1
|
Vidal HDA, Nunes PSG, Martinez AKA, Januário MAP, Santiago PHO, Ellena J, Corrêa AG. Diastereoselective Synthesis of Highly Functionalized γ-Lactams via Ugi Reaction/Michael Addition. Chem Asian J 2025; 20:e202400917. [PMID: 39387841 DOI: 10.1002/asia.202400917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The γ-lactam ring is a prominent feature in medicinal chemistry, and its synthesis has garnered significant interest due to its valuable properties. Among the γ-lactams, 2-oxopyrrolidine-3-carbonitrile derivatives stand out as versatile synthons that can be readily transformed into a variety of other functional groups. In this work, we successfully synthesized highly functionalized 3-cyano-2-pyrrolidinones with moderate to good overall yields using the Ugi reaction followed by intramolecular Michael addition. The process demonstrated excellent diastereoselectivity and showed good tolerance to a range of isonitriles and carbonyl compounds.
Collapse
Affiliation(s)
- Herika D A Vidal
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| | - Paulo S G Nunes
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| | - Alice K A Martinez
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| | - Marcelo A P Januário
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| | - Pedro H O Santiago
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, 13563-120, Brazil
| | - Javier Ellena
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, 13563-120, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos - SP, 13565-905, Brazil
| |
Collapse
|
2
|
Campos-Prieto L, García-Rey A, Sotelo E, Mallo-Abreu A. Multicomponent reactions driving the discovery and optimization of agents targeting central nervous system pathologies. Beilstein J Org Chem 2024; 20:3151-3173. [PMID: 39669443 PMCID: PMC11635293 DOI: 10.3762/bjoc.20.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
The ongoing quest to discover effective treatments for diseases remains a significant challenge for the scientific community. Multicomponent reactions (MCRs) have emerged as powerful tools in accelerating drug discovery, enabling the rapid generation of chemical libraries with high diversity in a time-efficient and environmentally sustainable manner. In this review, we focus on central nervous system (CNS) disorders, particularly Alzheimer's disease, Parkinson's disease, schizophrenia, depression, and epilepsy, where MCRs have contributed to the development of promising ligands in recent years. Rather than providing an exhaustive overview, this review aims to highlight key studies that address major CNS pathologies, relevant drug targets, and various MCR approaches. We have carefully selected representative articles and apologize to the authors whose important contributions may not be included. By concentrating on these pivotal studies, we strive to offer a clear and concise perspective on current research trends and breakthroughs in this field.
Collapse
Affiliation(s)
- Lucía Campos-Prieto
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Aitor García-Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Mallo-Abreu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 643, E-08028 Barcelona, Spain
| |
Collapse
|
3
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
4
|
Fragkiadakis M, Zingiridis M, Loukopoulos E, Neochoritis CG. New oxacycles on the block: benzodioxepinones via a Passerini reaction. Mol Divers 2024; 28:29-35. [PMID: 35900638 DOI: 10.1007/s11030-022-10502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Oxacycles and benzoxepanes are privileged motifs present in a variety of natural products and functional molecules. However, their synthetic access is limited. Here, we demonstrate a rapid synthesis of unprecedented benzoxepanes from readily available starting materials in one step via a Passerini multicomponent reaction. The reaction proceeds smoothly under mild reaction conditions. We have obtained a single-crystal X-ray structure, revealing a butterfly conformation, combined with useful structural features. In addition, we have performed both a full interaction map on the X-ray structure and a profile analysis of a virtual library based on the proposed scaffold with a special focus on certain physicochemical parameters to demonstrate their potential usage in drug discovery.
