1
|
Weitemier K, Penaluna BE, Hauck LL, Longway LJ, Garcia T, Cronn R. Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding. Mol Ecol 2021; 30:4970-4990. [PMID: 33594756 PMCID: PMC8597136 DOI: 10.1111/mec.15811] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Genetic diversity underpins species conservation and management goals, and ultimately determines a species' ability to adapt. Using freshwater environmental DNA (eDNA) samples, we examined mitochondrial genetic diversity using multigene metabarcode sequence data from four Oncorhynchus species across 16 sites in Oregon and northern California. Our multigene metabarcode panel included targets commonly used in population genetic NADH dehydrogenase 2 (ND2), phylogenetic cytochrome c oxidase subunit 1 (COI) and eDNA (12S ribosomal DNA) screening. The ND2 locus showed the greatest within-species haplotype diversity for all species, followed by COI and then 12S rDNA for all species except Oncorhynchus kisutch. Sequences recovered for O. clarkii clarkii were either identical to, or one mutation different from, previously characterized haplotypes (95.3% and 4.5% of reads, respectively). The greatest diversity in O. c. clarkii was among coastal watersheds, and subsets of this diversity were shared with fish in inland watersheds. However, coastal streams and the Umpqua River watershed appear to harbour unique haplotypes. Sequences from O. mykiss revealed a disjunction between the Willamette watershed and southern watersheds suggesting divergent histories. We also identified similarities between populations in the northern Deschutes and southern Klamath watersheds, consistent with previously hypothesized connections between the two via inland basins. Oncorhynchus kisutch was only identified in coastal streams and the Klamath River watershed, with most diversity concentrated in the coastal Coquille watershed. Oncorhynchus tshawytscha was only observed at one site, but contained multiple haplotypes at each locus. The characterization of genetic diversity at multiple loci expands the knowledge gained from eDNA sampling and provides crucial information for conservation actions and genetic management.
Collapse
Affiliation(s)
- Kevin Weitemier
- Department of Fisheries and WildlifeOregon State UniversityCorvallisORUSA
| | - Brooke E. Penaluna
- U.S. Department of Agriculture, Forest ServicePacific Northwest Research StationCorvallisORUSA
| | - Laura L. Hauck
- U.S. Department of Agriculture, Forest ServicePacific Northwest Research StationCorvallisORUSA
| | - Lucas J. Longway
- Department of Fisheries and WildlifeOregon State UniversityCorvallisORUSA
| | - Tiffany Garcia
- Department of Fisheries and WildlifeOregon State UniversityCorvallisORUSA
| | - Richard Cronn
- U.S. Department of Agriculture, Forest ServicePacific Northwest Research StationCorvallisORUSA
| |
Collapse
|
2
|
Östergren J, Palm S, Gilbey J, Spong G, Dannewitz J, Königsson H, Persson J, Vasemägi A. A century of genetic homogenization in Baltic salmon-evidence from archival DNA. Proc Biol Sci 2021; 288:20203147. [PMID: 33878928 PMCID: PMC8059615 DOI: 10.1098/rspb.2020.3147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra-species genetic homogenization arising from anthropogenic impacts is a major threat to biodiversity. However, few taxa have sufficient historical material to systematically quantify long-term genetic changes. Using archival DNA collected over approximately 100 years, we assessed spatio-temporal genetic change in Atlantic salmon populations across the Baltic Sea, an area heavily impacted by hydropower exploitation and associated with large-scale mitigation stocking. Analysis was carried out by screening 82 SNPs in 1680 individuals from 13 Swedish rivers. We found an overall decrease in genetic divergence and diminished isolation by distance among populations, strongly indicating genetic homogenization over the past century. We further observed an increase in genetic diversity within populations consistent with increased gene flow. The temporal genetic change was lower in larger wild populations than in smaller wild and hatchery-reared ones, indicating that larger populations have been able to support a high number of native spawners in relation to immigrants. Our results demonstrate that stocking practices of salmon in the Baltic Sea have led to the homogenization of populations over the last century, potentially compromising their ability to adapt to environmental change. Stocking of reared fish is common worldwide, and our study is a cautionary example of the potentially long-term negative effects of such activities.
