1
|
Putthanbut N, Su PAB, Lee JY, Borlongan CV. Circadian rhythms in stem cells and their therapeutic potential. Stem Cell Res Ther 2025; 16:85. [PMID: 39988679 PMCID: PMC11849187 DOI: 10.1186/s13287-025-04178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Circadian rhythms are present in almost all cells, but their existence in stem cells has remains not well established. Circadian clock appears to be closely associated with differentiated mature cells and rarely detected in immature embryonic stem cells. Recent evidence reveals the presence of circadian genes and rhythmic physiologic activities in stem cells as well as stem cell-derived extracellular vesicle (EV) characteristics. The circadian clock entails diverse physiologic and pathological mechanisms underlying cell fate. Integration of circadian rhythm to clinical applications, such as chronotherapy, chrono-biomarker, and environment modification, may facilitate therapeutic outcomes of stem cell-based regenerative medicine. Understanding circadian rhythms in stem cells can optimize stem cell-based therapies by determining the best times for harvesting and administering stem cells, thereby enhancing therapeutic efficacy. Further research into the circadian properties of stem cells will refine stem cell-based therapies, contributing to advancements in regenerative medicine.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Center of Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Paul Alexis Bourgade Su
- Center of Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, USA
- Centro de Investigación en Ciencias de La Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Naucalpan, Mexico
| | - Jea-Young Lee
- Center of Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Center of Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, USA.
| |
Collapse
|
2
|
Afroze N, Sundaram MK, Haque S, Hussain A. Long non-coding RNA involved in the carcinogenesis of human female cancer - a comprehensive review. Discov Oncol 2025; 16:122. [PMID: 39912983 PMCID: PMC11803034 DOI: 10.1007/s12672-025-01848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Recent years have seen an increase in our understanding of lncRNA and their role in various disease states. lncRNA molecules have been shown to contribute to carcinogenesis and influence the various cancer hallmarks and signalling pathways. It is pertinent to understand the specific contributions and mechanisms of action of these molecules in various cancers. This review provides an overview of the various lncRNA entities that influence and regulate the gynaecological cancers, namely, cervical, breast, ovarian and uterine cancers. The review curates a list of the key players and their effect on cellular processes. lncRNA molecules show immense potential to be used as diagnostic and prognostic indicators and in therapeutic strategies. Several phytochemicals, small molecules, RNA-based regulators, oligos and gene editing tools show promise as a therapeutic strategy. While this review highlights the promising developments in this field, it also underscores the necessity for further research to delineate the complex role of lncRNAs in cancer.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Madhumitha K Sundaram
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates.
| |
Collapse
|
3
|
Zou S, Chen Q, Shen Z, Qin B, Zhu X, Lan Y. Update on the roles of regular daily rhythms in combating brain tumors. Eur J Pharmacol 2025; 986:177144. [PMID: 39571672 DOI: 10.1016/j.ejphar.2024.177144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
An endogenous time-keeping system found in all kingdoms of life, the endogenous circadian clock, is the source of the essential cyclic change mechanism known as the circadian rhythm. The primary circadian clock that synchronizes peripheral circadian clocks to the proper phase is housed in the anterior hypothalamus's suprachiasmatic nuclei (SCN), which functions as a central pacemaker. According to many epidemiological studies, many cancer types, especially brain tumors, have shown evidence of dysregulated clock gene expression, and the connection between clock and brain tumors is highly specific. In some studies, it is reported that the treatment administered in the morning has been linked to prolonged survival for brain cancer patients, and drug sensitivity and gene expression in gliomas follow daily rhythms. These results suggest a relationship between the circadian rhythm and the onset and spread of brain tumors, while further accumulation of research evidence will be needed to establish definitely these positive outcomes as well as to determine the mechanism underlying them. Chronotherapy provides a means of harnessing current medicines to prolong patients' lifespans and improve their quality of life, indicating the significance of circadian rhythm in enhancing the design of future patient care and clinical trials. Moreover, it is implicated that chronobiological therapy target may provide a significant challenge that warrants extensive effort to achieve. This review examines evidence of the relationship of circadian rhythm with glioma molecular pathogenesis and summarizes the mechanisms and drugs implicated in this disease.