Collapse
|
5
|
Ayoup MS, Wahby Y, Abdel-Hamid H, Abu-Serie MM, Ramadan S, Barakat A, Teleb M, Ismail MMF. Reinvestigation of Passerini and Ugi scaffolds as multistep apoptotic inducers via dual modulation of caspase 3/7 and P53-MDM2 signaling for halting breast cancer. RSC Adv 2023; 13:27722-27737. [PMID: 37736568 PMCID: PMC10509784 DOI: 10.1039/d3ra04029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Selective induction of breast cancer apoptosis is viewed as the mainstay of various ongoing oncology drug discovery programs. Passerini scaffolds have been recently exploited as selective apoptosis inducers via a caspase 3/7 dependent pathway. Herein, the optimized Passerini caspase activators were manipulated to synergistically induce P53-dependent apoptosis via modulating the closely related P53-MDM2 signaling axis. The adopted design rationale and synthetic routes relied on mimicking the general thematic features of lead MDM2 inhibitors incorporating multiple aromatic rings. Accordingly, the cyclization of representative Passerini derivatives and related Ugi compounds into the corresponding diphenylimidazolidine and spiro derivative was performed, resembling the nutlin-based and spiro MDM-2 inhibitors, respectively. The study was also extended to explore the apoptotic induction capacity of the scaffold after simplification and modifications. MTT assay on MCF-7 and MDA-MB231 breast cancer cells compared to normal fibroblasts (WI-38) revealed their promising cytotoxic activities. The flexible Ugi derivatives 3 and 4, cyclic analog 8, Passerini adduct 12, and the thiosemicarbazide derivative 17 were identified as the study hits regarding cytotoxic potency and selectivity, being over 10-folds more potent (IC50 = 0.065-0.096 μM) and safer (SI = 4.4-18.7) than doxorubicin (IC50 = 0.478 μM, SI = 0.569) on MCF-7 cells. They promoted apoptosis induction via caspase 3/7 activation (3.1-4.1 folds) and P53 induction (up to 4 folds). Further apoptosis studies revealed that these compounds enhanced gene expression of BAX by 2 folds and suppressed Bcl-2 expression by 4.29-7.75 folds in the treated MCF-7 cells. Docking simulations displayed their plausible binding modes with the molecular targets and highlighted their structural determinants of activities for further optimization studies. Finally, in silico prediction of the entire library was computationally performed, showing that most of them could be envisioned as drug-like candidates.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Yasmin Wahby
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Egypt
| | - Sherif Ramadan
- Chemistry Department, Michigan State University East Lansing MI 48824 USA
- Department of Chemistry, Benha University Benha Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| |
Collapse
|
6
|
Nasiriani T, Javanbakht S, Nazeri MT, Farhid H, Khodkari V, Shaabani A. Isocyanide-Based Multicomponent Reactions in Water: Advanced Green Tools for the Synthesis of Heterocyclic Compounds. Top Curr Chem (Cham) 2022; 380:50. [PMID: 36136281 DOI: 10.1007/s41061-022-00403-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/12/2022] [Indexed: 12/01/2022]
Abstract
Reaction rate acceleration using green methods is an intriguing area of research for chemists. In this regard, water as a "green solvent" plays a crucial role in the acceleration of some organic transformations and reveals exclusive selectivity and reactivity in comparison with conventional organic solvents. In particular, multicomponent reactions (MCRs) as sustainable tools lead to the rapid generation of small-molecule libraries in water and aqueous media due to the prominent role of the hydrophobic effect. MCRs, as diversity-oriented synthesis (DOS) methods, have great efficiency with simple operations, atom, pot, and step economy synthesis, and mechanistic beauty. Among diverse classes of MCRs, isocyanide-based multicomponent reactions (I-MCRs), as sustainable and versatile reactions, have gained considerable attention in the synthesis of diverse heterocycle rings, especially in drug design because of the peculiar nature of isocyanide as a particular active reactant. I-MCRs that are performed in water are mild, environmentally friendly, and easily controlled, and have a reduced number of workup, purification, and extraction steps, which fit well with the advantages of "green" chemistry. Performing these powerful organic transformations in water and aqueous media is accompanied by acceleration owing to negative activation volumes, which originate from connecting several reactants together to generate a single product. It should be noted that the combination of MCR strategy and aqueous phase reaction is of growing interest for the development of sustainable synthetic techniques in organic conversions. However, an exclusive account focusing on the recent progress in eco-friendly I-MCRs for the construction of heterocycles in water and aqueous media is particularly lacking. This review highlights the progress of various kinds of I-MCRs in water and aqueous media as benign methods for the efficient construction of vital heterocyclic scaffolds, with a critical discussion of the subject in the period 2000-2021. We hope that this themed collection will be of interest and beneficial for organic and pharmaceutical chemists and will inspire more reaction development in this fascinating field.
Collapse
Affiliation(s)
- Tahereh Nasiriani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Siamak Javanbakht
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Mohammad Taghi Nazeri
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Hassan Farhid
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Vida Khodkari
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Ahmad Shaabani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran. .,Peoples' Friendship University of Russia, RUDN University, 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
7
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
8
|
Yu XC, Zhang CC, Wang LT, Li JZ, Li T, Wei WT. The synthesis of seven- and eight-membered rings by radical strategies. Org Chem Front 2022. [DOI: 10.1039/d2qo00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical strategies for preparation of seven- or eight-membered rings.