Collapse
Affiliation(s)
- Johan Östergren
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Stångholmsvägen 2, SE-178 93 Drottningholm, Sweden
| | - Stefan Palm
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Stångholmsvägen 2, SE-178 93 Drottningholm, Sweden
| | - John Gilbey
- Marine Scotland Science, Freshwater Fisheries Laboratory, Faskally, Pitlochry, PH16 5LB, UK
| | - Göran Spong
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 USA
| | - Johan Dannewitz
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Stångholmsvägen 2, SE-178 93 Drottningholm, Sweden
| | - Helena Königsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 USA
| | - John Persson
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Stångholmsvägen 2, SE-178 93 Drottningholm, Sweden
| | - Anti Vasemägi
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Stångholmsvägen 2, SE-178 93 Drottningholm, Sweden.,Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
3
|
Powell JH, Campbell MR. Contemporary genetic structure affects genetic stock identification of steelhead trout in the Snake River basin. Ecol Evol 2020; 10:10520-10531. [PMID: 33072277 PMCID: PMC7548200 DOI: 10.1002/ece3.6708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022] Open
Abstract
Genetic stock identification is a widely applied tool for the mixed‐stock management of salmonid species throughout the North Pacific Rim. The effectiveness of genetic stock identification is dependent on the level of differentiation among stocks which is often high due to the life history of these species that involves high homing fidelity to their natal streams. However, the utility of this tool can be reduced when natural genetic structuring has been altered by hatchery translocation and/or supplementation. We examined the genetic population structure of ESA‐listed steelhead in the Snake River basin of the United States. We analyzed 9,613 natural‐origin adult steelhead returning to Passive Integrated Transponder detection sites throughout the basin from 2010 through 2017. Individuals were genotyped at 180 single nucleotide polymorphic genetic markers and grouped into 20 populations based on their return location. While we expected to observe a common pattern of hierarchical genetic structuring due to isolation by distance, we observed low genetic differentiation between populations in the upper Salmon River basin compared to geographically distant populations in the lower Snake River basin. These results were consistent with lower genetic stock assignment probabilities observed for populations in this upper basin. We attribute these patterns of reduced genetic structure to the translocation of lower basin steelhead stocks and ongoing hatchery programs in the upper Salmon River basin. We discuss the implications of these findings on the utility of genetic stock identification in the basin and discuss opportunities for increasing assignment probabilities in the face of low genetic structure.
Collapse
|
4
|
King RA, Stockley B, Stevens JR. Small coastal streams-Critical reservoirs of genetic diversity for trout ( Salmo trutta L.) in the face of increasing anthropogenic stressors. Ecol Evol 2020; 10:5651-5669. [PMID: 32607181 PMCID: PMC7319166 DOI: 10.1002/ece3.6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/05/2022] Open
Abstract
We used microsatellite markers to investigate levels and structuring of genetic diversity in trout (Salmo trutta L.) sampled from 16 rivers along the south coast of Cornwall in southwest England. This region is characterized by many small coastal streams with a few larger catchments. At a regional level, genetic structuring of contemporary populations has been influenced by a combination of events, including the last Ice Age and also more recent human activities over the last millennium. All populations are shown to have gone through strong genetic bottlenecks, coinciding with increased exploitation of mineral resources within catchments, beginning during the Medieval period. At more local levels, contemporary human-induced habitat fragmentation, such as weir and culvert construction, has disproportionally affected trout populations in the smaller catchments within the study area. However, where small catchments are relatively unaffected by such activities, they can host trout populations with diversity levels comparable to those found in larger rivers in the region. We also predict significant future loses of diversity and heterozygosity in the trout populations inhabiting small, isolated catchments. Our study highlights how multiple factors, especially the activity of humans, have and continue to affect the levels and structuring of genetic diversity in trout over long timescales.
