1
|
Balchan NR, Crowther TW, Kratz G, Mackessy SP. Raptors without resistance: No evidence for endogenous inhibition of rattlesnake venom metalloproteinases in a Great Plains raptor assemblage. Toxicon 2025; 256:108275. [PMID: 39914593 DOI: 10.1016/j.toxicon.2025.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Snake venoms are complex biochemical secretions under strong selection for prey subjugation, and venoms are tightly linked to the biotic communities that snakes inhabit. Physiological adaptations for venom resistance have been identified in various snake prey species, but fewer snake predators, with research in this area largely biased towards mammalian species. Fewer investigations have assayed for the presence of resistance mechanisms in avian systems. Birds of prey (hereafter "raptors"; orders Accipitriformes, Falconiformes, and Strigiformes) represent major sources of predation for snakes. Raptor dietary habits range from snake specialists to non-snake feeders, and this continuum of snake predation frequency among species creates the ideal system in which to explore the presence and strength of venom resistance. We assayed sera from a suite of Great Plains raptors against snake venom metalloproteinases (SVMPs) of the Prairie rattlesnake (Crotalus v. viridis) to test the general hypotheses that 1) raptor sera will display elevated SVMP inhibition compared to a naïve avian model (domestic chicken; Gallus gallus) and 2) raptor species with high levels of rattlesnake predation will more effectively inhibit SVMP activity than those that are not known to feed on rattlesnakes. We found that raptors do possess elevated SVMP inhibition in comparison to a naïve avian model, but this level of inhibition remains low and is unlikely to be biologically significant in detoxifying venoms. We found no evidence suggesting that inhibitory potential of different raptor sera corresponds to the level of rattlesnake predation associated with each species. The widespread lack of SVMP inhibition in diverse raptors underscores the complexity of venom resistance dynamics in natural systems and further suggests that physiological venom resistance mechanisms may be poorly developed in birds more broadly.
Collapse
Affiliation(s)
- Neil R Balchan
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA; Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tim W Crowther
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA; National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Gail Kratz
- Rocky Mountain Raptor Program, Fort Collins, CO, 80524, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA.
| |
Collapse
|
2
|
Judkins ME, Roemer GW, Millsap BA, Barnes JG, Bedrosian BE, Clarke SL, Domenech R, Herring G, Lamont M, Smith BW, Stahlecker DW, Stuber MJ, Warren WC, Van Den Bussche RA. A 37 K SNP array for the management and conservation of Golden Eagles (Aquila chrysaetos). CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Muller-Girard M, Fowles G, Duchamp J, Kouneski S, Mollohan C, Smyser TJ, Turner GG, Westrich B, Doyle JM. A novel SNP assay reveals increased genetic variability and abundance following translocations to a remnant Allegheny woodrat population. BMC Ecol Evol 2022; 22:137. [PMID: 36418951 PMCID: PMC9686018 DOI: 10.1186/s12862-022-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Allegheny woodrats (Neotoma magister) are found in metapopulations distributed throughout the Interior Highlands and Appalachia. Historically these metapopulations persisted as relatively fluid networks, enabling gene flow between subpopulations and recolonization of formerly extirpated regions. However, over the past 45 years, the abundance of Allegheny woodrats has declined throughout the species' range due to a combination of habitat destruction, declining hard mast availability, and roundworm parasitism. In an effort to initiate genetic rescue of a small, genetically depauperate subpopulation in New Jersey, woodrats were translocated from a genetically robust population in Pennsylvania (PA) in 2015, 2016 and 2017. Herein, we assess the efficacy of these translocations to restore genetic diversity within the recipient population. RESULTS We designed a novel 134 single nucleotide polymorphism panel, which was used to genotype the six woodrats translocated from PA and 82 individuals from the NJ population captured before and after the translocation events. These data indicated that a minimum of two translocated individuals successfully produced at least 13 offspring, who reproduced as well. Further, population-wide observed heterozygosity rose substantially following the first set of translocations, reached levels comparable to that of populations in Indiana and Ohio, and remained elevated over the subsequent years. Abundance also increased during the monitoring period, suggesting Pennsylvania translocations initiated genetic rescue of the New Jersey population. CONCLUSIONS Our results indicate, encouragingly, that very small numbers of translocated individuals can successfully restore the genetic diversity of a threatened population. Our work also highlights the challenges of managing very small populations, such as when translocated individuals have greater reproductive success relative to residents. Finally, we note that ongoing work with Allegheny woodrats may broadly shape our understanding of genetic rescue within metapopulations and across heterogeneous landscapes.