Collapse
Affiliation(s)
- Shuang Zou
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, China
| | - Zhiwei Shen
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Zhu
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yulong Lan
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Lian JW, Li SY, Clarke RB, Howell SJ, Meng QJ. Can we utilise the circadian clock to target cancer stem cells? Cancer Lett 2024; 611:217360. [PMID: 39608441 DOI: 10.1016/j.canlet.2024.217360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The 24-hourly circadian clock has been implicated in the regulation of multiple cancer hallmarks and characteristics. Cancer stem cells (CSCs) are a small but significant population of cells within many cancers, characterised by their self-renewal and clonogenic capacities. Increasing evidence points to CSCs having prominent roles in metastasis and drug resistance. However, it remains largely unknown how circadian clocks are involved with CSCs and what implications these interactions have for cancer progression and therapeutics. In this review, we examine the growing evidence on the role of circadian clocks in CSCs and discuss the potential therapeutic implications. This opens up new opportunities to target CSCs through various chronotherapeutic approaches, potentially improving clinical cancer outcomes. We propose different scenarios in which targeting circadian clocks in CSCs or their surrounding microenvironment could be developed into effective therapeutic strategies, including: (1) direct pharmacological targeting of core clock molecules, (2) optimising the timing of systemic anticancer therapies, and (3) targeting the neighbouring cells or systemic factors that influence tumour cells in a circadian-dependent manner.
Collapse
Affiliation(s)
- Jia-Wen Lian
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shi-Yang Li
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sacha J Howell
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
5
|
Yao M, Su Y, Xiong R, Zhang X, Zhu X, Chen YC, Ao P. Deciphering the topological landscape of glioma using a network theory framework. Sci Rep 2024; 14:26724. [PMID: 39496747 PMCID: PMC11535471 DOI: 10.1038/s41598-024-77856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Glioma stem cells have been recognized as key players in glioma recurrence and therapeutic resistance, presenting a promising target for novel treatments. However, the limited understanding of the role glioma stem cells play in the glioma hierarchy has drawn controversy and hindered research translation into therapies. Despite significant advances in our understanding of gene regulatory networks, the dynamics of these networks and their implications for glioma remain elusive. This study employs a systemic theoretical perspective to integrate experimental knowledge into a core endogenous network model for glioma, thereby elucidating its energy landscape through network dynamics computation. The model identifies two stable states corresponding to astrocytic-like and oligodendrocytic-like tumor cells, connected by a transition state with the feature of high stemness, which serves as one of the energy barriers between astrocytic-like and oligodendrocytic-like states, indicating the instability of glioma stem cells in vivo. We also obtained various stable states further supporting glioma's multicellular origins and uncovered a group of transition states that could potentially induce tumor heterogeneity and therapeutic resistance. This research proposes that the transition states linking both glioma stable states are central to glioma heterogeneity and therapy resistance. Our approach may contribute to the advancement of glioma therapy by offering a novel perspective on the complex landscape of glioma biology.
Collapse
Affiliation(s)
- Mengchao Yao
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Yang Su
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ruiqi Xiong
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Xile Zhang
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
- Shanghai Shibei High School, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
| | - Ping Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Zhou Z, Zhang R, Zhang Y, Xu Y, Wang R, Chen S, Lv Y, Chen Y, Ren Y, Luo P, Cheng Q, Xu H, Weng S, Zuo A, Ba Y, Liu S, Han X, Liu Z. Circadian disruption in cancer hallmarks: Novel insight into the molecular mechanisms of tumorigenesis and cancer treatment. Cancer Lett 2024; 604:217273. [PMID: 39306230 DOI: 10.1016/j.canlet.2024.217273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Circadian rhythms are 24-h rhythms governing temporal organization of behavior and physiology generated by molecular clocks composed of autoregulatory transcription-translation feedback loops (TTFLs). Disruption of circadian rhythms leads to a spectrum of pathologies, including cancer by triggering or being involved in different hallmarks. Clock control of phenotypic plasticity involved in tumorigenesis operates in aberrant dedifferentiating to progenitor-like cell states, generation of cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) events. Circadian rhythms might act as candidates for regulatory mechanisms of cellular senescent and functional determinants of senescence-associated secretory phenotype (SASP). Reciprocal control between clock and epigenetics sheds light on post-transcriptional regulation of circadian rhythms and opens avenues for novel anti-cancer strategies. Additionally, disrupting circadian rhythms influences microbiota communities that could be associated with altered homeostasis contributing to cancer development. Herein, we summarize recent advances in support of the nexus between disruptions of circadian rhythms and cancer hallmarks of new dimensions, thus providing novel perspectives on potentially effective treatment approaches for cancer management.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Pediatrics, The Third Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Chen K, Wang Y, Li D, Wu R, Wang J, Wei W, Zhu W, Xie W, Feng D, He Y. Biological clock regulation by the PER gene family: a new perspective on tumor development. Front Cell Dev Biol 2024; 12:1332506. [PMID: 38813085 PMCID: PMC11133573 DOI: 10.3389/fcell.2024.1332506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
The Period (PER) gene family is one of the core components of the circadian clock, with substantial correlations between the PER genes and cancers identified in extensive researches. Abnormal mutations in PER genes can influence cell function, metabolic activity, immunity, and therapy responses, thereby promoting the initiation and development of cancers. This ultimately results in unequal cancers progression and prognosis in patients. This leads to variable cancer progression and prognosis among patients. In-depth studies on the interactions between the PER genes and cancers can reveal novel strategies for cancer detection and treatment. In this review, we aim to provide a comprehensive overview of the latest research on the role of the PER gene family in cancer.