Collapse
Affiliation(s)
- R. Andrew King
- Department of BiosciencesCollege of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | | | - Jamie R. Stevens
- Department of BiosciencesCollege of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| |
Collapse
|
5
|
Wellband K, Mérot C, Linnansaari T, Elliott JAK, Curry RA, Bernatchez L. Chromosomal fusion and life history-associated genomic variation contribute to within-river local adaptation of Atlantic salmon. Mol Ecol 2018; 28:1439-1459. [PMID: 30506831 DOI: 10.1111/mec.14965] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022]
Abstract
Chromosomal inversions have been implicated in facilitating adaptation in the face of high levels of gene flow, but whether chromosomal fusions also have similar potential remains poorly understood. Atlantic salmon are usually characterized by population structure at multiple spatial scales; however, this is not the case for tributaries of the Miramichi River in North America. To resolve genetic relationships between populations in this system and the potential for known chromosomal fusions to contribute to adaptation, we genotyped 728 juvenile salmon using a 50 K SNP array. Consistent with previous work, we report extremely weak overall population structuring (Global FST = 0.004) and failed to support hierarchical structure between the river's two main branches. We provide the first genomic characterization of a previously described polymorphic fusion between chromosomes 8 and 29. Fusion genomic characteristics included high LD, reduced heterozygosity in the fused homokaryotes, and strong divergence between the fused and the unfused rearrangement. Population structure based on fusion karyotype was five times stronger than neutral variation (FST = 0.019), and the frequency of the fusion was associated with summer precipitation supporting a hypothesis that this rearrangement may contribute local adaptation despite weak neutral differentiation. Additionally, both outlier variation among populations and a polygenic framework for characterizing adaptive variation in relation to climate identified a 250-Kb region of chromosome 9, including the gene six6 that has previously been linked to age-at-maturity and run-timing for this species. Overall, our results indicate that adaptive processes, independent of major river branching, are more important than neutral processes for structuring these populations.
Collapse
Affiliation(s)
- Kyle Wellband
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Tommi Linnansaari
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - J A K Elliott
- Cooke Aquaculture Inc, Oak Bay, New Brunswick, Canada
| | - R Allen Curry
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
6
|
Leitwein M, Garza JC, Pearse DE. Ancestry and adaptive evolution of anadromous, resident, and adfluvial rainbow trout ( Oncorhynchus mykiss) in the San Francisco bay area: application of adaptive genomic variation to conservation in a highly impacted landscape. Evol Appl 2016; 10:56-67. [PMID: 28035235 PMCID: PMC5192794 DOI: 10.1111/eva.12416] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023] Open
Abstract
The streams draining of into San Francisco Bay, California, have been impacted by habitat alteration for over 150 years, and roads, dams, water diversions, and other impediments now block the paths of many aquatic migratory species. These changes can affect the genetic structure of fish populations, as well as driving adaptive evolution to novel environmental conditions. Here, we determine the evolutionary relationships of San Francisco Bay Area steelhead/rainbow trout (Oncorhynchus mykiss) populations and show that (i) they are more closely related to native coastal steelhead than to the California Central Valley lineage, with no evidence of introgression by domesticated hatchery rainbow trout, (ii) populations above and below barriers within watersheds are each other's closest relatives, and (iii) adaptive genomic variation associated with migratory life-history traits in O. mykiss shows substantial evolutionary differences between fish above and below dams. These findings support continued habitat restoration and protection of San Francisco Bay Area O. mykiss populations and demonstrate that ecological conditions in novel habitats above barriers to anadromy influence life-history evolution. We highlight the importance of considering the adaptive landscape in conservation and restoration programs for species living in highly modified habitats, particularly with respect to key life-history traits.
