1
|
Yin L, Zhang G, Zhou C, Ou Z, Qu B, Zhao H, Zuo E, Liu B, Wan F, Qian W. Chromosome-level genome of Ambrosia trifida provides insights into adaptation and the evolution of pollen allergens. Int J Biol Macromol 2024; 259:129232. [PMID: 38191104 DOI: 10.1016/j.ijbiomac.2024.129232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.
Collapse
Affiliation(s)
- Lijuan Yin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangzhong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chikai Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, China
| | - Zhenghui Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Qu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110016, Liaoning Province, China
| | - Haoyu Zhao
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
2
|
Hernández Elizárraga VH, Ballantyne S, O'Brien LG, Americo JA, Suhr ST, Senut MC, Minerich B, Merkes CM, Edwards TM, Klymus K, Richter CA, Waller DL, Passamaneck YJ, Rebelo MF, Gohl DM. Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives. iScience 2023; 26:108027. [PMID: 37860763 PMCID: PMC10583111 DOI: 10.1016/j.isci.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Invasive freshwater mussels, such as the zebra (Dreissena polymorpha), quagga (Dreissena rostriformis bugensis), and golden (Limnoperna fortunei) mussel have spread outside their native ranges throughout many regions of the North American, South American, and European continents in recent decades, damaging infrastructure and the environment. This review describes ongoing efforts by multiple groups to develop genetic biocontrol methods for invasive mussels. First, we provide an overview of genetic biocontrol strategies that have been applied in other invasive or pest species. Next, we summarize physical and chemical methods that are currently in use for invasive mussel control. We then describe the multidisciplinary approaches our groups are employing to develop genetic biocontrol tools for invasive mussels. Finally, we discuss the challenges and limitations of applying genetic biocontrol tools to invasive mussels. Collectively, we aim to openly share information and combine expertise to develop practical tools to enable the management of invasive freshwater mussels.
Collapse
Affiliation(s)
| | - Scott Ballantyne
- Department of Biology, University of Wisconsin River Falls, River Falls, WI, USA
| | | | | | | | | | | | - Christopher M. Merkes
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Thea M. Edwards
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Katy Klymus
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Catherine A. Richter
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Yale J. Passamaneck
- Bureau of Reclamation, Technical Service Center, Hydraulic Investigations and Laboratory Services, Ecological Research Laboratory, Denver, CO, USA
| | - Mauro F. Rebelo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daryl M. Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Abram PK, Nelson TD, Marshall V, Gariepy TD, Haye T, Zhang J, Hueppelsheuser T, Acheampong S, Moffat CE. Genetic relationships among laboratory lines of the egg parasitoid Trissolcus japonicus from native and adventive populations. NEOBIOTA 2023. [DOI: 10.3897/neobiota.82.97881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Candidate biological control agents of invasive insect pests are increasingly being found in new geographic regions as a result of unintentional introductions. However, testing the degree of genetic differentiation among adventive and native-range populations of these agents is rarely done. We used reduced-representation sequencing of genomic DNA to investigate the relationships among laboratory lines of Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae), an egg parasitoid and biological control agent of the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera, Pentatomidae). We compared sequences from multiple adventive populations in North America (Canada, USA) and Europe (Switzerland) with populations sourced from part of its native range in China. We found considerably more genetic variation among lines sourced from adventive populations than among those within native populations. In the Pacific Northwest of North America (British Columbia, Canada and Washington State, USA), we found preliminary evidence of three distinct genetic clusters, two of which were highly dissimilar from all other lines we genotyped. In contrast, we found that other adventive lines with close geographic proximity (two from Ontario, Canada, three from Switzerland) had limited genetic variation. These findings provide a basis for testing biological differences among lines that will inform their use as biological control agents, and provide evidence to support a hypothesis of several independent introductions of T. japonicus in western North America from different source areas.
