1
|
Buckley SJ, Brauer C, Unmack PJ, Hammer MP, Beheregaray LB. The roles of aridification and sea level changes in the diversification and persistence of freshwater fish lineages. Mol Ecol 2021; 30:4866-4883. [PMID: 34265125 DOI: 10.1111/mec.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
While the influence of Pleistocene climatic changes on divergence and speciation has been well-documented across the globe, complex spatial interactions between hydrology and eustatics over longer timeframes may also determine species evolutionary trajectories. Within the Australian continent, glacial cycles were not associated with changes in ice cover and instead largely resulted in fluctuations from moist to arid conditions across the landscape. We investigated the role of hydrological and coastal topographic changes brought about by Plio-Pleistocene climatic changes on the biogeographic history of a small Australian freshwater fish, the southern pygmy perch Nannoperca australis. Using 7958 ddRAD-seq (double digest restriction-site associated DNA) loci and 45,104 filtered SNPs, we combined phylogenetic, coalescent and species distribution analyses to assess the various roles of aridification, sea level and tectonics and associated biogeographic changes across southeast Australia. Sea-level changes since the Pliocene and reduction or disappearance of large waterbodies throughout the Pleistocene were determining factors in strong divergence across the clade, including the initial formation and maintenance of a cryptic species, N. 'flindersi'. Isolated climatic refugia and fragmentation due to lack of connected waterways maintained the identity and divergence of inter- and intraspecific lineages. Our historical findings suggest that predicted increases in aridification and sea level due to anthropogenic climate change might result in markedly different demographic impacts, both spatially and across different landscape types.
Collapse
Affiliation(s)
- Sean James Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Chris Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
2
|
Meijer CG, Warburton HJ, Harding JS, McIntosh AR. Shifts in population size structure for a drying-tolerant fish in response to extreme drought. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christopher G. Meijer
- School of Biological Sciences; University of Canterbury - Te Whare Wānanga o Waitaha; Private Bag 4800 Christchurch 8140 New Zealand
| | - Helen J. Warburton
- School of Biological Sciences; University of Canterbury - Te Whare Wānanga o Waitaha; Private Bag 4800 Christchurch 8140 New Zealand
| | - Jon S. Harding
- School of Biological Sciences; University of Canterbury - Te Whare Wānanga o Waitaha; Private Bag 4800 Christchurch 8140 New Zealand
| | - Angus R. McIntosh
- School of Biological Sciences; University of Canterbury - Te Whare Wānanga o Waitaha; Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
3
|
Attard CRM, Brauer CJ, Sandoval-Castillo J, Faulks LK, Unmack PJ, Gilligan DM, Beheregaray LB. Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): Implications for management and resilience to climate change. Mol Ecol 2017; 27:196-215. [PMID: 29165848 DOI: 10.1111/mec.14438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 01/01/2023]
Abstract
Populations that are adaptively divergent but maintain high gene flow may have greater resilience to environmental change as gene flow allows the spread of alleles that have already been tested elsewhere. In addition, populations naturally subjected to ecological disturbance may already hold resilience to future environmental change. Confirming this necessitates ecological genomic studies of high dispersal, generalist species. Here we perform one such study on golden perch (Macquaria ambigua) in the Murray-Darling Basin (MDB), Australia, using a genome-wide SNP data set. The MDB spans across arid to wet and temperate to subtropical environments, with low to high ecological disturbance in the form of low to high hydrological variability. We found high gene flow across the basin and three populations with low neutral differentiation. Genotype-environment association analyses detected adaptive divergence predominantly linked to an arid region with highly variable riverine flow, and candidate loci included functions related to fat storage, stress and molecular or tissue repair. The high connectivity of golden perch in the MDB will likely allow locally adaptive traits in its most arid and hydrologically variable environment to spread and be selected in localities that are predicted to become arid and hydrologically variable in future climates. High connectivity in golden perch is likely due to their generalist life history and efforts of fisheries management. Our study adds to growing evidence of adaptation in the face of gene flow and highlights the importance of considering ecological disturbance and adaptive divergence in biodiversity management.