Collapse
Affiliation(s)
- Maeva Leitwein
- Technopôle Brest-Iroiserue Dumont d'Urville Institut Universitaire Européen de la Mer (IUEM) University of Brest Plouzané France; Institute of Marine Sciences University of California Santa Cruz CA USA; Present address: Institut des Sciences de l'Evolution de Montpellier (ISEM) UMR 5554 Université de ´Montpellier Montpellier Cedex 5 France
| | - John Carlos Garza
- Institute of Marine Sciences University of California Santa Cruz CA USA; Fisheries Ecology Division Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz CA USA
| | - Devon E Pearse
- Institute of Marine Sciences University of California Santa Cruz CA USA; Fisheries Ecology Division Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz CA USA
| |
Collapse
|
7
|
Holmes MW, Hammond TT, Wogan GOU, Walsh RE, LaBarbera K, Wommack EA, Martins FM, Crawford JC, Mack KL, Bloch LM, Nachman MW. Natural history collections as windows on evolutionary processes. Mol Ecol 2016; 25:864-81. [PMID: 26757135 DOI: 10.1111/mec.13529] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 12/14/2022]
Abstract
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations.
Collapse
Affiliation(s)
- Michael W Holmes
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA.,Department of Biology, Coastal Carolina University, Conway, SC, 29528, USA
| | - Talisin T Hammond
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Guinevere O U Wogan
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Rachel E Walsh
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Katie LaBarbera
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Elizabeth A Wommack
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA.,Department of Zoology and Physiology, University of Wyoming Museum of Vertebrates, Laramie, WY, 82071, USA
| | - Felipe M Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Jeremy C Crawford
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Katya L Mack
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Luke M Bloch
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 97420-3140, USA
| |
Collapse
|
8
|
Abadía-Cardoso A, Pearse DE, Jacobson S, Marshall J, Dalrymple D, Kawasaki F, Ruiz-Campos G, Garza JC. Population genetic structure and ancestry of steelhead/rainbow trout (Oncorhynchus mykiss) at the extreme southern edge of their range in North America. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0814-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Le Cam S, Perrier C, Besnard AL, Bernatchez L, Evanno G. Genetic and phenotypic changes in an Atlantic salmon population supplemented with non-local individuals: a longitudinal study over 21 years. Proc Biol Sci 2016; 282:rspb.2014.2765. [PMID: 25608883 DOI: 10.1098/rspb.2014.2765] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
While introductions and supplementations using non-native and potentially domesticated individuals may have dramatic evolutionary effects on wild populations, few studies documented the evolution of genetic diversity and life-history traits in supplemented populations. Here, we investigated year-to-year changes from 1989 to 2009 in genetic admixture at 15 microsatellite loci and in phenotypic traits in an Atlantic salmon (Salmo salar) population stocked during the first decade of this period with two genetically and phenotypically distinct source populations. We detected a pattern of temporally increasing introgressive hybridization between the stocked population and both source populations. The proportion of fish returning to the river after a single winter at sea (versus several ones) was higher in fish assigned to the main source population than in local individuals. Moreover, during the first decade of the study, both single-sea-winter and multi-sea-winter (MSW) fish assigned to the main source population were smaller than local fish. During the second decade of the study, MSW fish defined as hybrids were lighter and smaller than fish from parental populations, suggesting outbreeding depression. Overall, this study suggests that supplementation with non-local individuals may alter not only the genetic diversity of wild populations but also life-history traits of adaptive significance.