Collapse
|
4
|
R. N. Ferreira JG, A. Americo J, L. A. S. do Amaral D, Sendim F, R. da Cunha Y, Tree of Life Programme, Blaxter M, Uliano-Silva M, de F. Rebelo M. A chromosome-level assembly supports genome-wide investigation of the DMRT gene family in the golden mussel (Limnoperna fortunei). Gigascience 2022; 12:giad072. [PMID: 37776366 PMCID: PMC10541798 DOI: 10.1093/gigascience/giad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND The golden mussel (Limnoperna fortunei) is a highly invasive species that causes environmental and socioeconomic losses in invaded areas. Reference genomes have proven to be a valuable resource for studying the biology of invasive species. While the current golden mussel genome has been useful for identifying new genes, its high fragmentation hinders some applications. FINDINGS In this study, we provide the first chromosome-level reference genome for the golden mussel. The genome was built using PacBio HiFi, 10X, and Hi-C sequencing data. The final assembly contains 99.4% of its total length assembled to the 15 chromosomes of the species and a scaffold N50 of 97.05 Mb. A total of 34,862 protein-coding genes were predicted, of which 84.7% were functionally annotated. A significant (6.48%) proportion of the genome was found to be in a hemizygous state. Using the new genome, we have performed a genome-wide characterization of the Doublesex and Mab-3 related transcription factor gene family, which has been proposed as a target for population control strategies in other species. CONCLUSIONS From the applied research perspective, a higher-quality genome will support genome editing with the aim of developing biotechnology-based solutions to control invasion. From the basic research perspective, the new genome is a high-quality reference for molecular evolutionary studies of Mytilida and other Lophotrochozoa, and it may be used as a reference for future resequencing studies to assess genomic variation among different golden mussel populations, unveiling potential routes of dispersion and helping to establish better control policies.
Collapse
Affiliation(s)
- João Gabriel R. N. Ferreira
- Bio Bureau Biotecnologia, Rio de Janeiro 21941-850, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | | | | | - Fábio Sendim
- Bio Bureau Biotecnologia, Rio de Janeiro 21941-850, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - Yasmin R. da Cunha
- Bio Bureau Biotecnologia, Rio de Janeiro 21941-850, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | | | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton CB10 1RQ, UK
| | | | - Mauro de F. Rebelo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| |
Collapse
|
5
|
Leonhardt F, Arranz Aveces C, Müller A, Angin B, Jegu M, Haynes P, Ernst R. Low genetic diversity in a widespread whistling alien: A comparison of Eleutherodactylus johnstonei Barbour, 1914 (Eleutherodactylidae) and congeners in native and introduced ranges. NEOBIOTA 2022. [DOI: 10.3897/neobiota.79.86778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is no clear empirical evidence to support the general assumption that genetic diversity favours successful invasions. Many invading species disperse and establish successfully despite low genetic diversity, a phenomenon known as the genetic paradox of biological invasion. Model systems that allow comparison of genetic patterns between exotic and native source populations are still scarce. This is particularly true for amphibians. Here we compare genetic patterns of the widely introduced Johnstone’s Whistling Frog, Eleutherodactylus johnstonei, with its successful alien congener E. antillensis and the single island endemic E. portoricensis. Genetic diversity and population differentiation in native and introduced populations of the three taxa were inferred from mitochondrial D-loop sequences (235 bp). Our results reveal that exotic populations of the two alien taxa, E. johnstonei and E. antillensis, are not only genetically impoverished due to founder effects, but that, moreover, their native range source-populations exhibit low genetic diversity and inter-population differentiation in the first place. Populations of the endemic E. portoricensis, on the other hand, are genetically more diverse and show marked inter-population differentiation. These observed genetic patterns are consistent with geological processes and invasion histories. We argue that the establishment success of the alien taxa in our model system is better explained by ecological factors and anthropogenic drivers than by genetic diversity. As these factors provide more parsimonious explanations, they should be given priority in management decisions. However, molecular studies with higher resolution are needed to fully test possible genetic and epigenetic components that could promote the invasion process.
Collapse
|
6
|
Genomic data is missing for many highly invasive species, restricting our preparedness for escalating incursion rates. Sci Rep 2022; 12:13987. [PMID: 35977991 PMCID: PMC9385848 DOI: 10.1038/s41598-022-17937-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/14/2022] Open
Abstract
Biological invasions drive environmental change, potentially threatening native biodiversity, human health, and global economies. Population genomics is an increasingly popular tool in invasion biology, improving accuracy and providing new insights into the genetic factors that underpin invasion success compared to research based on a small number of genetic loci. We examine the extent to which population genomic resources, including reference genomes, have been used or are available for invasive species research. We find that 82% of species on the International Union for Conservation of Nature “100 Worst Invasive Alien Species” list have been studied using some form of population genetic data, but just 32% of these species have been studied using population genomic data. Further, 55% of the list’s species lack a reference genome. With incursion rates escalating globally, understanding how genome-driven processes facilitate invasion is critical, but despite a promising trend of increasing uptake, “invasion genomics” is still in its infancy. We discuss how population genomic data can enhance our understanding of biological invasion and inform proactive detection and management of invasive species, and we call for more research that specifically targets this area.
