1
|
Stasinski L, White DM, Nelson PR, Ree RH, Meireles JE. Reading light: leaf spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs. THE NEW PHYTOLOGIST 2021; 232:2283-2294. [PMID: 34510452 PMCID: PMC9297881 DOI: 10.1111/nph.17731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 05/26/2023]
Abstract
Leaf reflectance spectroscopy is emerging as an effective tool for assessing plant diversity and function. However, the ability of leaf spectra to detect fine-scale plant evolutionary diversity in complicated biological scenarios is not well understood. We test if reflectance spectra (400-2400 nm) can distinguish species and detect fine-scale population structure and phylogenetic divergence - estimated from genomic data - in two co-occurring, hybridizing, ecotypically differentiated species of Dryas. We also analyze the correlation among taxonomically diagnostic leaf traits to understand the challenges hybrids pose to classification models based on leaf spectra. Classification models based on leaf spectra identified two species of Dryas with 99.7% overall accuracy and genetic populations with 98.9% overall accuracy. All regions of the spectrum carried significant phylogenetic signal. Hybrids were classified with an average overall accuracy of 80%, and our morphological analysis revealed weak trait correlations within hybrids compared to parent species. Reflectance spectra captured genetic variation and accurately distinguished fine-scale population structure and hybrids of morphologically similar, closely related species growing in their home environment. Our findings suggest that fine-scale evolutionary diversity is captured by reflectance spectra and should be considered as spectrally-based biodiversity assessments become more prevalent.
Collapse
Affiliation(s)
- Lance Stasinski
- School of Biology and EcologyUniversity of MaineOronoME04469USA
| | - Dawson M. White
- Department of Science and EducationField MuseumChicagoIL60605USA
| | - Peter R. Nelson
- Schoodic InstituteWinter HarborME04693USA
- School of Forest ResourcesUniversity of MaineOronoME04469USA
| | - Richard H. Ree
- Department of Science and EducationField MuseumChicagoIL60605USA
| | - José Eduardo Meireles
- School of Biology and EcologyUniversity of MaineOronoME04469USA
- Maine Center for Genetics in the EnvironmentUniversity of MaineOronoME04469USA
| |
Collapse
|
2
|
Hultine KR, Allan GJ, Blasini D, Bothwell HM, Cadmus A, Cooper HF, Doughty CE, Gehring CA, Gitlin AR, Grady KC, Hull JB, Keith AR, Koepke DF, Markovchick L, Corbin Parker JM, Sankey TT, Whitham TG. Adaptive capacity in the foundation tree species Populus fremontii: implications for resilience to climate change and non-native species invasion in the American Southwest. CONSERVATION PHYSIOLOGY 2020; 8:coaa061. [PMID: 32685164 PMCID: PMC7359000 DOI: 10.1093/conphys/coaa061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 05/29/2023]
Abstract
Populus fremontii (Fremont cottonwood) is recognized as one of the most important foundation tree species in the southwestern USA and northern Mexico because of its ability to structure communities across multiple trophic levels, drive ecosystem processes and influence biodiversity via genetic-based functional trait variation. However, the areal extent of P. fremontii cover has declined dramatically over the last century due to the effects of surface water diversions, non-native species invasions and more recently climate change. Consequently, P. fremontii gallery forests are considered amongst the most threatened forest types in North America. In this paper, we unify four conceptual areas of genes to ecosystems research related to P. fremontii's capacity to survive or even thrive under current and future environmental conditions: (i) hydraulic function related to canopy thermal regulation during heat waves; (ii) mycorrhizal mutualists in relation to resiliency to climate change and invasion by the non-native tree/shrub, Tamarix; (iii) phenotypic plasticity as a mechanism for coping with rapid changes in climate; and (iv) hybridization between P. fremontii and other closely related Populus species where enhanced vigour of hybrids may preserve the foundational capacity of Populus in the face of environmental change. We also discuss opportunities to scale these conceptual areas from genes to the ecosystem level via remote sensing. We anticipate that the exploration of these conceptual areas of research will facilitate solutions to climate change with a foundation species that is recognized as being critically important for biodiversity conservation and could serve as a model for adaptive management of arid regions in the southwestern USA and around the world.