Collapse
Affiliation(s)
- Sabrina Le Cam
- INRA, UMR 0985 Ecology and Health of Ecosystems, Rennes 35042, France Agrocampus Ouest, 65 Rue de Saint-Brieuc, Rennes 35042, France Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Roscoff Cedex 29688, France Station Biologique de Roscoff, Place Georges Teissier, CNRS, UMR 7144, Roscoff Cedex 29688, France
| | - Charles Perrier
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Anne-Laure Besnard
- INRA, UMR 0985 Ecology and Health of Ecosystems, Rennes 35042, France Agrocampus Ouest, 65 Rue de Saint-Brieuc, Rennes 35042, France
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Guillaume Evanno
- INRA, UMR 0985 Ecology and Health of Ecosystems, Rennes 35042, France Agrocampus Ouest, 65 Rue de Saint-Brieuc, Rennes 35042, France
| |
Collapse
|
10
|
Parallel evolution of the summer steelhead ecotype in multiple populations from Oregon and Northern California. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0769-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Vera-Escalona I, Habit E, Ruzzante DE. Echoes of a distant time: effects of historical processes on contemporary genetic patterns in Galaxias platei in Patagonia. Mol Ecol 2015; 24:4112-28. [PMID: 26147523 DOI: 10.1111/mec.13303] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
Interpreting the genetic structure of a metapopulation as the outcome of gene flow over a variety of timescales is essential for the proper understanding of how changes in landscape affect biological connectivity. Here we contrast historical and contemporary connectivity in two metapopulations of the freshwater fish Galaxias platei in northern and southernmost Patagonia where paleolakes existed during the Holocene and Pleistocene, respectively. Contemporary gene flow was mostly high and asymmetrical in the northern system while extremely reduced in the southernmost system. Historical migration patterns were high and symmetric in the northern system and high and largely asymmetric in the southern system. Both systems showed a moderate structure with a clear pattern of isolation by distance (IBD). Effective population sizes were smaller in populations with low contemporary gene flow. An approximate Bayesian computation (ABC) approach suggests a late Holocene colonization of the lakes in the northern system and recent divergence of the populations from refugial populations from east and west of the Andes. For the southern system, the ABC approach reveals that some of the extant G. platei populations most likely derive from an ancestral population inhabiting a large Pleistocene paleolake while the rest derive from a higher-altitude lake. Our results suggest that neither historical nor contemporary processes individually fully explain the observed structure and geneflow patterns and both are necessary for a proper understanding of the factors that affect diversity and its distribution. Our study highlights the importance of a temporal perspective on connectivity to analyse the diversity of spatially complex metapopulations.
Collapse
Affiliation(s)
- Iván Vera-Escalona
- Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS, Canada
| | - Evelyn Habit
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Daniel E Ruzzante
- Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS, Canada
| |
Collapse
|
12
|
Warner PA, van Oppen MJH, Willis BL. Unexpected cryptic species diversity in the widespread coralSeriatopora hystrixmasks spatial-genetic patterns of connectivity. Mol Ecol 2015; 24:2993-3008. [DOI: 10.1111/mec.13225] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/25/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Patricia A. Warner
- AIMS@JCU; Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- College of Marine and Environmental Sciences; James Cook University; Townsville Qld 4811 Australia
| | - Madeleine J. H. van Oppen
- AIMS@JCU; Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- Australian Institute of Marine Science; PMB3, Townsville MC; Townsville Qld 4810 Australia
| | - Bette L. Willis
- AIMS@JCU; Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- College of Marine and Environmental Sciences; James Cook University; Townsville Qld 4811 Australia
| |
Collapse
|
13
|
McBride MC, Hasselman DJ, Willis TV, Palkovacs EP, Bentzen P. Influence of stocking history on the population genetic structure of anadromous alewife (Alosa pseudoharengus) in Maine rivers. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0733-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Valiquette E, Perrier C, Thibault I, Bernatchez L. Loss of genetic integrity in wild lake trout populations following stocking: insights from an exhaustive study of 72 lakes from Québec, Canada. Evol Appl 2014; 7:625-44. [PMID: 25067947 PMCID: PMC4105915 DOI: 10.1111/eva.12160] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
Stocking represents the most important management tool worldwide to increase and sustain commercial and recreational fisheries in a context of overexploitation. Genetic impacts of this practice have been investigated in many studies, which examined population and individual admixture, but few have investigated determinants of these processes. Here, we addressed these questions from the genotyping at 19 microsatellite loci of 3341 adult lake trout (Salvelinus namaycush) from 72 unstocked and stocked lakes. Results showed an increase in genetic diversity and a twofold decrease in the extent of genetic differentiation among stocked populations when compared to unstocked. Stocked populations were characterized by significant admixture at both population and individual levels. Moreover, levels of admixture in stocked populations were strongly correlated with stocking intensity and a threshold value of total homogenization between source and stocked populations was identified. Our results also suggest that under certain scenarios, the genetic impacts of stocking could be of short duration. Overall, our study emphasizes the important alteration of the genetic integrity of stocked populations and the need to better understand determinants of admixture to optimize stocking strategies and to conserve the genetic integrity of wild populations.