Collapse
Affiliation(s)
- Megan Muller-Girard
- grid.265122.00000 0001 0719 7561Department of Environmental Science and Studies, Towson University, 8000 York Rd, Baltimore, MD 21252 USA
| | - Gretchen Fowles
- Endangered and Nongame Species Program, New Jersey DEP Fish and Wildlife, 1255 County Rd 629, Lebanon, NJ 08833 USA
| | - Joseph Duchamp
- grid.257427.10000000088740847Department of Biology, Indiana University of Pennsylvania, 975 Oakland Avenue, Indiana, PA 15705-1081 USA
| | - Samantha Kouneski
- grid.265122.00000 0001 0719 7561Department of Biological Sciences, Towson University, 8000 York Rd, Baltimore, MD 21252 USA
| | | | - Timothy J. Smyser
- grid.413759.d0000 0001 0725 8379USDA-APHIS-WS National Wildlife Research Center, Fort Collins, CO USA
| | - Gregory G. Turner
- Pennsylvania Game Commission, 2001 Elmerton Avenue, Harrisburg, PA 17110 USA
| | - Bradford Westrich
- grid.448453.a0000 0004 1130 5264Indiana Department of Natural Resources, 5596 East State Road 46, Bloomington, IN 47401 USA
| | - Jacqueline M. Doyle
- grid.265122.00000 0001 0719 7561Department of Biological Sciences, Towson University, 8000 York Rd, Baltimore, MD 21252 USA
| |
Collapse
|
4
|
Väli Ü, Treinys R, Bergmanis U, Daroczi S, Demerdzhiev D, Dombrovski V, Dravecký M, Ivanovski V, Kicko J, Langgemach T, Lontkowski J, Maciorowski G, Poirazidis K, Rodziewicz M, Meyburg BU. Contrasting patterns of genetic diversity and lack of population structure in the lesser spotted eagle Clanga pomarina (Aves: Accipitriformes) across its breeding range. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Characterizing the genetic diversity and structure of populations is essential for understanding their evolutionary history and planning species conservation. The lesser spotted eagle (Clanga pomarina) is a large migratory raptor with a relatively small breeding range concentrated in Eastern Europe. We evaluated the level of genetic diversity and population structuring by estimating the length diversity of 23 microsatellite markers in 306 individuals and sequencing 473 nucleotides from the mitochondrial pseudo-control region in 265 individuals across the distribution range. The microsatellite data suggested shallow differentiation between geographical regions and moderate genetic diversity across the range; no recent population bottlenecks were detected. Mitochondrial diversity was relatively low; however, high values were recorded at the southern edge of the distribution range. This, in combination with the star-like distribution of mitochondrial haplotypes, suggests the expansion of the European population from a single (Balkan) refugium during the late Pleistocene or early Holocene after the glacial population bottleneck. However, the Caucasian population may have survived in a separate refugium. We conclude that the lack of clear population structuring and ongoing gene flow across Europe support the treatment of the geographically restricted global population of the lesser spotted eagle as a single evolutionary and conservation unit.
Collapse
Affiliation(s)
- Ülo Väli
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences , Kreutzwaldi 5D, 51006 Tartu , Estonia
| | - Rimgaudas Treinys
- Nature Research Centre , Akademijos str. 2, 08412 Vilnius , Lithuania
| | - Ugis Bergmanis
- Joint Stock Company ‘Latvia’s State Forests’; ‘Tiltakalni’, Barkavas pag., Madonas nov. LV-4834, Latvia
| | - Szilard Daroczi
- Milvus Group Bird and Nature Protection Association , B-dul 1 Decembrie 1918, nr. 121, Tîrgu Mureș 540445 , Romania
| | - Dimitar Demerdzhiev
- Bulgarian Society for the Protection of Birds/Birdlife Bulgaria, 5 Leonardo Da Vinci Str., Plovdiv 4000, Bulgaria; National Museum of Natural History, Department of Zoology , Sofia , Bulgaria
| | - Valery Dombrovski
- National Academy of Sciences, Scientific and Practical Centre for Bioresources , Akademichnaia 27, 220072, Minsk , Belarus
| | - Miroslav Dravecký
- The East Slovak Museum in Košice, Námestie Maratónu mieru 2 , SK-04001 Košice , Slovakia
| | - Vladimir Ivanovski
- Vitebsk State University , Moskovskij Ave., 33, 210038 Vitebsk , Belarus
| | - Ján Kicko
- Považské Museum , Topoľová 1, SK-01003 Žilina , Slovakia
| | - Torsten Langgemach
- Brandenburg State Agency for Environment, Bird Conservation Centre , Buckower Dorfstraße 34, D-14715 Nennhausen/Ortsteil Buckow , Germany
| | - Jan Lontkowski
- Museum of Natural History, University of Wrocław , Sienkiewicza 21, 50-335 Wrocław , Poland
| | - Grzegorz Maciorowski
- Department of Game Management and Forest Protection, Poznań University of Life Sciences , Wojska Polskiego 71d, 60-625 Poznań , Poland
| | - Kostas Poirazidis
- Department of Environment, Ionian University , Zakinthos GR 29100, Greece
| | - Maciej Rodziewicz