Collapse
Affiliation(s)
- Kai Chen
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Wang
- Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhu
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Wenhua Xie
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| |
Collapse
|
8
|
Nelson N, Relógio A. Molecular mechanisms of tumour development in glioblastoma: an emerging role for the circadian clock. NPJ Precis Oncol 2024; 8:40. [PMID: 38378853 PMCID: PMC10879494 DOI: 10.1038/s41698-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is one of the most lethal cancers with current therapeutic options lacking major successes. This underlines the necessity to understand glioblastoma biology on other levels and use these learnings for the development of new therapeutic concepts. Mounting evidence in the field of circadian medicine points to a tight interplay between disturbances of the circadian system and glioblastoma progression. The circadian clock, an internal biological mechanism governing numerous physiological processes across a 24-h cycle, also plays a pivotal role in regulationg key cellular functions, including DNA repair, cell cycle progression, and apoptosis. These processes are integral to tumour development and response to therapy. Disruptions in circadian rhythms can influence tumour growth, invasion, and response to treatment in glioblastoma patients. In this review, we explore the robust association between the circadian clock, and cancer hallmarks within the context of glioblastoma. We further discuss the impact of the circadian clock on eight cancer hallmarks shown previously to link the molecular clock to different cancers, and summarize the putative role of clock proteins in circadian rhythm disturbances and chronotherapy in glioblastoma. By unravelling the molecular mechanisms behind the intricate connections between the circadian clock and glioblastoma progression, researchers can pave the way for the identification of potential therapeutic targets, the development of innovative treatment strategies and personalized medicine approaches. In conclusion, this review underscores the significant influence of the circadian clock on the advancement and understanding of future therapies in glioblastoma, ultimately leading to enhanced outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Nina Nelson
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Haematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
9
|
Li SY, Hammarlund JA, Wu G, Lian JW, Howell SJ, Clarke RB, Adamson AD, Gonçalves CF, Hogenesch JB, Anafi RC, Meng QJ. Tumor circadian clock strength influences metastatic potential and predicts patient prognosis in luminal A breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2311854121. [PMID: 38319971 PMCID: PMC10873596 DOI: 10.1073/pnas.2311854121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular circadian rhythms in noncancerous and cancerous human breast tissues and their clinical relevance are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For noncancerous breast tissue, inflammatory, epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian organization. Luminal A organoids and informatic ordering of luminal A samples exhibit continued, albeit dampened and reprogrammed rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely among luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude luminal A tumors. Surprisingly, patients with high-magnitude tumors had reduced 5-y survival. Correspondingly, 3D luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.
Collapse
Affiliation(s)
- Shi-Yang Li
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PT, United Kingdom
| | - Jan A. Hammarlund
- School of Biomedical Engineering, Science and Health Systems, Bossone Research Center, Drexel University, Philadelphia, PA19104
| | - Gang Wu
- Division of Human Genetics, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Division of Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Jia-Wen Lian
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PT, United Kingdom
| | - Sacha J. Howell
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM20 4GJ, United Kingdom
| | - Robert B. Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM20 4GJ, United Kingdom
| | - Antony D. Adamson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PT, United Kingdom
| | - Cátia F. Gonçalves
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PT, United Kingdom
| | - John B. Hogenesch
- Division of Human Genetics, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Division of Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Ron C. Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Qing-Jun Meng
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9PT, United Kingdom
| |
Collapse
|
10
|
Marcu LG. Circadian rhythm-based cancer therapy in randomised clinical trials. Expert Rev Anticancer Ther 2024; 24:29-39. [PMID: 38127132 DOI: 10.1080/14737140.2023.2298835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Since the 2017 Nobel Prize awarded to J. Hall, M. Rosbash and M.W. Young for their discoveries of molecular mechanisms behind the biological clock, circadian rhythm-based therapy, also known as chronotherapy, is receiving more attention in oncology and the number of anatomical sites of interest in this field is increasing. This observation is in line with the clinical evidence provided by trials on head and neck, lung, colorectal and cervical cancers, as well as the presently ongoing chronotherapy trials for breast and brain cancers. AREAS COVERED The aim of this review was to collate all randomized trials conducted on chronotherapy for various tumor sites and to appraise the evidence for chrono-oncology to advance personalized therapy. Relevant literature was collected from Pubmed/Medline databases and from clinicatrials.gov. EXPERT OPINION Current randomized clinical trials offer a certain level of evidence for the potential of chronotherapy to personalize oncologic treatment. However, comparison of trial results is hindered by the differences in timing of radiation/chemotherapy, the absence of harmonized recommendations for treatment outcome evaluation and not ultimately, the general lack of considering gender as a matched variable in trials, which was found to be a powerful factor influencing response to treatment.