Collapse
Affiliation(s)
- Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 North Galvin Parkway, Phoenix, AZ 85008, USA
| | - Gerard J Allan
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Davis Blasini
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA
| | - Helen M Bothwell
- Research School of Biology, Australian National University, 134 Linnaeus Way, Canberra ACT2601, Australia
| | - Abraham Cadmus
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Hillary F Cooper
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Chris E Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 South Knoles Drive, Flagstaff, AZ 86011, USA
| | - Catherine A Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Alicyn R Gitlin
- Sierra Club – Grand Canyon Chapter, 514 West Roosevelt Street, Phoenix, AZ 85003, USA
| | - Kevin C Grady
- School of Forestry, Northern Arizona University, East Pine Knoll Drive, Flagstaff, AZ 86011, USA
| | - Julia B Hull
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Arthur R Keith
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Dan F Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 North Galvin Parkway, Phoenix, AZ 85008, USA
| | - Lisa Markovchick
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Jackie M Corbin Parker
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Temuulen T Sankey
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 South Knoles Drive, Flagstaff, AZ 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| |
Collapse
|
3
|
Chhatre VE, Evans LM, DiFazio SP, Keller SR. Adaptive introgression and maintenance of a trispecies hybrid complex in range‐edge populations of
Populus. Mol Ecol 2018; 27:4820-4838. [DOI: 10.1111/mec.14820] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Vikram E. Chhatre
- Department of Plant Biology University of Vermont Burlington Vermont
| | - Luke M. Evans
- Department of Ecology and Evolutionary Biology Institute of Behavioral Genetics University of Colorado Boulder Colorado
| | | | - Stephen R. Keller
- Department of Plant Biology University of Vermont Burlington Vermont
| |
Collapse
|
4
|
Bell KC, Demboski JR, Cook JA. Sympatric Parasites Have Similar Host-Associated, but Asynchronous, Patterns of Diversification. Am Nat 2018; 192:E106-E119. [DOI: 10.1086/698300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Bothwell HM, Cushman SA, Woolbright SA, Hersch‐Green EI, Evans LM, Whitham TG, Allan GJ. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (
Populus angustifolia
). Mol Ecol 2017; 26:5114-5132. [DOI: 10.1111/mec.14281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 07/04/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Helen M. Bothwell
- Environmental Genetics & Genomics Facility Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
| | - Samuel A. Cushman
- Rocky Mountain Research Station United States Forest Service Flagstaff AZ USA
| | | | | | - Luke M. Evans
- Institute for Behavioral Genetics University of Colorado Boulder CO USA
| | - Thomas G. Whitham
- Environmental Genetics & Genomics Facility Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
- Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ USA
| | - Gerard J. Allan
- Environmental Genetics & Genomics Facility Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
- Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ USA
| |
Collapse
|
6
|
Floate KD, Godbout J, Lau MK, Isabel N, Whitham TG. Plant-herbivore interactions in a trispecific hybrid swarm of Populus: assessing support for hypotheses of hybrid bridges, evolutionary novelty and genetic similarity. THE NEW PHYTOLOGIST 2016; 209:832-844. [PMID: 26346922 DOI: 10.1111/nph.13622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED Natural systems of hybridizing plants are powerful tools with which to assess evolutionary processes between parental species and their associated arthropods. Here we report on these processes in a trispecific hybrid swarm of Populus trees. Using field observations, common garden experiments and genetic markers, we tested the hypothesis that genetic similarities among hosts underlie the distributions of 10 species of gall-forming arthropods and their ability to adapt to new host genotypes. KEY FINDINGS the degree of genetic relatedness among parental species determines whether hybridization is primarily bidirectional or unidirectional; host genotype and genetic similarity strongly affect the distributions of gall-forming species, individually and as a community. These effects were detected observationally in the wild and experimentally in common gardens; correlations between the diversity of host genotypes and their associated arthropods identify hybrid zones as centres of biodiversity and potential species interactions with important ecological and evolutionary consequences. These findings support both hybrid bridge and evolutionary novelty hypotheses. However, the lack of parallel genetic studies on gall-forming arthropods limits our ability to define the host of origin with their subsequent shift to other host species or their evolution on hybrids as their final destination.
