 34790880 PMCID: PMC8594878 DOI: 10.20517/2394-4722.2021.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM Estrogen receptor α-positive (ER+) subtypes of breast cancer have the greatest predilection for forming osteolytic bone metastases (BMETs). Because tumor-derived factors mediate osteolysis, a possible role for tumoral ERα signaling in driving ER+ BMET osteolysis was queried using an estrogen (E2)-dependent ER+ breast cancer BMET model. METHODS Female athymic Foxn1nu mice were inoculated with human ER+ MCF-7 breast cancer cells via the left cardiac ventricle post-E2 pellet placement, and age- and dose-dependent E2 effects on osteolytic ER+ BMET progression, as well as direct bone effects of E2, were determined. RESULTS Osteolytic BMETs, which did not form in the absence of E2 supplementation, occurred with the same frequency in young (5-week-old) vs. skeletally mature (16-week-old) E2 (0.72 mg)-treated mice, but were larger in young mice where anabolic bone effects of E2 were greater. However, in mice of a single age and across a range of E2 doses, anabolic E2 bone effects were constant, while osteolytic ER+ BMET lesion incidence and size increased in an E2-dose-dependent fashion. Osteoclasts in ER+ tumor-bearing (but not tumor-naive) mice increased in an E2-dose dependent fashion at the bone-tumor interface, while histologic tumor size and proliferation did not vary with E2 dose. E2-inducible tumoral secretion of the osteolytic factor parathyroid hormone-related protein (PTHrP) was dose-dependent and mediated by ERα, with significantly greater levels of secretion from ER+ BMET-derived tumor cells. CONCLUSION These results suggest that tumoral ERα signaling may contribute to ER+ BMET-associated osteolysis, potentially explaining the greater predilection for ER+ tumors to form clinically-evident osteolytic BMETs.
Collapse
Affiliation(s)
- Julia N. Cheng
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA
| | - Jennifer B. Frye
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Susan A. Whitman
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Andrew G. Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA
| | - Julia A. Brickey
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Janet L. Funk
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
6
|
Kunihiro AG, Luis PB, Frye JB, Chew W, Chow HHS, Schneider C, Funk JL. Bone-Specific Metabolism of Dietary Polyphenols in Resorptive Bone Diseases. Mol Nutr Food Res 2020; 64:e2000072. [PMID: 32506808 PMCID: PMC7712627 DOI: 10.1002/mnfr.202000072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/27/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Curcumin prevents bone loss in resorptive bone diseases and inhibits osteoclast formation, a key process driving bone loss. Curcumin circulates as an inactive glucuronide that can be deconjugated in situ by bone's high β-glucuronidase (GUSB) content, forming the active aglycone. Because curcumin is a common remedy for musculoskeletal disease, effects of microenvironmental changes consequent to skeletal development or disease on bone curcumin metabolism are explored. METHODS AND RESULTS Across sexual/skeletal development or between sexes in C57BL/6 mice ingesting curcumin (500 mg kg-1 ), bone curcumin metabolism and GUSB enzyme activity are unchanged, except for >twofold higher (p < 0.05) bone curcumin-glucuronide substrate levels in immature (4-6-week-old) mice. In ovariectomized (OVX) or bone metastasis-bearing female mice, bone substrate levels are also >twofold higher. Aglycone curcumin levels tend to increase proportional to substrate such that the majority of glucuronide distributing to bone is deconjugated, including OVX mice where GUSB decreases by 24% (p < 0.01). GUSB also catalyzes deconjugation of resveratrol and quercetin glucuronides by bone, and a requirement for the aglycones for anti-osteoclastogenic bioactivity, analogous to curcumin, is confirmed. CONCLUSION Dietary polyphenols circulating as glucuronides may require in situ deconjugation for bone-protective effects, a process influenced by bone microenvironmental changes.
Collapse
Affiliation(s)
- Andrew G Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | | | - Wade Chew
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - H-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|