Collapse
Affiliation(s)
- Loredana G Marcu
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia
- Faculty of Informatics and Science, University of Oradea, Oradea, Romania
| |
Collapse
|
11
|
Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol 2023; 13:1223208. [PMID: 37601651 PMCID: PMC10437117 DOI: 10.3389/fonc.2023.1223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.
Collapse
Affiliation(s)
- Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Hammarlund JA, Li SY, Wu G, Lian JW, Howell SJ, Clarke R, Adamson A, Gonçalves CF, Hogenesch JB, Meng QJ, Anafi RC. Subtype-specific circadian clock dysregulation modulates breast cancer biology, invasiveness, and prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.540386. [PMID: 37293090 PMCID: PMC10245642 DOI: 10.1101/2023.05.17.540386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular rhythms in non-cancerous and cancerous human breast tissues are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For non-cancerous tissue, the inferred order of core-circadian genes matches established physiology. Inflammatory, epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian organization. Luminal A organoids and informatic ordering of Luminal A samples exhibit continued, albeit disrupted rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely among Luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude Luminal A tumors. Patients with high-magnitude tumors had reduced 5-year survival. Correspondingly, 3D Luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.
Collapse
Affiliation(s)
- Jan A Hammarlund
- School of Biomedical Engineering, Science and Health Systems. Drexel University, Philadelphia, PA, USA
| | - Shi-Yang Li
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jia-wen Lian
- School of Biomedical Engineering, Science and Health Systems. Drexel University, Philadelphia, PA, USA
| | - Sacha J Howell
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rob Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antony Adamson
- School of Biomedical Engineering, Science and Health Systems. Drexel University, Philadelphia, PA, USA
| | - Cátia F. Gonçalves
- School of Biomedical Engineering, Science and Health Systems. Drexel University, Philadelphia, PA, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Qing-Jun Meng
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ron C Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
13
|
Ortega-Campos SM, Verdugo-Sivianes EM, Amiama-Roig A, Blanco JR, Carnero A. Interactions of circadian clock genes with the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188900. [PMID: 37105413 DOI: 10.1016/j.bbcan.2023.188900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
The molecular machinery of the circadian clock regulates the expression of many genes and processes in the organism, allowing the adaptation of cellular activities to the daily light-dark cycles. Disruption of the circadian rhythm can lead to various pathologies, including cancer. Thus, disturbance of the normal circadian clock at both genetic and environmental levels has been described as an independent risk factor for cancer. In addition, researchers have proposed that circadian genes may have a tissue-dependent and/or context-dependent role in tumorigenesis and may function both as tumor suppressors and oncogenes. Finally, circadian clock core genes may trigger or at least be involved in different hallmarks of cancer. Hence, expanding the knowledge of the molecular basis of the circadian clock would be helpful to identify new prognostic markers of tumorigenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Sara M Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Amiama-Roig
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - José R Blanco
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
14
|
Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy. Int J Mol Sci 2022; 23:ijms232214181. [PMID: 36430659 PMCID: PMC9698777 DOI: 10.3390/ijms232214181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms, including sleep/wake cycles as well as hormonal, immune, metabolic, and cell proliferation rhythms, are fundamental biological processes driven by a cellular time-keeping system called the circadian clock. Disruptions in these rhythms due to genetic alterations or irregular lifestyles cause fundamental changes in physiology, from metabolism to cellular proliferation and differentiation, resulting in pathological consequences including cancer. Cancer cells are not uniform and static but exist as different subtypes with phenotypic and functional differences in the tumor microenvironment. At the top of the heterogeneous tumor cell hierarchy, cancer stem cells (CSCs), a self-renewing and multi-potent cancer cell type, are most responsible for tumor recurrence and metastasis, chemoresistance, and mortality. Phenotypically, CSCs are associated with the epithelial-mesenchymal transition (EMT), which confers cancer cells with increased motility and invasion ability that is characteristic of malignant and drug-resistant stem cells. Recently, emerging studies of different cancer types, such as glioblastoma, leukemia, prostate cancer, and breast cancer, suggest that the circadian clock plays an important role in the maintenance of CSC/EMT characteristics. In this review, we describe recent discoveries regarding how tumor intrinsic and extrinsic circadian clock-regulating factors affect CSC evolution, highlighting the possibility of developing novel chronotherapeutic strategies that could be used against CSCs to fight cancer.