Collapse
Affiliation(s)
- Catherine R M Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Leanne K Faulks
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Nagano, Japan
| | - Peter J Unmack
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Dean M Gilligan
- New South Wales Department of Primary Industries, Batemans Bay Fisheries Centre, Batemans Bay, NSW, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
4
|
Pavlova A, Beheregaray LB, Coleman R, Gilligan D, Harrisson KA, Ingram BA, Kearns J, Lamb AM, Lintermans M, Lyon J, Nguyen TTT, Sasaki M, Tonkin Z, Yen JDL, Sunnucks P. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: A call for assisted gene flow. Evol Appl 2017; 10:531-550. [PMID: 28616062 PMCID: PMC5469170 DOI: 10.1111/eva.12484] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity underpins the ability of populations to persist and adapt to environmental changes. Substantial empirical data show that genetic diversity rapidly deteriorates in small and isolated populations due to genetic drift, leading to reduction in adaptive potential and fitness and increase in inbreeding. Assisted gene flow (e.g. via translocations) can reverse these trends, but lack of data on fitness loss and fear of impairing population "uniqueness" often prevents managers from acting. Here, we use population genetic and riverscape genetic analyses and simulations to explore the consequences of extensive habitat loss and fragmentation on population genetic diversity and future population trajectories of an endangered Australian freshwater fish, Macquarie perch Macquaria australasica. Using guidelines to assess the risk of outbreeding depression under admixture, we develop recommendations for population management, identify populations requiring genetic rescue and/or genetic restoration and potential donor sources. We found that most remaining populations of Macquarie perch have low genetic diversity, and effective population sizes below the threshold required to retain adaptive potential. Our simulations showed that under management inaction, smaller populations of Macquarie perch will face inbreeding depression within a few decades, but regular small-scale translocations will rapidly rescue populations from inbreeding depression and increase adaptive potential through genetic restoration. Despite the lack of data on fitness loss, based on our genetic data for Macquarie perch populations, simulations and empirical results from other systems, we recommend regular and frequent translocations among remnant populations within catchments. These translocations will emulate the effect of historical gene flow and improve population persistence through decrease in demographic and genetic stochasticity. Increasing population genetic connectivity within each catchment will help to maintain large effective population sizes and maximize species adaptive potential. The approach proposed here could be readily applicable to genetic management of other threatened species to improve their adaptive potential.
Collapse
Affiliation(s)
- Alexandra Pavlova
- School of Biological SciencesClayton Campus, Monash UniversityClaytonVICAustralia
| | | | - Rhys Coleman
- Applied ResearchMelbourne WaterDocklandsVICAustralia
| | - Dean Gilligan
- Freshwater Ecosystems ResearchNSW Department of Primary Industries – FisheriesBatemans BayNSWAustralia
| | - Katherine A. Harrisson
- School of Biological SciencesClayton Campus, Monash UniversityClaytonVICAustralia
- Department of Environment, Land Water and PlanningArthur Rylah Institute, Land, Fire and EnvironmentHeidelbergVICAustralia
- Department of Ecology Environment and EvolutionSchool of Life Sciences, La Trobe UniversityBundoora, Victoria3083Australia
| | - Brett A. Ingram
- Department of Economic DevelopmentJobs, Transport and ResourcesFisheries VictoriaAlexandraVICAustralia
| | - Joanne Kearns
- Department of Environment, Land Water and PlanningArthur Rylah Institute, Land, Fire and EnvironmentHeidelbergVICAustralia
| | - Annika M. Lamb
- School of Biological SciencesClayton Campus, Monash UniversityClaytonVICAustralia
| | - Mark Lintermans
- Institute for Applied EcologyUniversity of CanberraCanberraACTAustralia
| | - Jarod Lyon
- Department of Environment, Land Water and PlanningArthur Rylah Institute, Land, Fire and EnvironmentHeidelbergVICAustralia
| | - Thuy T. T. Nguyen
- Agriculture VictoriaAgriBio, Centre for AgriBioscienceBundooraVICAustralia
| | - Minami Sasaki
- School of Biological SciencesFlinders UniversityAdelaideSAAustralia
| | - Zeb Tonkin
- Department of Environment, Land Water and PlanningArthur Rylah Institute, Land, Fire and EnvironmentHeidelbergVICAustralia
| | - Jian D. L. Yen
- School of Physics and AstronomyClayton Campus, Monash UniversityClaytonVICAustralia