Collapse
Affiliation(s)
- Xuan-Chi Yu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiao-Zhe Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
9
|
Banfi L, Basso A, Lambruschini C, Moni L, Riva R. The 100 facets of the Passerini reaction. Chem Sci 2021; 12:15445-15472. [PMID: 35003575 PMCID: PMC8654045 DOI: 10.1039/d1sc03810a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
This perspective aims at celebrating the 100th anniversary of the discovery of the Passerini three component reaction. After being nearly neglected for many years, now this reaction has become quite popular, thanks to the achievements of the last 30 years, which have revealed several chances of exploitation in organic synthesis. Though not being comprehensive, this review means to show the various ways that have been used in order to expand the utility of the Passerini reaction. Post-MCR transformations to give heterocycles or peptidomimetics, variants through single component replacement, stereochemical issues, and applications in total syntheses will be especially covered.
Collapse
Affiliation(s)
- Luca Banfi
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Renata Riva
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| |
Collapse
|
10
|
Kiss L, Nonn M, Ouchakour L, Remete AM. Application of Oxidative Ring Opening/Ring Closing by Reductive Amination Protocol for the Stereocontrolled Synthesis of Functionalized Azaheterocycles. Synlett 2021. [DOI: 10.1055/s-0040-1719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe current Account gives an insight into the synthesis of some N-heterocyclic β-amino acid derivatives and various functionalized saturated azaheterocycles accessed from substituted cycloalkenes via ring C=C bond oxidative cleavage followed by ring closing across double reductive amination. The ring-cleavage protocol has been accomplished according to two common approaches: a) Os-catalyzed dihydroxylation/NaIO4 vicinal diol oxidation and b) ozonolysis. A comparative study on these methodologies has been investigated. Due to the everincreasing relevance of organofluorine chemistry in drug research as well as of the high biological potential of β-amino acid derivatives several illustrative examples to the access of various fluorine-containing piperidine or azepane β-amino acid derivatives are also presented in the current Account.1 Introduction2 Olefin-Bond Transformation by Oxidative Ring Cleavage3 Synthesis of Saturated Azaheterocycles via Oxidative Ring-Opening/Ring-Closing Double Reductive Amination3.1 Importance of Fluorine-Containing Azaheterocycles in Pharmaceutical Research3.2 Synthesis of Azaheterocyclic Amino Acid Derivatives with a Piperidine or Azepane Framework through Oxidative Ring Opening/Reductive Amination3.2.1 Synthesis of Piperidine β-Amino Esters3.2.2 Synthesis of Azepane β-Amino Esters3.2.3 Synthesis of Fluorine-Containing Piperidine γ-Amino Esters3.3 Synthesis of Tetrahydroisoquinoline Derivatives through Oxidative Ring Opening/Reductive Amination Protocol3.4 Synthesis of Functionalized Benzazepines through Reductive Amination3.4.1 Synthesis of Benzo[c]azepines3.4.2 Synthesis of Benzo[d]azepines3.5 Synthesis of Various N-Heterocycles via Ozonolysis/Reductive Amination3.5.1 Synthesis of Compounds with an Azepane Ring3.5.2 Synthesis of Piperidine β-Amino Acids and Piperidine-Fused β-Lactams3.5.3 Synthesis of γ-Lactams with a Piperidine Ring3.5.4 Synthesis of other N-Heterocycles4 Summary and Outlook5 List of Abbreviations
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Organic Chemistry, Research Centre for Natural Sciences
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged
| | | | | |
Collapse
|
11
|
Yao T, Wang B, Ren B, Qin X, Li T. Palladium-catalyzed Ugi-type reaction of 2-iodoanilines with isocyanides and carboxylic acids affording N-acyl anthranilamides. Chem Commun (Camb) 2021; 57:4247-4250. [PMID: 33913976 DOI: 10.1039/d1cc01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first palladium-catalyzed Ugi-type multicomponent reaction for the synthesis of N-acyl anthranilamides from isocyanides, 2-iodoanilines and carboxylic acids has been developed. This method provides expeditious and highly efficient access to structurally diverse N-acyl anthranilamides from readily available starting materials with good functional group compatibility. The utility of this method has been demonstrated by the late stage functionalization of two commercial drugs: Flurbiprofen and Loxoprofen.