Collapse
|
15
|
Marcu LG. Developments on tumour site-specific chrono-oncology towards personalised treatment. Crit Rev Oncol Hematol 2022; 179:103803. [PMID: 36058443 DOI: 10.1016/j.critrevonc.2022.103803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Research into chronotherapy has seen notable developments over the past decades, with a clear focus on the identification of circadian clock genes as potential treatment targets. Moreover, new factors are investigated, such as gender and the role of cancer stem cells in influencing the outcome of chronomodulated treatments. These factors could add to the arsenal of parameters that assist with patient stratification and treatment personalisation. Literature analysis showed that certain anatomical sites received more attention and the associated studies reported clinically significant results, even though some findings are contradictory. The aim of this work was to review the existing studies on chrono-oncology using a tumour site-specific approach and to highlight the status of research in various cancers. Inconsistencies in data reporting, the nature of the studies and the highly heterogeneous patient characteristics, highlight the need for well-designed randomised controlled trials to elucidate the real potential of chronotherapy in oncology.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics and Science, University of Oradea, Oradea 410087, Romania; School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
16
|
Johnson AL, Laterra J, Lopez-Bertoni H. Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Front Oncol 2022; 12:995498. [PMID: 36212415 PMCID: PMC9532940 DOI: 10.3389/fonc.2022.995498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Despite its growing use in cancer treatment, immunotherapy has been virtually ineffective in clinical trials for gliomas. The inherently cold tumor immune microenvironment (TIME) in gliomas, characterized by a high ratio of pro-tumor to anti-tumor immune cell infiltrates, acts as a seemingly insurmountable barrier to immunotherapy. Glioma stem cells (GSCs) within these tumors are key contributors to this cold TIME, often functioning indirectly through activation and recruitment of pro-tumor immune cell types. Furthermore, drivers of GSC plasticity and heterogeneity (e.g., reprogramming transcription factors, epigenetic modifications) are associated with induction of immunosuppressive cell states. Recent studies have identified GSC-intrinsic mechanisms, including functional mimicry of immune suppressive cell types, as key determinants of anti-tumor immune escape. In this review, we cover recent advancements in our understanding of GSC-intrinsic mechanisms that modulate GSC-TIME interactions and discuss cutting-edge techniques and bioinformatics platforms available to study immune modulation at high cellular resolution with exploration of both malignant (i.e., GSC) and non-malignant (i.e., immune) cell fractions. Finally, we provide insight into the therapeutic opportunities for targeting immunomodulatory GSC-intrinsic mechanisms to potentiate immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
18
|
Stress-induced epinephrine promotes epithelial-to-mesenchymal transition and stemness of CRC through the CEBPB/TRIM2/P53 axis. J Transl Med 2022; 20:262. [PMID: 35672760 PMCID: PMC9172202 DOI: 10.1186/s12967-022-03467-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Background Previous studies have indicated that chronic emotional stressors likely participate in the occurrence of cancers. However, direct evidence connecting stress and colorectal cancer development remains almost completely unexplored. Methods Chronic stress mouse model was used to investigate the influence of stress on tumorigenesis. Several major agonists and antagonists of adrenergic receptors were applied to investigate the effects of β-adrenergic signaling on the development of CRC. Chromatin immunoprecipitation assays (CHIP) were used to investigate the binding of p53 and CEBPB to TRIM2 promoter. Mammosphere cultures, Cell Counting Kit-8 (CCK-8) assay, colony-formation assay, scratch wound healing assays, qPCR, immunofluorescence, coimmunoprecipitation and western blotting were used to explore the effect of stress-induced epinephrine on the CEBPB/TRIM2/P53 axis and the progress of CRC cells. Results In this study, we found that stress-induced epinephrine (EPI) promotes the proliferation, metastasis and CSC generation of CRC primarily through the β2-adrenergic receptor. Furthermore, our studies also confirmed that chronic stress decreased the stability of p53 protein by promoting p53 ubiquitination. Results of transcriptome sequencing indicated that TRIM2 was overexpressed in cells treated with EPI. Further studies indicated that TRIM2 could regulate the stability of p53 protein by promoting p53 ubiquitination. Finally, we further proved that CEBPB was regulated by EPI and acts as the upstream transcription factor of TRIM2. Conclusions Our studies proved that stress-induced EPI promotes the development and stemness of CRC through the CEBPB/TRIM2/P53 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03467-8.