- Eagle Conservation Committee , Jagiellończyka 45, 10-062 Olsztyn , Poland
| | | |
Collapse
|
5
|
Population genetic and genomic analyses of Western Massasauga (Sistrurus tergeminus ssp.): implications for subspecies delimitation and conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01420-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Torres L, Pante E, González‐Solís J, Viricel A, Ribout C, Zino F, MacKin W, Precheur C, Tourmetz J, Calabrese L, Militão T, Zango L, Shirihai H, Bretagnolle V. Sea surface temperature, rather than land mass or geographic distance, may drive genetic differentiation in a species complex of highly dispersive seabirds. Ecol Evol 2021; 11:14960-14976. [PMID: 34765153 PMCID: PMC8571584 DOI: 10.1002/ece3.8180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Seabirds, particularly Procellariiformes, are highly mobile organisms with a great capacity for long dispersal, though simultaneously showing high philopatry, two conflicting life-history traits that may lead to contrasted patterns of genetic population structure. Landmasses were suggested to explain differentiation patterns observed in seabirds, but philopatry, isolation by distance, segregation between breeding and nonbreeding zones, and oceanographic conditions (sea surface temperatures) may also contribute to differentiation patterns. To our knowledge, no study has simultaneously contrasted the multiple factors contributing to the diversification of seabird species, especially in the gray zone of speciation. We conducted a multilocus phylogeographic study on a widespread seabird species complex, the little shearwater complex, showing highly homogeneous morphology, which led to considerable taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all extant populations from the Atlantic (lherminieri) and Indian Oceans (bailloni), that is, five nominal lineages from 13 populations, along with one population from the eastern Pacific Ocean (representing the dichrous lineage). We found sharp differentiation among populations separated by the African continent with both mitochondrial and nuclear markers, while only mitochondrial markers allowed characterizing the five nominal lineages. No differentiation could be detected within these five lineages, questioning the strong level of philopatry showed by these shearwaters. Finally, we propose that Atlantic populations likely originated from the Indian Ocean. Within the Atlantic, a stepping-stone process accounts for the current distribution. Based on our divergence time estimates, we suggest that the observed pattern of differentiation mostly resulted from historical and current variation in sea surface temperatures.
Collapse
Affiliation(s)
- Lucas Torres
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Eric Pante
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Jacob González‐Solís
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Amélia Viricel
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Cécile Ribout
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
| | | | - Will MacKin
- 3913 Sterling Ridge LnDurhamNorth CarolinaUSA
| | | | - Julie Tourmetz
- Société d'Etudes Ornithologiques de La RéunionSaint AndréFrance
| | - Licia Calabrese
- Island Conservation SocietyMahéSeychelles
- Faculty of Business & Sustainable DevelopmentIsland Biodiversity & Conservation CenterUniversity of SeychellesMahéSeychelles
| | - Teresa Militão
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Laura Zango
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | | | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
| |
Collapse
|
7
|
DeWoody JA, Harder AM, Mathur S, Willoughby JR. The long-standing significance of genetic diversity in conservation. Mol Ecol 2021; 30:4147-4154. [PMID: 34191374 DOI: 10.1111/mec.16051] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Since allozymes were first used to assess genetic diversity in the 1960s and 1970s, biologists have attempted to characterize gene pools and conserve the diversity observed in domestic crops, livestock, zoos and (more recently) natural populations. Recently, some authors have claimed that the importance of genetic diversity in conservation biology has been greatly overstated. Here, we argue that a voluminous literature indicates otherwise. We address four main points made by detractors of genetic diversity's role in conservation by using published literature to firmly establish that genetic diversity is intimately tied to evolutionary fitness, and that the associated demographic consequences are of paramount importance to many conservation efforts. We think that responsible management in the Anthropocene should, whenever possible, include the conservation of ecosystems, communities, populations and individuals, and their underlying genetic diversity.