Collapse
Affiliation(s)
- Eliane Valiquette
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada
| | - Charles Perrier
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada
| | - Isabel Thibault
- Ministère du Développement durable, de l'Environnement de la Faune et des Parcs Québec, QC, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada
| |
Collapse
|
15
|
Origins and genetic diversity among Atlantic salmon recolonizing upstream areas of a large South European river following restoration of connectivity and stocking. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0602-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Pearse DE, Miller MR, Abadía-Cardoso A, Garza JC. Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout. Proc Biol Sci 2014; 281:20140012. [PMID: 24671976 DOI: 10.1098/rspb.2014.0012] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid adaptation to novel environments may drive changes in genomic regions through natural selection. Such changes may be population-specific or, alternatively, may involve parallel evolution of the same genomic region in multiple populations, if that region contains genes or co-adapted gene complexes affecting the selected trait(s). Both quantitative and population genetic approaches have identified associations between specific genomic regions and the anadromous (steelhead) and resident (rainbow trout) life-history strategies of Oncorhynchus mykiss. Here, we use genotype data from 95 single nucleotide polymorphisms and show that the distribution of variation in a large region of one chromosome, Omy5, is strongly associated with life-history differentiation in multiple above-barrier populations of rainbow trout and their anadromous steelhead ancestors. The associated loci are in strong linkage disequilibrium, suggesting the presence of a chromosomal inversion or other rearrangement limiting recombination. These results provide the first evidence of a common genomic basis for life-history variation in O. mykiss in a geographically diverse set of populations and extend our knowledge of the heritable basis of rapid adaptation of complex traits in novel habitats.
Collapse
Affiliation(s)
- Devon E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, , 110 Shaffer Road, Santa Cruz, CA 95060, USA, Institute of Marine Sciences, University of California, , Santa Cruz, CA 95060, USA, Institute of Molecular Biology, University of Oregon, , Eugene, OR 97403, USA, Department of Animal Science, University of California, , One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
17
|
Moore JW, Yeakel JD, Peard D, Lough J, Beere M. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J Anim Ecol 2014; 83:1035-46. [DOI: 10.1111/1365-2656.12212] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 02/03/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan W. Moore
- Earth to Ocean Research Group; Simon Fraser University; 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Justin D. Yeakel
- Earth to Ocean Research Group; Simon Fraser University; 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Dean Peard
- Ministry of Environment; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| | - Jeff Lough
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| | - Mark Beere
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| |
Collapse
|
18
|
Petrou EL, Seeb JE, Hauser L, Witteveen MJ, Templin WD, Seeb LW. Fine-scale sampling reveals distinct isolation by distance patterns in chum salmon (Oncorhynchus keta) populations occupying a glacially dynamic environment. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0534-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Perrier C, Guyomard R, Bagliniere JL, Nikolic N, Evanno G. Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol Evol 2013; 3:2334-49. [PMID: 23919174 PMCID: PMC3728969 DOI: 10.1002/ece3.629] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/28/2013] [Accepted: 05/06/2013] [Indexed: 01/08/2023] Open
Abstract
While the stocking of captive-bred fish has been occurring for decades and has had substantial immediate genetic and evolutionary impacts on wild populations, its long-term consequences have only been weakly investigated. Here, we conducted a spatiotemporal analysis of 1428 Atlantic salmon sampled from 1965 to 2006 in 25 populations throughout France to investigate the influence of stocking on the neutral genetic structure in wild Atlantic salmon (Salmo salar) populations. On the basis of the analysis of 11 microsatellite loci, we found that the overall genetic structure among populations dramatically decreased over the period studied. Admixture rates among populations were highly variable, ranging from a nearly undetectable contribution from donor stocks to total replacement of the native gene pool, suggesting extremely variable impacts of stocking. Depending on population, admixture rates either increased, remained stable, or decreased in samples collected between 1998 and 2006 compared to samples from 1965 to 1987, suggesting either rising, long-lasting or short-term impacts of stocking. We discuss the potential mechanisms contributing to this variability, including the reduced fitness of stocked fish and persistence of wild locally adapted individuals.