Collapse
|
19
|
Malik A, Nalluri S, De A, Beligala D, Geusz ME. The Relevance of Circadian Clocks to Stem Cell Differentiation and Cancer Progression. NEUROSCI 2022; 3:146-165. [PMID: 39483369 PMCID: PMC11523739 DOI: 10.3390/neurosci3020012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2024] Open
Abstract
The molecular mechanism of circadian clocks depends on transcription-translation feedback loops (TTFLs) that have known effects on key cellular processes. However, the distinct role of circadian TTFLs in mammalian stem cells and other less differentiated cells remains poorly understood. Neural stem cells (NSCs) of the brain generate neurons and glia postnatally but also may become cancer stem cells (CSCs), particularly in astrocytomas. Evidence indicates clock TTFL impairment is needed for tumor growth and progression; although, this issue has been examined primarily in more differentiated cancer cells rather than CSCs. Similarly, few studies have examined circadian rhythms in NSCs. After decades of research, it is now well recognized that tumors consist of CSCs and a range of other cancer cells along with noncancerous stromal cells. The circadian properties of these many contributors to tumor properties and treatment outcome are being widely explored. New molecular tools and ones in development will likely enable greater discrimination of important circadian and non-circadian cells within malignancies at multiple stages of cancer progression and following therapy. Here, we focus on adult NSCs and glioma CSCs to address how cells at different stages of differentiation may harbor unique states of the molecular circadian clock influencing differentiation and cell fate.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Dilshan Beligala
- Department of Molecular Biology and Biotechnology, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| |
Collapse
|
20
|
Yang T, Liang N, Li J, Hu P, Huang Q, Zhao Z, Wang Q, Zhang H. MDSCs might be "Achilles heel" for eradicating CSCs. Cytokine Growth Factor Rev 2022; 65:39-50. [PMID: 35595600 DOI: 10.1016/j.cytogfr.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022]
Abstract
During tumor initiation and progression, the complicated role of immune cells in the tumor immune microenvironment remains a concern. Myeloid-derived suppressor cells (MDSCs) are a group of immune cells that originate from the bone marrow and have immunosuppressive potency in various diseases, including cancer. In recent years, the key role of cancer stemness has received increasing attention in cancer development and therapy. Several studies have demonstrated the important regulatory relationship between MDSCs and cancer stem cells (CSCs). However, there is still no clear understanding regarding the complex interacting regulation of tumor malignancy, and current research progress is limited. In this review, we summarize the complicated role of MDSCs in the modulation of cancer stemness, evaluate the mechanism of the relationship between CSCs and MDSCs, and discuss potential strategies for eradicating CSCs with respect to MDSCs.
Collapse
Affiliation(s)
- Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali 671000, China
| | - Jing Li
- Department of Stomatology, Shaanxi Provincial Hospital, Xi'an, Shaanxi 710038, China
| | - Pan Hu
- Department of Anesthesiology, the 920 Hospital of Joint Logistic Support Force of Chinese PLA, Kunming, Yunnan, China
| | - Qian Huang
- Department of Gynaecology and Obstetrics, The 75th Group Army Hospital, Dali 671000, China
| | - Zifeng Zhao
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Qian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China; Department of Intervention Therapy, The Second Affiliated Hospital, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
21
|
Orioka M, Eguchi M, Mizui Y, Ikeda Y, Sakama A, Li Q, Yoshimura H, Ozawa T, Citterio D, Hiruta Y. A Series of Furimazine Derivatives for Sustained Live-Cell Bioluminescence Imaging and Application to the Monitoring of Myogenesis at the Single-Cell Level. Bioconjug Chem 2022; 33:496-504. [PMID: 35184558 DOI: 10.1021/acs.bioconjchem.2c00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioluminescence (BL) imaging, which utilizes light emitted through the enzymatic reaction of luciferase oxidizing its substrate luciferin, enables sensitive and noninvasive monitoring of life phenomena. Herein, we developed a series of caged furimazine (FMZ) derivatives by introducing a protective group at the C-3 position and a hydroxy group at the C-6 phenyl ring to realize long-term live-cell BL imaging based on the NanoLuc (NLuc)/NanoKAZ (NKAZ)-FMZ system. The membrane permeability and cytotoxicity of the substrates were evaluated and related to their hydrophobicity. Among the series, the derivative with the bulkiest protective group (adamantanecarbonyl group) and a hydroxy substituent (named Ad-FMZ-OH) showed significantly prolonged and constant BL signal in cells expressing NLuc compared to the native FMZ substrate. This derivative enabled continuous BL imaging at the single-cell level for 24 h. Furthermore, we applied Ad-FMZ-OH to BL imaging of myocyte fusion and succeeded in the consecutive and sensitive monitoring at a single-cell level over a day. In summary, NLuc/NKAZ-caged FMZ derivatives have the potential to be applied to live-cell BL imaging of various life phenomena that require long-term observation.