Collapse
Affiliation(s)
- Kevin D Floate
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Julie Godbout
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec (Sainte-Foy), QC, G1V 4C7, Canada
| | - Matthew K Lau
- Merriam-Powell Center for Environmental Research and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec (Sainte-Foy), QC, G1V 4C7, Canada
| | - Thomas G Whitham
- Merriam-Powell Center for Environmental Research and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
7
|
Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape. PLoS One 2015; 10:e0140938. [PMID: 26580222 PMCID: PMC4651334 DOI: 10.1371/journal.pone.0140938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/30/2015] [Indexed: 02/01/2023] Open
Abstract
Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation.
Collapse
|
8
|
Schilling MP, Wolf PG, Duffy AM, Rai HS, Rowe CA, Richardson BA, Mock KE. Genotyping-by-sequencing for Populus population genomics: an assessment of genome sampling patterns and filtering approaches. PLoS One 2014; 9:e95292. [PMID: 24748384 PMCID: PMC3991623 DOI: 10.1371/journal.pone.0095292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/25/2014] [Indexed: 12/19/2022] Open
Abstract
Continuing advances in nucleotide sequencing technology are inspiring a suite of genomic approaches in studies of natural populations. Researchers are faced with data management and analytical scales that are increasing by orders of magnitude. With such dramatic advances comes a need to understand biases and error rates, which can be propagated and magnified in large-scale data acquisition and processing. Here we assess genomic sampling biases and the effects of various population-level data filtering strategies in a genotyping-by-sequencing (GBS) protocol. We focus on data from two species of Populus, because this genus has a relatively small genome and is emerging as a target for population genomic studies. We estimate the proportions and patterns of genomic sampling by examining the Populus trichocarpa genome (Nisqually-1), and demonstrate a pronounced bias towards coding regions when using the methylation-sensitive ApeKI restriction enzyme in this species. Using population-level data from a closely related species (P. tremuloides), we also investigate various approaches for filtering GBS data to retain high-depth, informative SNPs that can be used for population genetic analyses. We find a data filter that includes the designation of ambiguous alleles resulted in metrics of population structure and Hardy-Weinberg equilibrium that were most consistent with previous studies of the same populations based on other genetic markers. Analyses of the filtered data (27,910 SNPs) also resulted in patterns of heterozygosity and population structure similar to a previous study using microsatellites. Our application demonstrates that technically and analytically simple approaches can readily be developed for population genomics of natural populations.
Collapse
Affiliation(s)
- Martin P. Schilling
- Department of Biology, Utah State University, Logan, Utah, United States of America
- Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Paul G. Wolf
- Department of Biology, Utah State University, Logan, Utah, United States of America
- Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Aaron M. Duffy
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Hardeep S. Rai
- Department of Wildland Resources, Utah State University, Logan, Utah, United States of America
| | - Carol A. Rowe
- Department of Wildland Resources, Utah State University, Logan, Utah, United States of America
| | - Bryce A. Richardson
- Rocky Mountain Research Station, USDA Forest Service, Provo, Utah, United States of America
| | - Karen E. Mock
- Department of Wildland Resources, Utah State University, Logan, Utah, United States of America
- Ecology Center, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
9
|
Scriber JM. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes. INSECTS 2013; 5:1-61. [PMID: 26462579 PMCID: PMC4592632 DOI: 10.3390/insects5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge.
Collapse
Affiliation(s)
- Jon Mark Scriber
- Department of Entomology, Michigan State University, East Lansing, Michigan, MI 48824, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|