Collapse
Affiliation(s)
- Charles Perrier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, Canada ; INRA, UMR 0985 Ecology and Health of Ecosystems 35042, Rennes, France ; Agrocampus Ouest 65 rue de Saint-Brieuc, 35042, Rennes, France ; INRA, UMR 1313 Génétique Animale et Biologie Intégrative F-78350, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
20
|
Hasselman DJ, Ricard D, Bentzen P. Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude. Mol Ecol 2013; 22:1558-73. [PMID: 23379260 DOI: 10.1111/mec.12197] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/16/2012] [Accepted: 12/05/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Daniel J. Hasselman
- Marine Gene Probe Laboratory; Biology Department; Dalhousie University; Halifax Nova Scotia B3H 4R2 Canada
| | - Daniel Ricard
- Biology Department; Dalhousie University; Halifax Nova Scotia B3H 4R2 Canada
- Institute of Hydrobiology; Fish Ecology Unit; Biology Centre of the Academy of Sciences of the Czech Republic; Na Sádkách 7 České Budějovice 370 05 Czech Republic
| | - Paul Bentzen
- Marine Gene Probe Laboratory; Biology Department; Dalhousie University; Halifax Nova Scotia B3H 4R2 Canada
| |
Collapse
|
21
|
Perrier C, Guyomard R, Bagliniere JL, Evanno G. Determinants of hierarchical genetic structure in Atlantic salmon populations: environmental factors vs. anthropogenic influences. Mol Ecol 2011; 20:4231-45. [PMID: 21917045 DOI: 10.1111/j.1365-294x.2011.05266.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Disentangling the effects of natural environmental features and anthropogenic factors on the genetic structure of endangered populations is an important challenge for conservation biology. Here, we investigated the combined influences of major environmental features and stocking with non-native fish on the genetic structure and local adaptation of Atlantic salmon (Salmo salar) populations. We used 17 microsatellite loci to genotype 975 individuals originating from 34 French rivers. Bayesian analyses revealed a hierarchical genetic structure into five geographically distinct clusters. Coastal distance, geological substrate and river length were strong predictors of population structure. Gene flow was higher among rivers with similar geologies, suggesting local adaptation to geological substrate. The effect of river length was mainly owing to one highly differentiated population that has the farthest spawning grounds off the river mouth (up to 900km) and the largest fish, suggesting local adaptation to river length. We detected high levels of admixture in stocked populations but also in neighbouring ones, implying large-scale impacts of stocking through dispersal of non-native individuals. However, we found relatively few admixed individuals suggesting a lower fitness of stocked fish and/or some reproductive isolation between wild and stocked individuals. When excluding stocked populations, genetic structure increased as did its correlation with environmental factors. This study overall indicates that geological substrate and river length are major environmental factors influencing gene flow and potential local adaptation among Atlantic salmon populations but that stocking with non-native individuals may ultimately disrupt these natural patterns of gene flow among locally adapted populations.
Collapse
Affiliation(s)
- Charles Perrier
- INRA, UMR 0985 Ecology and Health of Ecosystems, 35042 Rennes, France.
| | | | | | | |
Collapse
|