Collapse
Affiliation(s)
- J Andrew DeWoody
- Department of Forestry and Natural Resources, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Avril M Harder
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| | - Samarth Mathur
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - Janna R Willoughby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
8
|
Reproductive success of captive-reared Allegheny Woodrats (Neotoma magister) released into genetically depauperate populations. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Gousy-Leblanc M, Yannic G, Therrien JF, Lecomte N. Mapping our knowledge on birds of prey population genetics. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01368-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Dudek BM, Henderson MT, Hudon SF, Hayden EJ, Heath JA. Haematophagous ectoparasites lower survival of and have detrimental physiological effects on golden eagle nestlings. CONSERVATION PHYSIOLOGY 2021; 9:coab060. [PMID: 34386238 PMCID: PMC8354271 DOI: 10.1093/conphys/coab060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/31/2021] [Accepted: 07/20/2021] [Indexed: 05/12/2023]
Abstract
Haematophagous ectoparasites can directly affect the health of young animals by depleting blood volume and reducing energetic resources available for growth and development. Less is known about the effects of ectoparasitism on stress physiology (i.e. glucocorticoid hormones) or animal behaviour. Mexican chicken bugs (Haematosiphon inodorus; Hemiptera: Cimicidae) are blood-sucking ectoparasites that live in nesting material or nest substrate and feed on nestling birds. Over the past 50 years, the range of H. inodorus has expanded, suggesting that new hosts or populations may be vulnerable. We studied the physiological and behavioural effects of H. inodorus on golden eagle (Aquila chrysaetos) nestlings in southwestern Idaho. We estimated the level of H. inodorus infestation at each nest and measured nestling mass, haematocrit, corticosterone concentrations, telomere lengths and recorded early fledging and mortality events. At nests with the highest levels of infestation, nestlings had significantly lower mass and haematocrit. In addition, highly parasitized nestlings had corticosterone concentrations twice as high on average (42.9 ng/ml) than non-parasitized nestlings (20.2 ng/ml). Telomeres of highly parasitized female nestlings significantly shortened as eagles aged, but we found no effect of parasitism on the telomeres of male nestlings. Finally, in nests with higher infestation levels, eagle nestlings were 20 times more likely to die, often because they left the nest before they could fly. These results suggest that H. inodorus may limit local golden eagle populations by decreasing productivity. For eagles that survived infestation, chronically elevated glucocorticoids and shortened telomeres may adversely affect cognitive function or survival in this otherwise long-lived species. Emerging threats from ectoparasites should be an important management consideration for protected species, like golden eagles.
Collapse
Affiliation(s)
- Benjamin M Dudek
- Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, ID 83725, USA
- Corresponding author: Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, ID 83725, USA. Tel: (860) 248-0004.
| | - Michael T Henderson
- Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, ID 83725, USA
- The Peregrine Fund, Boise, ID 83709, USA
| | - Stephanie F Hudon
- Department of Biological Sciences, Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Eric J Hayden
- Department of Biological Sciences, Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Julie A Heath
- Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
11
|
Sato Y, Ogden R, Kishida T, Nakajima N, Maeda T, Inoue-Murayama M. Population history of the golden eagle inferred from whole-genome sequencing of three of its subspecies. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe application of evolutionary genetic research to investigate the potential for endangered species to adapt to changing environments is important for conservation biology. Effective population size (Ne) is informative for understanding adaptive potential as it refers to the genetic variation in breeding individuals who have contributed to contemporary and historic population diversity. We reconstruct fluctuations in Ne in three golden eagle subspecies (Japanese, Scottish, North American) using the pairwise sequential Markovian coalescent (PSMC) model based on whole-genome sequence data. Our results indicate the timing of subspeciation events and suggest significant ongoing demographic reductions since the start of the Last Glacial Period. Importantly, we find evidence for gene flow from continental populations into the ancestral Japanese population resulting in a short, sharp recovery in genetic diversity. Timing agrees with the palaeogeographic estimates of land bridge connections between the Japanese archipelago and Asian continent and matches a similar Ne spike in the Scottish population, but not in the North American population. Given contemporary declines in isolated Japanese and UK island populations, our study highlights a concerning loss of local genetic diversity, but also indicates the likely response of populations to genetic reinforcement from neighbouring subspecies, increasing management options and encouraging a range-wide species conservation approach.