| | - Paul Sunnucks
- School of Biological SciencesClayton Campus, Monash UniversityClaytonVICAustralia
| |
Collapse
|
5
|
Bae SE, Kim JK, Kim JH. Evidence of incomplete lineage sorting or restricted secondary contact in Lateolabrax japonicus complex (Actinopterygii: Moronidae) based on morphological and molecular traits. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Coleman RA, Hoffmann AA. Digenean trematode cysts within the heads of threatened Galaxiella species (Teleostei : Galaxiidae) from south-eastern Australia. AUST J ZOOL 2016. [DOI: 10.1071/zo16004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The dwarf galaxias (Galaxiella pusilla) and little galaxias (Galaxiella toourtkoourt) are both threatened freshwater fish from south-eastern Australia. Occasionally populations have been found with enlarged heads associated with the accumulation of ‘white balls’, but the cause of these deformities has not previously been investigated. In this study, histopathology and molecular techniques were employed to identify cysts extracted from the heads of Galaxiella species across six populations. Histopathology and DNA sequences from both mitochondrial (cytochrome c oxidase subunit I) and nuclear (ribosomal internal transcribed spacer 1) regions identified the cysts as metacercariae of Apatemon gracilis (Rudolphi, 1819), a cosmopolitan digenean trematode species. Heavy infestations of trematode metacercariae within Galaxiella populations are of concern due to the potential to cause increased mortality associated with altered behaviour of the fish host that increases the likelihood of predation. Direct mortality from infestations is also possible, but not quantified in this study.
Collapse
|
7
|
Griffin PC, Hoffmann AA. Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges. ANNALS OF BOTANY 2014; 113:953-65. [PMID: 24607721 PMCID: PMC3997636 DOI: 10.1093/aob/mcu017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/27/2014] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS While molecular approaches can often accurately reconstruct species relationships, taxa that are incompletely differentiated pose a challenge even with extensive data. Such taxa are functionally differentiated, but may be genetically differentiated only at small and/or patchy regions of the genome. This issue is considered here in Poa tussock grass species that dominate grassland and herbfields in the Australian alpine zone. METHODS Previously reported tetraploidy was confirmed in all species by sequencing seven nuclear regions and five microsatellite markers. A Bayesian approach was used to co-estimate nuclear and chloroplast gene trees with an overall dated species tree. The resulting species tree was used to examine species structure and recent hybridization, and intertaxon fertility was tested by experimental crosses. KEY RESULTS Species tree estimation revealed Poa gunnii, a Tasmanian endemic species, as sister to the rest of the Australian alpine Poa. The taxa have radiated in the last 0·5-1·2 million years and the non-gunnii taxa are not supported as genetically distinct. Recent hybridization following past species divergence was also not supported. Ongoing gene flow is suggested, with some broad-scale geographic structure within the group. CONCLUSIONS The Australian alpine Poa species are not genetically distinct despite being distinguishable phenotypically, suggesting recent adaptive divergence with ongoing intertaxon gene flow. This highlights challenges in using conventional molecular taxonomy to infer species relationships in recent, rapid radiations.
Collapse
Affiliation(s)
- Philippa C. Griffin
- Department of Genetics, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ary A. Hoffmann
- Department of Genetics, University of Melbourne, Parkville 3010, Victoria, Australia
- Pest and Environmental Adaptation Research Group, Department of Zoology, University of Melbourne, Parkville 3010, Victoria, Australia
- Long Term Ecological Research Network, http://www.ltern.org.au/
| |
Collapse
|
8
|
Chester ET, Matthews TG, Howson TJ, Johnston K, Mackie JK, Strachan SR, Robson BJ. Constraints upon the response of fish and crayfish to environmental flow releases in a regulated headwater stream network. PLoS One 2014; 9:e91925. [PMID: 24647407 PMCID: PMC3967696 DOI: 10.1371/journal.pone.0091925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/11/2014] [Indexed: 11/18/2022] Open
Abstract
In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer-term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006-2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human-made dispersal barriers downstream need to be identified and ameliorated, to allow native fish to fulfil their life cycles in these headwater streams.