Collapse
|
7
|
Qi SS, Manoharan B, Dhandapani V, Jegadeesan S, Rutherford S, Wan JSH, Huang P, Dai ZC, Du DL. Pathogen resistance in Sphagneticola trilobata (Singapore daisy): molecular associations and differentially expressed genes in response to disease from a widespread fungus. Genetica 2022; 150:13-26. [PMID: 35031940 DOI: 10.1007/s10709-021-00147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Understanding the molecular associations underlying pathogen resistance in invasive plant species is likely to provide useful insights into the effective control of alien plants, thereby facilitating the conservation of native biodiversity. In the current study, we investigated pathogen resistance in an invasive clonal plant, Sphagneticola trilobata, at the molecular level. Sphagneticola trilobata (i.e., Singapore daisy) is a noxious weed that affects both terrestrial and aquatic ecosystems, and is less affected by pathogens in the wild than co-occurring native species. We used Illumina sequencing to investigate the transcriptome of S. trilobata following infection by a globally distributed generalist pathogen (Rhizoctonia solani). RNA was extracted from leaves of inoculated and un-inoculated control plants, and a draft transcriptome of S. trilobata was generated to examine the molecular response of this species following infection. We obtained a total of 49,961,014 (94.3%) clean reads for control (un-inoculated plants) and 54,182,844 (94.5%) for the infected treatment (inoculated with R. solani). Our analyses facilitated the discovery of 117,768 de novo assembled contigs and 78,916 unigenes. Of these, we identified 3506 differentially expressed genes and 60 hormones associated with pathogen resistance. Numerous genes, including candidate genes, were associated with plant-pathogen interactions and stress response in S. trilobata. Many recognitions, signaling, and defense genes were differentially regulated between treatments, which were confirmed by qRT-PCR. Overall, our findings improve our understanding of the genes and molecular associations involved in plant defense of a rapidly spreading invasive clonal weed, and serve as a valuable resource for further work on mechanism of disease resistance and managing invasive plants.
Collapse
Affiliation(s)
- Shan-Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Bharani Manoharan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sridharan Jegadeesan
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Susan Rutherford
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Justin S H Wan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ping Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Jiangsu Province, Suzhou, 215009, People's Republic of China.
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
8
|
Ramachandran D, Huebner CD, Daly M, Haimovitz J, Swale T, Barrett CF. Chromosome Level Genome Assembly and Annotation of Highly Invasive Japanese Stiltgrass (Microstegium vimineum). Genome Biol Evol 2021; 13:6413638. [PMID: 34718556 PMCID: PMC8598173 DOI: 10.1093/gbe/evab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
The invasive Japanese stiltgrass (Microstegium vimineum) affects a wide range of ecosystems and threatens biodiversity across the eastern USA. However, the mechanisms underlying rapid adaptation, plasticity, and epigenetics in the invasive range are largely unknown. We present a chromosome-level assembly for M. vimineum to investigate genome dynamics, evolution, adaptation, and the genomics of phenotypic plasticity. We generated a 1.12-Gb genome with scaffold N50 length of 53.44 Mb respectively, taking a de novo assembly approach that combined PacBio and Dovetail Genomics Omni-C sequencing. The assembly contains 23 pseudochromosomes, representing 99.96% of the genome. BUSCO assessment indicated that 80.3% of Poales gene groups are present in the assembly. The genome is predicted to contain 39,604 protein-coding genes, of which 26,288 are functionally annotated. Furthermore, 66.68% of the genome is repetitive, of which unclassified (35.63%) and long-terminal repeat (LTR) retrotransposons (26.90%) are predominant. Similar to other grasses, Gypsy (41.07%) and Copia (32%) are the most abundant LTR-retrotransposon families. The majority of LTR-retrotransposons are derived from a significant expansion in the past 1-2 Myr, suggesting the presence of relatively young LTR-retrotransposon lineages. We find corroborating evidence from Ks plots for a stiltgrass-specific duplication event, distinct from the more ancient grass-specific duplication event. The assembly and annotation of M. vimineum will serve as an essential genomic resource facilitating studies of the invasion process, the history and consequences of polyploidy in grasses, and provides a crucial tool for natural resource managers.