Collapse
Affiliation(s)
- Yu Sato
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, University of Edinburgh, UK
| | - Takushi Kishida
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Museum of Natural and Environmental History, Shizuoka, Japan
| | - Nobuyoshi Nakajima
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| | - Taku Maeda
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
12
|
von Thaden A, Nowak C, Tiesmeyer A, Reiners TE, Alves PC, Lyons LA, Mattucci F, Randi E, Cragnolini M, Galián J, Hegyeli Z, Kitchener AC, Lambinet C, Lucas JM, Mölich T, Ramos L, Schockert V, Cocchiararo B. Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 2020. [PMID: 31925943 DOI: 10.1111/1755-0998.13136.applying] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Tobias E Reiners
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Federica Mattucci
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia, Bologna, Italy
| | - Ettore Randi
- Department BIGEA, University of Bologna, Bologna, Italy.,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Margherita Cragnolini
- Institut für Spezielle Zoologie und Evolutionsbiologie, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - José Galián
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Zsolt Hegyeli
- "Milvus Group" Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Clotilde Lambinet
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - José M Lucas
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Thomas Mölich
- Landesverband Thüringen e.V., BUND für Umwelt und Naturschutz Deutschland (BUND), Erfurt, Germany
| | - Luana Ramos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Vinciane Schockert
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
13
|
von Thaden A, Nowak C, Tiesmeyer A, Reiners TE, Alves PC, Lyons LA, Mattucci F, Randi E, Cragnolini M, Galián J, Hegyeli Z, Kitchener AC, Lambinet C, Lucas JM, Mölich T, Ramos L, Schockert V, Cocchiararo B. Applying genomic data in wildlife monitoring: Development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 2020; 20. [PMID: 31925943 DOI: 10.1111/1755-0998.13136] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 01/16/2023]
Abstract
The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Annika Tiesmeyer
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Tobias E Reiners
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Federica Mattucci
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia, Bologna, Italy
| | - Ettore Randi
- Department BIGEA, University of Bologna, Bologna, Italy.,Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Margherita Cragnolini
- Institut für Spezielle Zoologie und Evolutionsbiologie, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - José Galián
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Zsolt Hegyeli
- "Milvus Group" Bird and Nature Protection Association, Tîrgu Mureş, Romania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Clotilde Lambinet
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - José M Lucas
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Thomas Mölich
- Landesverband Thüringen e.V., BUND für Umwelt und Naturschutz Deutschland (BUND), Erfurt, Germany
| | - Luana Ramos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Vinciane Schockert
- Department of Science and Environmental Management, University of Liège, Liège, Belgium
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
14
|
Mathur S, Tomeček JM, Heniff A, Luna R, DeWoody JA. Evidence of genetic erosion in a peripheral population of a North American game bird: the Montezuma quail (Cyrtonyx montezumae). CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01218-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Doyle JM, Willoughby JR, Bell DA, Bloom PH, Bragin EA, Fernandez NB, Katzner TE, Leonard K, DeWoody JA. Elevated Heterozygosity in Adults Relative to Juveniles Provides Evidence of Viability Selection on Eagles and Falcons. J Hered 2019; 110:696-706. [DOI: 10.1093/jhered/esz048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
AbstractViability selection yields adult populations that are more genetically variable than those of juveniles, producing a positive correlation between heterozygosity and survival. Viability selection could be the result of decreased heterozygosity across many loci in inbred individuals and a subsequent decrease in survivorship resulting from the expression of the deleterious alleles. Alternatively, locus-specific differences in genetic variability between adults and juveniles may be driven by forms of balancing selection, including heterozygote advantage, frequency-dependent selection, or selection across temporal and spatial scales. We use a pooled-sequencing approach to compare genome-wide and locus-specific genetic variability between 74 golden eagle (Aquila chrysaetos), 62 imperial eagle (Aquila heliaca), and 69 prairie falcon (Falco mexicanus) juveniles and adults. Although genome-wide genetic variability is comparable between juvenile and adult golden eagles and prairie falcons, imperial eagle adults are significantly more heterozygous than juveniles. This evidence of viability selection may stem from a relatively smaller imperial eagle effective population size and potentially greater genetic load. We additionally identify ~2000 single-nucleotide polymorphisms across the 3 species with extreme differences in heterozygosity between juveniles and adults. Many of these markers are associated with genes implicated in immune function or olfaction. These loci represent potential targets for studies of how heterozygote advantage, frequency-dependent selection, and selection over spatial and temporal scales influence survivorship in avian species. Overall, our genome-wide data extend previous studies that used allozyme or microsatellite markers and indicate that viability selection may be a more common evolutionary phenomenon than often appreciated.