Collapse
Affiliation(s)
- Mariko Orioka
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masatoshi Eguchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Mizui
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuma Ikeda
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akihiro Sakama
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Qiaojing Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Citterio
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
22
|
Zheng X, Lv X, Zhu L, Xu K, Shi C, Cui L, Ding H. The Circadian Gene NPAS2 Act as a Putative Tumor Stimulative Factor for Uterine Corpus Endometrial Carcinoma. Cancer Manag Res 2022; 13:9329-9343. [PMID: 34992456 PMCID: PMC8711112 DOI: 10.2147/cmar.s343097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background Mounting evidence indicates altered circadian rhythm represents a critical factor affecting carcinogenesis and tumor progression. The circadian gene neuronal PAS domain protein 2 (NPAS2) constitutes a newly discovered prognostic biomarker. NPAS2 dysregulation is found in multiple malignancies, although its functions in uterine corpus endometrial carcinoma (UCEC) remain largely unknown. Objective To evaluate NPAS2’s roles in UCEC and to explore the underlying mechanisms. Methods NPAS2 transcription levels, patient prognosis, different clinical stages and target microRNAs in UCEC cases were comparatively assessed based on public databases, including UALCAN, GEPIA, TIMER, Kaplan–Meier plotter, starBase database, LinkedOmics and String. Then, qRT-PCR and immunohistochemical analysis were applied to analyze the expression of NPAS2 in UCEC tissue samples. CCK-8, clonogenic assay and flow cytometry were carried out for detecting cell viability, colony formation ability and cell apoptosis, respectively. Results NPAS2 was upregulated in tissue samples from UCEC cases compared with the corresponding control specimens. NPAS2 overexpression was associated with decreased overall (OS), disease free (DFS) and relapse free (RFS) survival in UCEC. In addition, NPAS2 overexpression was associated with clinical stage, tumor grade, estrogen receptor status, myometrial invasion in UCEC. Furthermore, NPAS2 knockdown or overexpression altered cell proliferation and apoptosis in UCEC. Moreover, NPAS2 showed significant negative correlations with miR-17-5p and miR-93-5p, and positive correlations with miR-106a-5p and miR-381-3p in UCEC. Conclusion NPAS2 overexpression is associated with poor prognosis and clinicopathological characteristics in UCEC and promotes proliferation and colony formation while inhibiting apoptosis. Finally, NPAS2 is associated with several miRNAs in UCEC.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China.,Department of Biochemistry & Genetics, The National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Xiuyi Lv
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Linyan Zhu
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Kejun Xu
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Cong Shi
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Lining Cui
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, 315035, People's Republic of China
| |
Collapse
|
23
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
24
|
Zhang Y, Devocelle A, Desterke C, de Souza LEB, Hadadi É, Acloque H, Foudi A, Xiang Y, Ballesta A, Chang Y, Giron-Michel J. BMAL1 Knockdown Leans Epithelial-Mesenchymal Balance toward Epithelial Properties and Decreases the Chemoresistance of Colon Carcinoma Cells. Int J Mol Sci 2021; 22:5247. [PMID: 34065633 PMCID: PMC8157026 DOI: 10.3390/ijms22105247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
The circadian clock coordinates biological and physiological functions to day/night cycles. The perturbation of the circadian clock increases cancer risk and affects cancer progression. Here, we studied how BMAL1 knockdown (BMAL1-KD) by shRNA affects the epithelial-mesenchymal transition (EMT), a critical early event in the invasion and metastasis of colorectal carcinoma (CRC). In corresponding to a gene set enrichment analysis, which showed a significant enrichment of EMT and invasive signatures in BMAL1_high CRC patients as compared to BMAL1_low CRC patients, our results revealed that BMAL1 is implicated in keeping the epithelial-mesenchymal equilibrium of CRC cells and influences their capacity of adhesion, migration, invasion, and chemoresistance. Firstly, BMAL1-KD increased the expression of epithelial markers (E-cadherin, CK-20, and EpCAM) but decreased the expression of Twist and mesenchymal markers (N-cadherin and vimentin) in CRC cell lines. Finally, the molecular alterations after BMAL1-KD promoted mesenchymal-to-epithelial transition-like changes mostly appeared in two primary CRC cell lines (i.e., HCT116 and SW480) compared to the metastatic cell line SW620. As a consequence, migration/invasion and drug resistance capacities decreased in HCT116 and SW480 BMAL1-KD cells. Together, BMAL1-KD alerts the delicate equilibrium between epithelial and mesenchymal properties of CRC cell lines, which revealed the crucial role of BMAL1 in EMT-related CRC metastasis and chemoresistance.