Collapse
Affiliation(s)
| | - Cynthia D Huebner
- Department of Biology, West Virginia University, USA.,USDA Forest Service, Northern Research Station, Morgantown, West Virginia, USA
| | - Mark Daly
- Dovetail Genomics, LLC, Scotts Valley, California, USA
| | | | - Thomas Swale
- Dovetail Genomics, LLC, Scotts Valley, California, USA
| | | |
Collapse
|
9
|
Burgess BT, Irvine RL, Howald GR, Russello MA. The Promise of Genetics and Genomics for Improving Invasive Mammal Management on Islands. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasive species are major contributors to global biodiversity decline. Invasive mammalian species (IMS), in particular, have profound negative effects in island systems that contain disproportionally high levels of species richness and endemism. The eradication and control of IMS have become important conservation tools for managing species invasions on islands, yet these management operations are often subject to failure due to knowledge gaps surrounding species- and system-specific characteristics, including invasion pathways and contemporary migration patterns. Here, we synthesize the literature on ways in which genetic and genomic tools have effectively informed IMS management on islands, specifically associated with the development and modification of biosecurity protocols, and the design and implementation of eradication and control programs. In spite of their demonstrated utility, we then explore the challenges that are preventing genetics and genomics from being implemented more frequently in IMS management operations from both academic and non-academic perspectives, and suggest possible solutions for breaking down these barriers. Finally, we discuss the potential application of genome editing to the future management of invasive species on islands, including the current state of the field and why islands may be effective targets for this emerging technology.
Collapse
|
10
|
Sherpa S, Després L. The evolutionary dynamics of biological invasions: A multi-approach perspective. Evol Appl 2021; 14:1463-1484. [PMID: 34178098 PMCID: PMC8210789 DOI: 10.1111/eva.13215] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Biological invasions, the establishment and spread of non-native species in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates introduction rates, while climate and land-cover changes may decrease the barriers to invasive populations spread. A detailed knowledge of the invasion history, including assessing source populations, routes of spread, number of independent introductions, and the effects of genetic bottlenecks and admixture on the establishment success, adaptive potential, and further spread, is crucial from an applied perspective to mitigate socioeconomic impacts of invasive species, as well as for addressing fundamental questions on the evolutionary dynamics of the invasion process. Recent advances in genomics together with the development of geographic information systems provide unprecedented large genetic and environmental datasets at global and local scales to link population genomics, landscape ecology, and species distribution modeling into a common framework to study the invasion process. Although the factors underlying population invasiveness have been extensively reviewed, analytical methods currently available to optimally combine molecular and environmental data for inferring invasive population demographic parameters and predicting further spreading are still under development. In this review, we focus on the few recent insect invasion studies that combine different datasets and approaches to show how integrating genetic, observational, ecological, and environmental data pave the way to a more integrative biological invasion science. We provide guidelines to study the evolutionary dynamics of invasions at each step of the invasion process, and conclude on the benefits of including all types of information and up-to-date analytical tools from different research areas into a single framework.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - Laurence Després
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| |
Collapse
|
11
|
North HL, McGaughran A, Jiggins CD. Insights into invasive species from whole-genome resequencing. Mol Ecol 2021; 30:6289-6308. [PMID: 34041794 DOI: 10.1111/mec.15999] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Studies of invasive species can simultaneously inform management strategies and quantify rapid evolution in the wild. The role of genomics in invasion science is increasingly recognised, and the growing availability of reference genomes for invasive species is paving the way for whole-genome resequencing studies in a wide range of systems. Here, we survey the literature to assess the application of whole-genome resequencing data in invasion biology. For some applications, such as the reconstruction of invasion routes in time and space, sequencing the whole genome of many individuals can increase the accuracy of existing methods. In other cases, population genomic approaches such as haplotype analysis can permit entirely new questions to be addressed and new technologies applied. To date whole-genome resequencing has only been used in a handful of invasive systems, but these studies have confirmed the importance of processes such as balancing selection and hybridization in allowing invasive species to reuse existing adaptations and rapidly overcome the challenges of a foreign ecosystem. The use of genomic data does not constitute a paradigm shift per se, but by leveraging new theory, tools, and technologies, population genomics can provide unprecedented insight into basic and applied aspects of invasion science.