Collapse
Affiliation(s)
- Jacqueline M Doyle
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
| | - Janna R Willoughby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Douglas A Bell
- Department of Biological Sciences, Towson University, Baltimore, MD
- East Bay Regional Park District, Oakland, CA
- Department of Ornithology and Mammalogy, California Academy of Sciences, San Francisco, CA
| | - Peter H Bloom
- Department of Biological Sciences, Towson University, Baltimore, MD
- Bloom Research Inc., Los Angeles, CA
| | - Evgeny A Bragin
- Department of Biological Sciences, Towson University, Baltimore, MD
- Faculty of Natural Science, Kostanay State Pedagogical University, Kostanay, Kazakhstan
- The Peregrine Fund, Boise, ID
- Science Department, Naurzum National Nature Reserve, Kostanay Oblast, Naurzumski Raijon, Karamendy, Kazakhstan
| | - Nadia B Fernandez
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA
| | - Todd E Katzner
- Department of Biological Sciences, Towson University, Baltimore, MD
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID
| | - Kolbe Leonard
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Computer and Information Sciences, Towson University, Baltimore, MD
| | - J Andrew DeWoody
- Department of Biological Sciences, Towson University, Baltimore, MD
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
16
|
Väli Ü, Dombrovski V, Dzmitranok M, Maciorowski G, Meyburg BU. High genetic diversity and low differentiation retained in the European fragmented and declining Greater Spotted Eagle (Clanga clanga) population. Sci Rep 2019; 9:3064. [PMID: 30816145 PMCID: PMC6395815 DOI: 10.1038/s41598-019-39187-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/16/2019] [Indexed: 11/09/2022] Open
Abstract
Characterising genetic diversity and structure of populations is essential for effective conservation of threatened species. The Greater Spotted Eagle (Clanga clanga), a large and globally vulnerable raptor, is extinct or in severe decline in most of its previous range in Europe. We assessed whether the remnants of European population are genetically impoverished, and isolated from each other. We evaluated levels of genetic diversity and population structuring by sequencing mitochondrial pseudo-control region and 10 introns from various nuclear genes, and estimated length diversity in 23 microsatellite markers. The European population has expanded since the late Pleistocene, and does not exhibit signs of a recent population bottleneck. The global genetic diversity in Europe was rather similar to that detected in other similar species. Microsatellites suggested shallow but significant differentiation between the four extant populations in Estonia, Poland, Belarus and Russia (Upper Volga region) populations, but introns and mtDNA showed that only the Estonian population differed from the others. Mitochondrial diversity was highest in the northernmost Estonian population, introns suggested lower diversity in Upper Volga, microsatellites indicated equal diversity among populations. A recent bottleneck was detected in Poland, which is consistent with the observed repopulation of the region. We conclude that significant gene flow and high genetic diversity are retained in the fragmented Greater Spotted Eagle populations; there is currently no need for genetic augmentation in Europe.
Collapse
Affiliation(s)
- Ülo Väli
- Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.
| | - Valery Dombrovski
- National Academy of Sciences, Academichnaia 27, 220072, Minsk, Belarus
| | - Marina Dzmitranok
- National Academy of Sciences, Academichnaia 27, 220072, Minsk, Belarus
| | - Grzegorz Maciorowski
- Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | | |
Collapse
|
17
|
Leroy G, Carroll EL, Bruford MW, DeWoody JA, Strand A, Waits L, Wang J. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol Appl 2018; 11:1066-1083. [PMID: 30026798 PMCID: PMC6050182 DOI: 10.1111/eva.12564] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022] Open
Abstract
Genetic erosion is a major threat to biodiversity because it can reduce fitness and ultimately contribute to the extinction of populations. Here, we explore the use of quantitative metrics to detect and monitor genetic erosion. Monitoring systems should not only characterize the mechanisms and drivers of genetic erosion (inbreeding, genetic drift, demographic instability, population fragmentation, introgressive hybridization, selection) but also its consequences (inbreeding and outbreeding depression, emergence of large-effect detrimental alleles, maladaptation and loss of adaptability). Technological advances in genomics now allow the production of data the can be measured by new metrics with improved precision, increased efficiency and the potential to discriminate between neutral diversity (shaped mainly by population size and gene flow) and functional/adaptive diversity (shaped mainly by selection), allowing the assessment of management-relevant genetic markers. The requirements of such studies in terms of sample size and marker density largely depend on the kind of population monitored, the questions to be answered and the metrics employed. We discuss prospects for the integration of this new information and metrics into conservation monitoring programmes.