Collapse
Affiliation(s)
- Edwin T. Chester
- Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Ty G. Matthews
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Travis J. Howson
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Kerrylyn Johnston
- Marine and Freshwater Research Laboratory, Murdoch University, Perth, Western Australia, Australia
| | - Jonathon K. Mackie
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia
| | - Scott R. Strachan
- Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Belinda J. Robson
- Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Brauer CJ, Unmack PJ, Hammer MP, Adams M, Beheregaray LB. Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems. PLoS One 2013; 8:e82953. [PMID: 24349405 PMCID: PMC3862729 DOI: 10.1371/journal.pone.0082953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Habitat fragmentation caused by human activities alters metapopulation dynamics and decreases biological connectivity through reduced migration and gene flow, leading to lowered levels of population genetic diversity and to local extinctions. The threatened Yarra pygmy perch, Nannoperca obscura, is a poor disperser found in small, isolated populations in wetlands and streams of southeastern Australia. Modifications to natural flow regimes in anthropogenically-impacted river systems have recently reduced the amount of habitat for this species and likely further limited its opportunity to disperse. We employed highly resolving microsatellite DNA markers to assess genetic variation, population structure and the spatial scale that dispersal takes place across the distribution of this freshwater fish and used this information to identify conservation units for management. The levels of genetic variation found for N. obscura are amongst the lowest reported for a fish species (mean heterozygosity of 0.318 and mean allelic richness of 1.92). We identified very strong population genetic structure, nil to little evidence of recent migration among demes and a minimum of 11 units for conservation management, hierarchically nested within four major genetic lineages. A combination of spatial analytical methods revealed hierarchical genetic structure corresponding with catchment boundaries and also demonstrated significant isolation by riverine distance. Our findings have implications for the national recovery plan of this species by demonstrating that N. obscura populations should be managed at a catchment level and highlighting the need to restore habitat and avoid further alteration of the natural hydrology.
Collapse
Affiliation(s)
- Chris J. Brauer
- Molecular Ecology Laboratory, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Peter J. Unmack
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Michael P. Hammer
- School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia
- Curator of Fishes, Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - Mark Adams
- School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
10
|
Dispersal patterns and population structuring among platypuses, Ornithorhynchus anatinus, throughout south-eastern Australia. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0478-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Coleman RA, Weeks AR, Hoffmann AA. Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae). Mol Ecol 2013; 22:1820-35. [PMID: 23432132 DOI: 10.1111/mec.12227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022]
Abstract
Genetic markers are widely used to define and manage populations of threatened species based on the notion that populations with unique lineages of mtDNA and well-differentiated nuclear marker frequencies should be treated separately. However, a danger of this approach is that genetic uniqueness might be emphasized at the cost of genetic diversity, which is essential for adaptation and is potentially boosted by mixing geographically separate populations. Here, we re-explore the issue of defining management units, focussing on a detailed study of Galaxiella pusilla, a small freshwater fish of national conservation significance in Australia. Using a combination of microsatellite and mitochondrial markers, 51 populations across the species range were surveyed for genetic structure and diversity. We found an inverse relationship between genetic differentiation and genetic diversity, highlighting a long-term risk of deliberate isolation of G. pusilla populations based on protection of unique lineages. Instead, we adopt a method for identifying genetic management units that takes into consideration both uniqueness and genetic variation. This produced a management framework to guide future translocation and re-introduction efforts for G. pusilla, which contrasted to the framework based on a more traditional approach that may overlook important genetic variation in populations.