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Donne C, Neiman M, Woodell JD, Haase M, Verhaegen G. A layover in Europe: Reconstructing the invasion route of asexual lineages of a New Zealand snail to North America. Mol Ecol 2020; 29:3446-3465. [PMID: 32741004 DOI: 10.1111/mec.15569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Non-native invasive species are threatening ecosystems and biodiversity worldwide. High genetic variation is thought to be a critical factor for invasion success. Accordingly, the global invasion of a few clonal lineages of the gastropod Potamopyrgus antipodarum is thus both puzzling and has the potential to help illuminate why some invasions succeed while others fail. Here, we used SNP markers and a geographically broad sampling scheme (N = 1617) including native New Zealand populations and invasive North American and European populations to provide the first widescale population genetic assessment of the relationships between and among native and invasive P. antipodarum. We used a combination of traditional and Bayesian molecular analyses to demonstrate that New Zealand populations harbour very high diversity relative to the invasive populations and are the source of the two main European genetic lineages. One of these two European lineages was in turn the source of at least one of the two main North American genetic clusters of invasive P. antipodarum, located in Lake Ontario. The other widespread North American group had a more complex origin that included the other European lineage and two New Zealand clusters. Altogether, our analyses suggest that just a small handful of clonal lineages of P. antipodarum were responsible for invasion across continents. Our findings provide critical information for prevention of additional invasions and control of existing invasive populations and are of broader relevance towards understanding the establishment and evolution of asexual populations and the forces driving biological invasion.
Collapse
Affiliation(s)
- Carina Donne
- Department of Biology, Department of Gender, Women's, and Sexuality Studies, The University of Iowa, Iowa, USA
| | - Maurine Neiman
- Department of Biology, Department of Gender, Women's, and Sexuality Studies, The University of Iowa, Iowa, USA
| | - James D Woodell
- Department of Biology, Department of Gender, Women's, and Sexuality Studies, The University of Iowa, Iowa, USA
| | - Martin Haase
- AG Vogelwarte, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Gerlien Verhaegen
- AG Vogelwarte, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,Advanced Science-Technology Research (ASTER) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
13
|
Near-chromosome level genome assembly of the fruit pest Drosophila suzukii using long-read sequencing. Sci Rep 2020; 10:11227. [PMID: 32641717 PMCID: PMC7343843 DOI: 10.1038/s41598-020-67373-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, the spotted wing Drosophila, Drosophila suzukii, has invaded Europe and America and has become a major agricultural pest in these areas, thereby prompting intense research activities to better understand its biology. Two draft genome assemblies already exist for this species but contain pervasive assembly errors and are highly fragmented, which limits their values. Our purpose here was to improve the assembly of the D. suzukii genome and to annotate it in a way that facilitates comparisons with D. melanogaster. For this, we generated PacBio long-read sequencing data and assembled a novel, high-quality D. suzukii genome assembly. It is one of the largest Drosophila genomes, notably because of the expansion of its repeatome. We found that despite 16 rounds of full-sib crossings the D. suzukii strain that we sequenced has maintained high levels of polymorphism in some regions of its genome. As a consequence, the quality of the assembly of these regions was reduced. We explored possible origins of this high residual diversity, including the presence of structural variants and a possible heterogeneous admixture pattern of North American and Asian ancestry. Overall, our assembly and annotation constitute a high-quality genomic resource that can be used for both high-throughput sequencing approaches, as well as manipulative genetic technologies to study D. suzukii.
Collapse
|
14
|
Sauther ML, Bertolini F, Dollar LJ, Pomerantz J, Alves PC, Gandolfi B, Kurushima JD, Mattucci F, Randi E, Rothschild MF, Cuozzo FP, Larsen RS, Moresco A, Lyons LA, Jacky IAY. Taxonomic identification of Madagascar’s free-ranging “forest cats”. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01261-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|