Collapse
Affiliation(s)
- Gregoire Leroy
- Food and Agriculture Organization (FAO) of the United Nations, Animal Production and Health DivisionRomeItaly
| | - Emma L. Carroll
- Scottish Oceans Institute and School of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Mike W. Bruford
- Cardiff School of Biosciences and Sustainable Places InstituteCardiff UniversityCardiffUK
| | - J. Andrew DeWoody
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Allan Strand
- Department of BiologyGrice Marine Laboratory, College of CharlestonCharlestonSCUSA
| | - Lisette Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIDUSA
| | - Jinliang Wang
- Institute of ZoologyZoological Society of LondonLondonUK
| |
Collapse
|
18
|
Carroll EL, Bruford MW, DeWoody JA, Leroy G, Strand A, Waits L, Wang J. Genetic and genomic monitoring with minimally invasive sampling methods. Evol Appl 2018; 11:1094-1119. [PMID: 30026800 PMCID: PMC6050181 DOI: 10.1111/eva.12600] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The decreasing cost and increasing scope and power of emerging genomic technologies are reshaping the field of molecular ecology. However, many modern genomic approaches (e.g., RAD-seq) require large amounts of high-quality template DNA. This poses a problem for an active branch of conservation biology: genetic monitoring using minimally invasive sampling (MIS) methods. Without handling or even observing an animal, MIS methods (e.g., collection of hair, skin, faeces) can provide genetic information on individuals or populations. Such samples typically yield low-quality and/or quantities of DNA, restricting the type of molecular methods that can be used. Despite this limitation, genetic monitoring using MIS is an effective tool for estimating population demographic parameters and monitoring genetic diversity in natural populations. Genetic monitoring is likely to become more important in the future as many natural populations are undergoing anthropogenically driven declines, which are unlikely to abate without intensive adaptive management efforts that often include MIS approaches. Here, we profile the expanding suite of genomic methods and platforms compatible with producing genotypes from MIS, considering factors such as development costs and error rates. We evaluate how powerful new approaches will enhance our ability to investigate questions typically answered using genetic monitoring, such as estimating abundance, genetic structure and relatedness. As the field is in a period of unusually rapid transition, we also highlight the importance of legacy data sets and recommend how to address the challenges of moving between traditional and next-generation genetic monitoring platforms. Finally, we consider how genetic monitoring could move beyond genotypes in the future. For example, assessing microbiomes or epigenetic markers could provide a greater understanding of the relationship between individuals and their environment.
Collapse
Affiliation(s)
- Emma L. Carroll
- Scottish Oceans Institute and Sea Mammal Research UnitUniversity of St AndrewsSt AndrewsUK
| | - Mike W. Bruford
- Cardiff School of Biosciences and Sustainable Places Research InstituteCardiff UniversityCardiff, WalesUK
| | - J. Andrew DeWoody
- Department of Forestry and Natural Resources and Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Gregoire Leroy
- Animal Production and Health DivisionFood and Agriculture Organization of the United NationsRomeItaly
| | - Alan Strand
- Grice Marine LaboratoryDepartment of BiologyCollege of CharlestonCharlestonSCUSA
| | - Lisette Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIDUSA
| | - Jinliang Wang
- Institute of ZoologyZoological Society of LondonLondonUK
| |
Collapse
|
19
|
Doyle JM, Bell DA, Bloom PH, Emmons G, Fesnock A, Katzner TE, LaPré L, Leonard K, SanMiguel P, Westerman R, Andrew DeWoody J. New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus). BMC Genomics 2018; 19:233. [PMID: 29618317 PMCID: PMC5885362 DOI: 10.1186/s12864-018-4615-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background Management requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge. Results We sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population. Conclusions Our study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating population of prairie falcons across our sampling locations. Prairie falcons are highly mobile and relatively rare long-distance dispersal events may promote gene flow throughout the range. As such, California’s prairie falcons might be managed as a single population, indicating that management actions undertaken to benefit the species at the local level have the potential to influence the species as a whole. Electronic supplementary material The online version of this article (10.1186/s12864-018-4615-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline M Doyle
- Department of Biological Sciences, Towson University, 8000 York Rd, Baltimore, MD, 21212, USA. .,Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907, USA.
