1
|
Mitochondrial DNA variation of the caracal (Caracal caracal) in Iran and range-wide phylogeographic comparisons. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Engelbrecht HM, Branch WR, Tolley KA. Snakes on an African plain: the radiation of Crotaphopeltis and Philothamnus into open habitat (Serpentes: Colubridae). PeerJ 2021; 9:e11728. [PMID: 34434643 PMCID: PMC8351568 DOI: 10.7717/peerj.11728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background The African continent is comprised of several different biomes, although savanna is the most prevalent. The current heterogeneous landscape was formed through long-term vegetation shifts as a result of the global cooling trend since the Oligocene epoch. The overwhelming trend was a shift from primarily forest, to primarily savanna. As such, faunal groups that emerged during the Paleogene/Neogene period and have species distributed in both forest and savanna habitat should show a genetic signature of the possible evolutionary impact of these biome developments. Crotaphopeltis and Philothamnus (Colubridae) are excellent taxa to investigate the evolutionary impact of these biome developments on widespread African colubrid snakes, and whether timing and patterns of radiation are synchronous with biome reorganisation. Methods A phylogenetic framework was used to investigate timing of lineage diversification. Phylogenetic analysis included both genera as well as other Colubridae to construct a temporal framework in order to estimate radiation times for Crotaphopeltis and Philothamnus. Lineage diversification was estimated in Bayesian Evolutionary Analysis Sampling Trees (BEAST), using two mitochondrial markers (cyt–b, ND4), one nuclear marker (c–mos), and incorporating one fossil and two biogeographical calibration points. Vegetation layers were used to classify and confirm species association with broad biome types (‘closed’ = forest, ‘open’ = savanna/other), and the ancestral habitat state for each genus was estimated. Results Philothamnus showed an ancestral state of closed habitat, but the ancestral habitat type for Crotaphopeltis was equivocal. Both genera showed similar timing of lineage diversification diverging from their sister genera during the Oligocene/Miocene transition (ca. 25 Mya), with subsequent species radiation in the Mid-Miocene. Philothamnus appeared to have undergone allopatric speciation during Mid-Miocene forest fragmentation. Habitat generalist and open habitat specialist species emerged as savanna became more prevalent, while at least two forest associated lineages within Crotaphopeltis moved into Afromontane forest habitat secondarily and independently. Discussion With similar diversification times, but contrasting ancestral habitat reconstructions, we show that these genera have responded very differently to the same broad biome shifts. Differences in biogeographical patterns for the two African colubrid genera is likely an effect of distinct life-history traits, such as the arboreous habits of Philothamnus compared to the terrestrial lifestyle of Crotaphopeltis.
Collapse
Affiliation(s)
- Hanlie M Engelbrecht
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, Western Cape, South Africa.,Department of Botany & Zoology, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - William R Branch
- Herpetology, Port Elizabeth Museum (Bayworld), Port Elizabeth, Eastern Cape, South Africa.,Department of Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, Eastern Cape, South Africa
| | - Krystal A Tolley
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, Western Cape, South Africa
| |
Collapse
|
3
|
Elzanowski A, Louchart A. Metric variation in the postcranial skeleton of ostriches, Struthio (Aves: Palaeognathae), with new data on extinct subspecies. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
As a result of numerous fossil and subfossil finds of ostriches, there is great demand for a comprehensive osteometric dataset for the living species and subspecies of the genus Struthio. We meet this demand by providing a set of > 100 measurements for a sample of 18 sexed skeletons, including all living and recently extinct species and subspecies of ostriches. We provide the first mensural data for two extinct subspecies, the hitherto questioned Struthio camelus spatzi from north-western Africa and the Arabian ostrich, Struthio camelus syriacus. The unique skeletal proportions of S. c. spatzi, with a relatively short wing, broad pelvis, short tarsometatarsus and big third toe, confirm the validity of this taxon and suggest an increased stability at the expense of cursoriality, which might have contributed to its extermination by humans. Our biometric analysis of the entire sample suggests a subtle sexual dimorphism in the ostrich skeleton, with females having more robust limb bones (especially wider and/or deeper at the ends) despite being on average smaller than males. If confirmed by further research, this size-independent dimorphism might reflect the independent regulation of the longitudinal and transverse dimensions of bones as revealed by several independent studies of morphological integration (covariance among morphological traits) in the avian skeleton.