Collapse
Affiliation(s)
- Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Bo Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Beige Ren
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue RD, Minhang District, Shanghai, 200241, China.
| |
Collapse
|
12
|
Seifinoferest B, Tanbakouchian A, Larijani B, Mahdavi M. Ullmann‐Goldberg and Buchwald‐Hartwig C−N Cross Couplings: Synthetic Methods to Pharmaceutically Potential N‐Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Behnoush Seifinoferest
- Endocrinology and Metabolism Research Centre Tehran University of Medical Sciences University of Tehran Nejatollahi St Enghelab St Iran
| | - Arezoo Tanbakouchian
- Department of Chemistry, College of Chemistry University of Tehran 16 Azar St Enghelab St Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Centre Tehran University of Medical Sciences University of Tehran Nejatollahi St Enghelab St Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Centre Tehran University of Medical Sciences University of Tehran Nejatollahi St Enghelab St Iran
| |
Collapse
|
13
|
Farhid H, Khodkari V, Nazeri MT, Javanbakht S, Shaabani A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org Biomol Chem 2021; 19:3318-3358. [PMID: 33899847 DOI: 10.1039/d0ob02600j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzodiazepines (BZDs), a diverse class of benzofused seven-membered N-heterocycles, display essential pharmacological properties and play vital roles in some biochemical processes. They have mainly been prescribed as potential therapeutic agents, which interestingly represent various biological activities such as anticancer, anxiolytic, antipsychotic, anticonvulsant, antituberculosis, muscle relaxant, and antimicrobial activities. The extensive biological activities of BZDs in various fields have encouraged medicinal chemists to discover and design novel BZD-based scaffolds as potential therapeutic candidates with the favorite biological activity through an efficient protocol. Although certainly valuable and important, conventional synthetic routes to these bicyclic benzene compounds contain methodologies often requiring multistep procedures, which suffer from waste materials generation and lack of sustainability. By contrast, multicomponent reactions (MCRs) have recently advanced as a green synthetic strategy for synthesizing BZDs with the desired scope. In this regard, MCRs, especially Ugi and Ugi-type reactions, efficiently and conveniently supply various complex synthons, which can easily be converted to the BZDs via suitable post-transformations. Also, MCRs, especially Mannich-type reactions, provide speedy and economic approaches for the one-pot and one-step synthesis of BZDs. As a result, various functionalized-BZDs have been achieved by developing mild, efficient, and high-yielding MCR protocols. This review covers all aspects of the synthesis of BZDs with a particular focus on the MCRs as well as the mechanism chemistry of synthetic protocols. The present manuscript opens a new avenue for organic, medicinal, and industrial chemists to design safe, environmentally benign, and economical methods for the synthesis of new and known BZDs.
Collapse
Affiliation(s)
- Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Vida Khodkari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran. and Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
14
|
Mazur MO, Zhelavskyi OS, Zviagin EM, Shishkina SV, Musatov VI, Kolosov MA, Shvets EH, Andryushchenko AY, Chebanov VA. Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide-alkyne cycloaddition. Beilstein J Org Chem 2021; 17:678-687. [PMID: 33777243 PMCID: PMC7961865 DOI: 10.3762/bjoc.17.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
A novel catalyst-free synthetic approach to 1,2,3-triazolobenzodiazepinones has been developed and optimized. The Ugi reaction of 2-azidobenzaldehyde, various amines, isocyanides, and acids followed by microwave-assisted intramolecular azide-alkyne cycloaddition (IAAC) gave a series of target heterocyclic compounds in moderate to excellent yields. Surprisingly, the normally required ruthenium-based catalysts were found to not affect the IAAC, only making isolation of the target compounds harder while the microwave-assisted catalyst-free conditions were effective for both terminal and non-terminal alkynes.
Collapse
Affiliation(s)
- Maryna O Mazur
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
- Department of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Oleksii S Zhelavskyi
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
- Department of Chemistry, University of Michigan – Ann Arbor, 930 North University Ave, Ann Arbor, MI 48109, USA
| | - Eugene M Zviagin
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
- Department of Chemistry, University of Nebraska – Lincoln, 639 N 12th St, Lincoln, NE 68588, USA
| | - Svitlana V Shishkina
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Vladimir I Musatov
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Maksim A Kolosov
- Department of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Elena H Shvets
- Department of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Anna Yu Andryushchenko
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Valentyn A Chebanov
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
- Department of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| |
Collapse
|
15
|
Kadagathur M, Patra S, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Syntheses and medicinal chemistry of azepinoindolones: a look back to leap forward. Org Biomol Chem 2021; 19:738-764. [PMID: 33459333 DOI: 10.1039/d0ob02181d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitrogen-containing heterocyclic scaffolds constitute nearly 75% of small molecules which favorably act as drug candidates. For the past few decades, numerous natural and synthetic indole-based scaffolds have been reported for their diverse pharmacological profiles. In particular, indole-fused azepines, termed azepinoindolones, have come under the radar of medicinal chemists owing to their synthetic and pharmacological importance. A plethora of literature reports has been generated thereof, which calls for the need for the compilation of information to understand their current status in drug discovery. Accumulating reports of evidence suggest that compounds containing this privileged scaffold display their cytotoxic effects via inhibition of kinase, topoisomerase I, mitochondrial malate dehydrogenase (mMDH), and tubulin polymerization and as DNA minor groove binding agents. Herein, we endeavor to present a closer look at the advancements of various synthetic and derivatization methods of azepinoindolone-based compounds. We have further extended our efforts to discuss the pharmacological effects of azepinoindolones in the whole range of medicinal chemistry as anti-Alzheimer, anticancer, anti-inflammatory, antidiabetic, antileishmanial, and antipyranosomal agents and as drug delivery vectors. Our analysis of recent advances reveals that azepinoindolones will continue to serve as potential pharmaceutical modalities in the years to come and their substantial pool of synthetic methods will be ever expanding.