| | - Douglas A Bell
- East Bay Regional Park District, 2950 Peralta Oaks Court, Oakland, CA, 94605, USA.,Department of Ornithology and Mammalogy, California Academy of Sciences, 55 Concourse Drive, Golden Gate Park, San Francisco, CA, 94118, USA
| | - Peter H Bloom
- Bloom Research Inc., 1820 S. Dunsmuir, Los Angeles, CA, 90019, USA
| | - Gavin Emmons
- National Park Service, Pinnacles National Park, 5000 Highway 146, Paicines, CA, 95043, USA
| | - Amy Fesnock
- California State Office, Bureau of Land Management, 2800 Cottage Way, Suite W-1928, Sacramento, CA, 95825, USA
| | - Todd E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID, 83706, USA
| | - Larry LaPré
- Bureau of Land Management, California Desert District, 22835 Calle San Juan De Los Lagos, Moreno Valley, CA, 92553, USA
| | - Kolbe Leonard
- Department of Computer and Information Sciences, Towson University, 8000 York Rd, Baltimore, MD, 21212, USA
| | - Phillip SanMiguel
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Rick Westerman
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907, USA.,Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
20
|
DeWoody JA, Fernandez NB, Brüniche-Olsen A, Antonides JD, Doyle JM, San Miguel P, Westerman R, Vertyankin VV, Godard-Codding CAJ, Bickham JW. Characterization of the Gray Whale Eschrichtius robustus Genome and a Genotyping Array Based on Single-Nucleotide Polymorphisms in Candidate Genes. THE BIOLOGICAL BULLETIN 2017; 232:186-197. [PMID: 28898601 DOI: 10.1086/693483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetic and genomic approaches have much to offer in terms of ecology, evolution, and conservation. To better understand the biology of the gray whale Eschrichtius robustus (Lilljeborg, 1861), we sequenced the genome and produced an assembly that contains ∼95% of the genes known to be highly conserved among eukaryotes. From this assembly, we annotated 22,711 genes and identified 2,057,254 single-nucleotide polymorphisms (SNPs). Using this assembly, we generated a curated list of candidate genes potentially subject to strong natural selection, including genes associated with osmoregulation, oxygen binding and delivery, and other aspects of marine life. From these candidate genes, we queried 92 autosomal protein-coding markers with a panel of 96 SNPs that also included 2 sexing and 2 mitochondrial markers. Genotyping error rates, calculated across loci and across 69 intentional replicate samples, were low (0.021%), and observed heterozygosity was 0.33 averaged over all autosomal markers. This level of variability provides substantial discriminatory power across loci (mean probability of identity of 1.6 × 10-25 and mean probability of exclusion >0.999 with neither parent known), indicating that these markers provide a powerful means to assess parentage and relatedness in gray whales. We found 29 unique multilocus genotypes represented among our 36 biopsies (indicating that we inadvertently sampled 7 whales twice). In total, we compiled an individual data set of 28 western gray whales (WGSs) and 1 presumptive eastern gray whale (EGW). The lone EGW we sampled was no more or less related to the WGWs than expected by chance alone. The gray whale genomes reported here will enable comparative studies of natural selection in cetaceans, and the SNP markers should be highly informative for future studies of gray whale evolution, population structure, demography, and relatedness.
Collapse
Key Words
- EGW, eastern gray whale
- EST, expressed sequence tag
- HWE, Hardy-Weinberg equilibrium
- IUCN, International Union for Conservation of Nature
- IWC, International Whaling Commission
- LD, linkage disequilibrium
- MP, mate paired
- PCR, polymerase chain reaction
- PE, paired end
- SNP, single-nucleotide polymorphism
- STA, specific target amplification
- WGW, western gray whale
Collapse
|
21
|
Katzner TE, Nelson DM, Braham MA, Doyle JM, Fernandez NB, Duerr AE, Bloom PH, Fitzpatrick MC, Miller TA, Culver RCE, Braswell L, DeWoody JA. Golden Eagle fatalities and the continental-scale consequences of local wind-energy generation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2017; 31:406-415. [PMID: 27677518 DOI: 10.1111/cobi.12836] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2 H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2 H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences.
Collapse
Affiliation(s)
- Todd E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID, 83706, U.S.A
| | - David M Nelson
- University of Maryland Center for Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD, 21532, U.S.A
| | - Melissa A Braham
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, 26506, U.S.A
| | - Jacqueline M Doyle
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Nadia B Fernandez
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Adam E Duerr
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, 26506, U.S.A
| | - Peter H Bloom
- Western Foundation of Vertebrate Zoology, Camarillo, CA, 93012, U.S.A
| | - Matthew C Fitzpatrick
- University of Maryland Center for Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD, 21532, U.S.A
| | - Tricia A Miller
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, 26506, U.S.A
| | - Renee C E Culver
- NextEra Energy Resources, 700 Universe Boulevard, Juno Beach, FL, 33408, U.S.A
| | - Loan Braswell
- NextEra Energy Resources, 700 Universe Boulevard, Juno Beach, FL, 33408, U.S.A
| | - J Andrew DeWoody
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN, 47907, U.S.A
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
22
|
Feiner ZS, DeWoody JA, Breck JE, Höök TO. Influences of multilocus heterozygosity on size during early life. Ecol Evol 2017. [DOI: 10.1002/ece3.2781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zachary S. Feiner
- Department of Forestry and Natural Resources; Purdue University; West Lafayette IN USA
| | - J. Andrew DeWoody
- Department of Forestry and Natural Resources; Purdue University; West Lafayette IN USA
| | - James E. Breck
- Program in the Environment and School of Natural Resources and Environment; University of Michigan; Ann Arbor MI USA
| | - Tomas O. Höök
- Department of Forestry and Natural Resources; Purdue University; West Lafayette IN USA
- Illinois-Indiana Sea Grant; Purdue University; West Lafayette IN USA
| |
Collapse
|