Collapse
Affiliation(s)
| | - Antoine Louchart
- Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| |
Collapse
|
4
|
Allio R, Tilak MK, Scornavacca C, Avenant NL, Kitchener AC, Corre E, Nabholz B, Delsuc F. High-quality carnivoran genomes from roadkill samples enable comparative species delineation in aardwolf and bat-eared fox. eLife 2021; 10:e63167. [PMID: 33599612 PMCID: PMC7963486 DOI: 10.7554/elife.63167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
In a context of ongoing biodiversity erosion, obtaining genomic resources from wildlife is essential for conservation. The thousands of yearly mammalian roadkill provide a useful source material for genomic surveys. To illustrate the potential of this underexploited resource, we used roadkill samples to study the genomic diversity of the bat-eared fox (Otocyon megalotis) and the aardwolf (Proteles cristatus), both having subspecies with similar disjunct distributions in Eastern and Southern Africa. First, we obtained reference genomes with high contiguity and gene completeness by combining Nanopore long reads and Illumina short reads. Then, we showed that the two subspecies of aardwolf might warrant species status (P. cristatus and P. septentrionalis) by comparing their genome-wide genetic differentiation to pairs of well-defined species across Carnivora with a new Genetic Differentiation index (GDI) based on only a few resequenced individuals. Finally, we obtained a genome-scale Carnivora phylogeny including the new aardwolf species.
Collapse
Affiliation(s)
- Rémi Allio
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Marie-Ka Tilak
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Nico L Avenant
- National Museum and Centre for Environmental Management, University of the Free StateBloemfonteinSouth Africa
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums ScotlandEdinburghUnited Kingdom
| | - Erwan Corre
- CNRS, Sorbonne Université, CNRS, ABiMS, Station Biologique de RoscoffRoscoffFrance
| | - Benoit Nabholz
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| |
Collapse
|
5
|
Chapuis M, Raynal L, Plantamp C, Meynard CN, Blondin L, Marin J, Estoup A. A young age of subspecific divergence in the desert locust inferred by ABC random forest. Mol Ecol 2020; 29:4542-4558. [DOI: 10.1111/mec.15663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Marie‐Pierre Chapuis
- CBGP CIRAD Montpellier France
- CBGP CIRAD INRAE IRD Montpellier SupAgro University of Montpellier Montpellier France
| | - Louis Raynal
- IMAG CNRS University of Montpellier Montpellier France
| | | | - Christine N. Meynard
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
| | | | | | - Arnaud Estoup
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
| |
Collapse
|
6
|
Molecular characterization of Acomys louisae from Somaliland: a deep divergence and contrasting genetic patterns in a rift zone. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Zimkus BM, Lawson LP, Barej MF, Barratt CD, Channing A, Dash KM, Dehling JM, Du Preez L, Gehring PS, Greenbaum E, Gvoždík V, Harvey J, Kielgast J, Kusamba C, Nagy ZT, Pabijan M, Penner J, Rödel MO, Vences M, Lötters S. Leapfrogging into new territory: How Mascarene ridged frogs diversified across Africa and Madagascar to maintain their ecological niche. Mol Phylogenet Evol 2016; 106:254-269. [PMID: 27664344 DOI: 10.1016/j.ympev.2016.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 11/26/2022]
Abstract
The Mascarene ridged frog, Ptychadena mascareniensis, is a species complex that includes numerous lineages occurring mostly in humid savannas and open forests of mainland Africa, Madagascar, the Seychelles, and the Mascarene Islands. Sampling across this broad distribution presents an opportunity to examine the genetic differentiation within this complex and to investigate how the evolution of bioclimatic niches may have shaped current biogeographic patterns. Using model-based phylogenetic methods and molecular-clock dating, we constructed a time-calibrated molecular phylogenetic hypothesis for the group based on mitochondrial 16S rRNA and cytochrome b (cytb) genes and the nuclear RAG1 gene from 173 individuals. Haplotype networks were reconstructed and species boundaries were investigated using three species-delimitation approaches: Bayesian generalized mixed Yule-coalescent model (bGMYC), the Poisson Tree Process model (PTP) and a cluster algorithm (SpeciesIdentifier). Estimates of similarity in bioclimatic niche were calculated from species-distribution models (maxent) and multivariate statistics (Principal Component Analysis, Discriminant Function Analysis). Ancestral-area reconstructions were performed on the phylogeny using probabilistic approaches implemented in BioGeoBEARS. We detected high levels of genetic differentiation yielding ten distinct lineages or operational taxonomic units, and Central Africa was found to be a diversity hotspot for these frogs. Most speciation events took place throughout the Miocene, including "out-of-Africa" overseas dispersal events to Madagascar in the East and to São Tomé in the West. Bioclimatic niche was remarkably well conserved, with most species tolerating similar temperature and rainfall conditions common to the Central African region. The P. mascareniensis complex provides insights into how bioclimatic niche shaped the current biogeographic patterns with niche conservatism being exhibited by the Central African radiation and niche divergence shaping populations in West Africa and Madagascar. Central Africa, including the Albertine Rift region, has been an important center of diversification for this species complex.