Collapse
Affiliation(s)
- Yuan Zhang
- INSERM UMR-S 935, CNRS Campus, 94801 Villejuif, France; (Y.Z.); (C.D.); (L.E.B.d.S.); (É.H.); (H.A.); (A.F.); (Y.C.)
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Aurore Devocelle
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institute of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, 94807 Villejuif, France
| | - Christophe Desterke
- INSERM UMR-S 935, CNRS Campus, 94801 Villejuif, France; (Y.Z.); (C.D.); (L.E.B.d.S.); (É.H.); (H.A.); (A.F.); (Y.C.)
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Lucas Eduardo Botelho de Souza
- INSERM UMR-S 935, CNRS Campus, 94801 Villejuif, France; (Y.Z.); (C.D.); (L.E.B.d.S.); (É.H.); (H.A.); (A.F.); (Y.C.)
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Éva Hadadi
- INSERM UMR-S 935, CNRS Campus, 94801 Villejuif, France; (Y.Z.); (C.D.); (L.E.B.d.S.); (É.H.); (H.A.); (A.F.); (Y.C.)
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Hervé Acloque
- INSERM UMR-S 935, CNRS Campus, 94801 Villejuif, France; (Y.Z.); (C.D.); (L.E.B.d.S.); (É.H.); (H.A.); (A.F.); (Y.C.)
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Adlen Foudi
- INSERM UMR-S 935, CNRS Campus, 94801 Villejuif, France; (Y.Z.); (C.D.); (L.E.B.d.S.); (É.H.); (H.A.); (A.F.); (Y.C.)
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Yao Xiang
- INSERM UMR-S 1151, Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), Paris Descartes University, CNRS UMR 8253, 75730 Paris, France;
| | - Annabelle Ballesta
- INSERM UMR-S 900, Institut Curie, MINES ParisTech CBIO, PSL Research University, 92210 Saint-Cloud, France;
| | - Yunhua Chang
- INSERM UMR-S 935, CNRS Campus, 94801 Villejuif, France; (Y.Z.); (C.D.); (L.E.B.d.S.); (É.H.); (H.A.); (A.F.); (Y.C.)
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- INSERM UMR-S 1151, Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), Paris Descartes University, CNRS UMR 8253, 75730 Paris, France;
| | - Julien Giron-Michel
- Orsay-Vallée Campus, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institute of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, 94807 Villejuif, France
| |
Collapse
|
25
|
Cash E, Sephton S, Woolley C, Elbehi AM, R I A, Ekine-Afolabi B, Kok VC. The role of the circadian clock in cancer hallmark acquisition and immune-based cancer therapeutics. J Exp Clin Cancer Res 2021; 40:119. [PMID: 33794967 PMCID: PMC8017624 DOI: 10.1186/s13046-021-01919-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
The circadian system temporally regulates physiology to maintain homeostasis. Co-opting and disrupting circadian signals appear to be distinct attributes that are functionally important for the development of a tumor and can enable or give rise to the hallmarks that tumors use to facilitate their initiation, growth and progression. Because circadian signals are also strong regulators of immune cell proliferation, trafficking and exhaustion states, they play a role in how tumors respond to immune-based cancer therapeutics. While immuno-oncology has heralded a paradigm shift in cancer therapeutics, greater accuracy is needed to increase our capability of predicting who will respond favorably to, or who is likely to experience the troubling adverse effects of, immunotherapy. Insights into circadian signals may further refine our understanding of biological determinants of response and help answer the fundamental question of whether certain perturbations in circadian signals interfere with the activity of immune checkpoint inhibitors. Here we review the body of literature highlighting circadian disruption as a cancer promoter and synthesize the burgeoning evidence suggesting circadian signals play a role in how tumors respond to immune-based anti-cancer therapeutics. The goal is to develop a framework to advance our understanding of the relationships between circadian markers, cancer biology, and immunotherapeutics. Bolstered by this new understanding, these relationships may then be pursued in future clinical studies to improve our ability to predict which patients will respond favorably to, and avoid the adverse effects of, traditional and immune-based cancer therapeutics.
Collapse
Affiliation(s)
- Elizabeth Cash
- Department of Otolaryngology and Communicative Disorders, University of Louisville School of Medicine, James Graham Brown Cancer Center, 529 S Jackson Street, Louisville, KY, 40202, USA.
| | - Sandra Sephton
- Department of Psychological & Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Cassandra Woolley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Attia M Elbehi
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Anu R I
- Department of Clinical Biochemistry, MVR Cancer Center and Research Institute, Kerala, India
| | - Bene Ekine-Afolabi
- ZEAB Therapeutic Ltd, London, UK
- Department of Health, Sport & Bioscience, University of East London, Stratford, UK
| | - Victor C Kok
- Department of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taiwan, Taichung, Taiwan
| |
Collapse
|