Collapse
Affiliation(s)
- R A Coleman
- Victorian Centre for Aquatic Pollution Identification and Management, Bio21 Institute, Department of Zoology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
12
|
Miller AD, Good RT, Coleman RA, Lancaster ML, Weeks AR. Microsatellite loci and the complete mitochondrial DNA sequence characterized through next generation sequencing and de novo genome assembly for the critically endangered orange-bellied parrot, Neophema chrysogaster. Mol Biol Rep 2012; 40:35-42. [DOI: 10.1007/s11033-012-1950-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 10/01/2012] [Indexed: 11/28/2022]
|
13
|
Ribolli J, de Melo CMR, Zaniboni-Filho E. Genetic characterization of the Neotropical catfish Pimelodus maculatus (Pimelodidae, Siluriformes) in the Upper Uruguay River. Genet Mol Biol 2012; 35:761-9. [PMID: 23271936 PMCID: PMC3526083 DOI: 10.1590/s1415-47572012005000060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 05/24/2012] [Indexed: 02/01/2023] Open
Abstract
Freshwater fish present unique challenges when one attempts to understand the factors that determine the structure of their populations. Habitat fragmentation is a leading cause of population decline that threatens ecosystems worldwide. In this study, we investigated the conservation status of genetic variability in the Neotropical catfish (Pimelodus maculatus). Specifically, we examined the structure and genetic diversity of this species in a region of the Upper Uruguay River fragmented by natural barriers and dams. There was no genetic structure among the four sites analyzed, indicating the existence of only one population group. A combination of environmental management and genetic monitoring should be used to minimize the impact of impoundment on panmitic populations of migratory fish species.
Collapse
Affiliation(s)
- Josiane Ribolli
- Laboratório de Biologia e Cultivo de Peixes de Água Doce, Departamento de Aquicultura, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
14
|
Extreme genetic structure in a small-bodied freshwater fish, the purple spotted gudgeon, Mogurnda adspersa (Eleotridae). PLoS One 2012; 7:e40546. [PMID: 22808190 PMCID: PMC3395642 DOI: 10.1371/journal.pone.0040546] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
Freshwater fish are a group that is especially susceptible to biodiversity loss as they often exist naturally in small, fragmented populations that are vulnerable to habitat degradation, pollution and introduction of exotic species. Relatively little is known about spatial dynamics of unperturbed populations of small-bodied freshwater fish species. This study examined population genetic structure of the purple spotted gudgeon (Mogurnda adspersa, Eleotridae), a small-bodied freshwater fish that is widely distributed in eastern Australia. The species is threatened in parts of its range but is common in coastal streams of central Queensland where this study took place. Microsatellite (msat) and mitochondrial DNA (mtDNA) variation was assessed for nine sites from four stream sections in two drainage basins. Very high levels of among population structure were observed (msat FST = 0.18; mtDNA ΦST = 0.85) and evidence for contemporary migration among populations was rare and limited to sites within the same section of stream. Hierarchical structuring of variation was best explained by stream section rather than by drainage basin. Estimates of contemporary effective population size for each site was low (range 28 – 63, Sibship method), but compared favorably with similar estimates for other freshwater fish species, and there was no genetic evidence for inbreeding or recent population bottlenecks. In conclusion, within a stable part of its range, M adspersa exists as a series of small, demographically stable populations that are highly isolated from one another. Complimentary patterns in microsatellites and mtDNA indicate this structuring is the result of long-term processes that have developed over a remarkably small spatial scale. High population structure and limited dispersal mean that recolonisation of locally extinct populations is only likely to occur from closely situated populations within stream sections. Limited potential for recolonisation should be considered as an important factor in conservation and management of this species.