Collapse
Affiliation(s)
- Breda M Zimkus
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| | - Lucinda P Lawson
- Department of Biological Sciences, University of Cincinnati, 820F Rieveschl Hall, Cincinnati, OH 45221, USA.
| | - Michael F Barej
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.
| | - Christopher D Barratt
- University of Basel, Biogeography Research Group, Department of Environmental Sciences, Klingelbergstrasse 27, Basel 4056, Switzerland.
| | - Alan Channing
- University of the Western Cape, Biodiversity and Conservation Biology, Private Bag X17, Bellville 7535, South Africa.
| | - Katrina M Dash
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA; Department of Biology, Tidewater Community College, 120 Campus Dr., Portsmouth, VA 23701, USA.
| | - J Maximilian Dehling
- Institute of Integrated Sciences, Department of Biology, University of Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany.
| | - Louis Du Preez
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa; South African Institute for Aquatic Biodiversity, Somerset Street, Grahamstown 6139, South Africa.
| | - Philip-Sebastian Gehring
- Fakultät für Biologie Universität Bielefeld, Abt. Biologiedidaktik, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA.
| | - Václav Gvoždík
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic; National Museum, Department of Zoology, 19300 Prague, Czech Republic.
| | - James Harvey
- Harvey Ecological, 35 Carbis Road, Pietermaritzburg 3201, KwaZulu-Natal, South Africa.
| | - Jos Kielgast
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Chifundera Kusamba
- Centre de Recherche en Sciences Naturelles, Département de Biologie, Lwiro, The Democratic Republic of the Congo.
| | - Zoltán T Nagy
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany; Joint Experimental Molecular Unit, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium.
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Johannes Penner
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany; Wildlife Ecology & Management, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany.
| | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.
| | - Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, Mendelssohnstraße. 4, 38106 Braunschweig, Germany.
| | - Stefan Lötters
- Trier University, Department of Biogeography, 54286 Trier, Germany.
| |
Collapse
|
8
|
Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa. J Hum Evol 2015; 83:28-45. [DOI: 10.1016/j.jhevol.2015.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 01/12/2023]
|
9
|
Stoffel C, Dufresnes C, Okello JBA, Noirard C, Joly P, Nyakaana S, Muwanika VB, Alcala N, Vuilleumier S, Siegismund HR, Fumagalli L. Genetic consequences of population expansions and contractions in the common hippopotamus (Hippopotamus amphibius) since the Late Pleistocene. Mol Ecol 2015; 24:2507-20. [PMID: 25827243 DOI: 10.1111/mec.13179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 11/30/2022]
Abstract
Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.
Collapse
Affiliation(s)
- Céline Stoffel
- Department of Ecology and Evolution, Laboratory for Conservation Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dobigny G, Tatard C, Gauthier P, Ba K, Duplantier JM, Granjon L, Kergoat GJ. Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and sub-Saharan open habitats pleistocene history. PLoS One 2013; 8:e77815. [PMID: 24223730 PMCID: PMC3815218 DOI: 10.1371/journal.pone.0077815] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
A phylogeographic study was conducted on the Nile grass rat, Arvicanthis niloticus, a rodent species that is tightly associated with open grasslands from the Sudano-Sahelian regions. Using one mitochondrial (cytochrome b) and one nuclear (intron 7 of Beta Fibrinogen) gene, robust patterns were retrieved that clearly show that (i) the species originated in East Africa concomitantly with expanding grasslands some 2 Ma, and (ii) four parapatric and genetically well-defined lineages differentiated essentially from East to West following Pleistocene bioclimatic cycles. This strongly points towards allopatric genetic divergence within savannah refuges during humid episodes, then dispersal during arid ones; secondary contact zones would have then stabilized around geographic barriers, namely, Niger River and Lake Chad basins. Our results pertinently add to those obtained for several other African rodent as well as non-rodent species that inhabit forests, humid zones, savannahs and deserts, all studies that now allow one to depict a more comprehensive picture of the Pleistocene history of the continent south of the Sahara. In particular, although their precise location remains to be determined, at least three Pleistocene refuges are identified within the West and Central African savannah biome.
Collapse
Affiliation(s)
- Gauthier Dobigny
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
- Centre Régional Agrhymet, Rive Droite, Niamey, Niger
| | - Caroline Tatard
- Inra, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Philippe Gauthier
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Khalilou Ba
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Dakar, Senegal
| | - Jean-Marc Duplantier
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Laurent Granjon
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Dakar, Senegal
| | - Gael J. Kergoat
- Inra, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| |
Collapse
|
11
|
D’Amato ME, Alechine E, Cloete KW, Davison S, Corach D. Where is the game? Wild meat products authentication in South Africa: a case study. INVESTIGATIVE GENETICS 2013; 4:6. [PMID: 23452350 PMCID: PMC3621286 DOI: 10.1186/2041-2223-4-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/14/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wild animals' meat is extensively consumed in South Africa, being obtained either from ranching, farming or hunting. To test the authenticity of the commercial labels of meat products in the local market, we obtained DNA sequence information from 146 samples (14 beef and 132 game labels) for barcoding cytochrome c oxidase subunit I and partial cytochrome b and mitochondrial fragments. The reliability of species assignments were evaluated using BLAST searches in GenBank, maximum likelihood phylogenetic analysis and the character-based method implemented in BLOG. The Kimura-2-parameter intra- and interspecific variation was evaluated for all matched species. RESULTS The combined application of similarity, phylogenetic and character-based methods proved successful in species identification. Game meat samples showed 76.5% substitution, no beef samples were substituted. The substitutions showed a variety of domestic species (cattle, horse, pig, lamb), common game species in the market (kudu, gemsbok, ostrich, impala, springbok), uncommon species in the market (giraffe, waterbuck, bushbuck, duiker, mountain zebra) and extra-continental species (kangaroo). The mountain zebra Equus zebra is an International Union for Conservation of Nature (IUCN) red listed species. We also detected Damaliscus pygargus, which is composed of two subspecies with one listed by IUCN as 'near threatened'; however, these mitochondrial fragments were insufficient to distinguish between the subspecies. The genetic distance between African ungulate species often overlaps with within-species distance in cases of recent speciation events, and strong phylogeographic structure determines within-species distances that are similar to the commonly accepted distances between species. CONCLUSIONS The reliability of commercial labeling of game meat in South Africa is very poor. The extensive substitution of wild game has important implications for conservation and commerce, and for the consumers making decisions on the basis of health, religious beliefs or personal choices.Distance would be a poor indicator for identification of African ungulates species. The efficiency of the character-based method is reliant upon availability of large reference data. The current higher availability of cytochrome b data would make this the marker of choice for African ungulates. The encountered problems of incomplete or erroneous information in databases are discussed.