Collapse
|
15
|
Unmack PJ, Bagley JC, Adams M, Hammer MP, Johnson JB. Molecular phylogeny and phylogeography of the Australian freshwater fish genus Galaxiella, with an emphasis on dwarf galaxias (G. pusilla). PLoS One 2012; 7:e38433. [PMID: 22693638 PMCID: PMC3367931 DOI: 10.1371/journal.pone.0038433] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/09/2012] [Indexed: 11/20/2022] Open
Abstract
The freshwater fauna of Southern Australia is primarily restricted to the southwestern and southeastern corners of the continent, and is separated by a large, arid region that is inhospitable to this biota. This geographic phenomenon has attracted considerable interest from biogeographers looking to explain evolutionary diversification in this region. Here, we employed phylogenetic and phylogeographic approaches to evaluate the effect of this barrier on a group of four galaxiid fish species (Galaxiella) endemic to temperate Southern Australia. We also tested if continental shelf width has influenced connectivity among populations during low sea levels when rivers, now isolated, could have been connected. We addressed these questions by sampling each species across its range using multiple molecular markers (mitochondrial cytochrome b sequences, nuclear S7 intron sequences, and 49 allozyme loci). These data also allowed us to assess species boundaries, to refine phylogenetic affinities, and to estimate species ages. Interestingly, we found compelling evidence for cryptic species in G. pusilla, manifesting as allopatric eastern and western taxa. Our combined phylogeny and dating analysis point to an origin for the genus dating to the early Cenozoic, with three of the four species originating during the Oligocene-Miocene. Each Galaxiella species showed high levels of genetic divergences between all but the most proximate populations. Despite extensive drainage connections during recent low sea levels in southeastern Australia, populations of both species within G. pusilla maintained high levels of genetic structure. All populations experienced Late Pleistocene-Holocene population growth, possibly in response to the relaxation of arid conditions after the last glacial maximum. High levels of genetic divergence and the discovery of new cryptic species have important implications for the conservation of this already threatened group of freshwater species.
Collapse
Affiliation(s)
- Peter J Unmack
- National Evolutionary Synthesis Center, Durham, North Carolina, United States of America.
| | | | | | | | | |
Collapse
|
16
|
Griffin PC, Robin C, Hoffmann AA. A next-generation sequencing method for overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses. BMC Biol 2011; 9:19. [PMID: 21429199 PMCID: PMC3078099 DOI: 10.1186/1741-7007-9-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/23/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Polyploidy is important from a phylogenetic perspective because of its immense past impact on evolution and its potential future impact on diversification, survival and adaptation, especially in plants. Molecular population genetics studies of polyploid organisms have been difficult because of problems in sequencing multiple-copy nuclear genes using Sanger sequencing. This paper describes a method for sequencing a barcoded mixture of targeted gene regions using next-generation sequencing methods to overcome these problems. RESULTS Using 64 3-bp barcodes, we successfully sequenced three chloroplast and two nuclear gene regions (each of which contained two gene copies with up to two alleles per individual) in a total of 60 individuals across 11 species of Australian Poa grasses. This method had high replicability, a low sequencing error rate (after appropriate quality control) and a low rate of missing data. Eighty-eight percent of the 320 gene/individual combinations produced sequence reads, and >80% of individuals produced sufficient reads to detect all four possible nuclear alleles of the homeologous nuclear loci with 95% probability.We applied this method to a group of sympatric Australian alpine Poa species, which we discovered to share an allopolyploid ancestor with a group of American Poa species. All markers revealed extensive allele sharing among the Australian species and so we recommend that the current taxonomy be re-examined. We also detected hypermutation in the trnH-psbA marker, suggesting it should not be used as a land plant barcode region. Some markers indicated differentiation between Tasmanian and mainland samples. Significant positive spatial genetic structure was detected at <100 km with chloroplast but not nuclear markers, which may be a result of restricted seed flow and long-distance pollen flow in this wind-pollinated group. CONCLUSIONS Our results demonstrate that 454 sequencing of barcoded amplicon mixtures can be used to reliably sample all alleles of homeologous loci in polyploid species and successfully investigate phylogenetic relationships among species, as well as to investigate phylogeographic hypotheses. This next-generation sequencing method is more affordable than and at least as reliable as bacterial cloning. It could be applied to any experiment involving sequencing of amplicon mixtures.
Collapse
Affiliation(s)
- Philippa C Griffin
- Department of Genetics, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Charles Robin
- Department of Genetics, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ary A Hoffmann
- Department of Genetics, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Zoology, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|