Collapse
Affiliation(s)
- Maria Eugenia D’Amato
- Biotechnology Department, Forensic DNA Lab, University of the Western Cape, Modderdam Road, Bellville, 7535, South Africa
| | - Evguenia Alechine
- Servicio de Huellas Digitales Genéticas, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
| | - Kevin Wesley Cloete
- Biotechnology Department, Forensic DNA Lab, University of the Western Cape, Modderdam Road, Bellville, 7535, South Africa
| | - Sean Davison
- Biotechnology Department, Forensic DNA Lab, University of the Western Cape, Modderdam Road, Bellville, 7535, South Africa
| | - Daniel Corach
- Servicio de Huellas Digitales Genéticas, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
| |
Collapse
|
12
|
Abstract
The savannah biome of sub-Saharan Africa harbours the highest diversity of ungulates (hoofed mammals) on Earth. In this review, we compile population genetic data from 19 codistributed ungulate taxa of the savannah biome and find striking concordance in the phylogeographic structuring of species. Data from across taxa reveal distinct regional lineages, which reflect the survival and divergence of populations in isolated savannah refugia during the climatic oscillations of the Pleistocene. Data from taxa across trophic levels suggest distinct savannah refugia were present in West, East, Southern and South-West Africa. Furthermore, differing Pleistocene evolutionary biogeographic scenarios are proposed for East and Southern Africa, supported by palaeoclimatic data and the fossil record. Environmental instability in East Africa facilitated several spatial and temporal refugia and is reflected in the high inter- and intraspecific diversity of the region. In contrast, phylogeographic data suggest a stable, long-standing savannah refuge in the south.
Collapse
Affiliation(s)
- E D Lorenzen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
13
|
Stoffberg S, Schoeman MC, Matthee CA. Correlated genetic and ecological diversification in a widespread southern African horseshoe bat. PLoS One 2012; 7:e31946. [PMID: 22384108 PMCID: PMC3288067 DOI: 10.1371/journal.pone.0031946] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/16/2012] [Indexed: 12/04/2022] Open
Abstract
The analysis of molecular data within a historical biogeographical framework, coupled with ecological characteristics can provide insight into the processes driving diversification. Here we assess the genetic and ecological diversity within a widespread horseshoe bat Rhinolophus clivosus sensu lato with specific emphasis on the southern African representatives which, although not currently recognized, were previously described as a separate species R. geoffroyi comprising four subspecies. Sequence divergence estimates of the mtDNA control region show that the southern African representatives of R. clivosus s.l. are as distinct from samples further north in Africa than they are from R. ferrumequinum, the sister-species to R. clivosus. Within South Africa, five genetically supported geographic groups exist and these groups are corroborated by echolocation and wing morphology data. The groups loosely correspond to the distributions of the previously defined subspecies and Maxent modelling shows a strong correlation between the detected groups and ecoregions. Based on molecular clock calibrations, it is evident that climatic cycling and related vegetation changes during the Quaternary may have facilitated diversification both genetically and ecologically.
Collapse
Affiliation(s)
- Samantha Stoffberg
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Republic of South Africa.
| | | | | |
Collapse
|
14
|
Salmela J. Revision of Tipula (Yamatotipula) stackelbergi Alexander (Diptera, Tipulidae), and a short discussion on subspecies among crane flies. Zookeys 2012:43-58. [PMID: 22303125 PMCID: PMC3253662 DOI: 10.3897/zookeys.162.2216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/01/2011] [Indexed: 11/17/2022] Open
Abstract
All available type material of Tipula stackelbergi Alexander, Tipula usuriensis Alexander and Tipula subpruinosa Mannheims were examined. Tipula (Yamatotipula) stackelbergistat. rev. is elevated from a subspecies of Tipula (Yamatotipula) pruinosa Wiedemann to a valid species. Two new synonyms are proposed: Tipula usuriensissyn. n. proved to be a junior synonym of. Tipula (Yamatotipula) pruinosa and Tipula subpruinosasyn. n. a junior synonym of Tipula (Yamatotipula) freyana Lackschewitz. Tipula (Yamatotipula) stackelbergi is redescribed, male and female terminalia of Tipula (Yamatotipula) pruinosa are illustrated and discussed. Female terminalia of Tipula (Yamatotipula) freyana are described and illustrated for the first time. A key to both sexes of Tipula (Yamatotipula) stackelbergi and Tipula (Yamatotipula) pruinosa, and a key to females of Tipula (Yamatotipula) chonsaniana, Tipula (Yamatotipula) freyana and Tipula (Yamatotipula) moesta are provided. Subspecies are not uncommon among crane flies, but their ranges and traits are poorly known. An interdisciplinary approach (genetics, ecology, taxonomy) is suggested if subspecific ranks are to be used in tipuloid systematics.
Collapse
Affiliation(s)
- Jukka Salmela
- Zoological Museum, Department of Biology, FI-20014 University of Turku, Finland
| |
Collapse
|