Collapse
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Sandip Patra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Neelima D Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
16
|
Wang Y, Wang G, Peshkov AA, Yao R, Hasan M, Zaman M, Liu C, Kashtanov S, Pereshivko OP, Peshkov VA. Controlling the stereochemistry in 2-oxo-aldehyde-derived Ugi adducts through the cinchona alkaloid-promoted electrophilic fluorination. Beilstein J Org Chem 2020; 16:1963-1973. [PMID: 32831953 PMCID: PMC7431756 DOI: 10.3762/bjoc.16.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022] Open
Abstract
In this report, we introduce a new strategy for controlling the stereochemistry in Ugi adducts. Instead of controlling stereochemistry directly during the Ugi reaction we have attempted to stereodefine the chiral center at the peptidyl position through the post-Ugi functionalization. In order to achieve this, we chose to study 2-oxo-aldehyde-derived Ugi adducts many of which partially or fully exist in the enol form that lacks the aforementioned chiral center. This in turn led to their increased nucleophilicity as compared to the standard Ugi adducts. As such, the stereocenter at the peptidyl position could be installed and stereodefined through the reaction with a suitable electrophile. Towards this end, we were able to deploy an asymmetric cinchona alkaloid-promoted electrophilic fluorination producing enantioenriched post-Ugi adducts fluorinated at the peptidyl position.
Collapse
Affiliation(s)
- Yuqing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China
| | - Gaigai Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China
| | - Anatoly A Peshkov
- Department of Chemistry, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Block 7, Nur-Sultan 010000, Republic of Kazakhstan.,Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Ruwei Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China
| | - Muhammad Hasan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China
| | - Manzoor Zaman
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China
| | - Chao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China
| | - Stepan Kashtanov
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P.R. China
| | - Olga P Pereshivko
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China.,Department of Chemistry, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Block 7, Nur-Sultan 010000, Republic of Kazakhstan
| | - Vsevolod A Peshkov
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China.,Department of Chemistry, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Block 7, Nur-Sultan 010000, Republic of Kazakhstan.,The Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan, Republic of Kazakhstan
| |
Collapse
|
17
|
Hasan M, Zaman M, Peshkov AA, Amire N, Les A, Nechaev AA, Wang Y, Kashtanov S, Van der Eycken EV, Pereshivko OP, Peshkov VA. Four-Component One-Pot Process Involving Passerini Reaction Followed by Aldol Addition and Transesterification. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Muhammad Hasan
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou P.R. China
| | - Manzoor Zaman
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou P.R. China
| | - Anatoly A. Peshkov
- Department of Chemistry; School of Sciences and Humanities; Nazarbayev University; 53 Kabanbay Batyr Ave, Block 7 010000 Nur-Sultan Republic of Kazakhstan
| | - Niyaz Amire
- Department of Chemistry; School of Sciences and Humanities; Nazarbayev University; 53 Kabanbay Batyr Ave, Block 7 010000 Nur-Sultan Republic of Kazakhstan
| | - Adil Les
- Department of Chemistry; School of Sciences and Humanities; Nazarbayev University; 53 Kabanbay Batyr Ave, Block 7 010000 Nur-Sultan Republic of Kazakhstan
| | - Anton A. Nechaev
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Yuqing Wang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou P.R. China
| | - Stepan Kashtanov
- Department of Chemistry; Department of Chemistry; Xi'an Jiaotong-Liverpool University; 215123 Suzhou P.R. China
| | - Erik V. Van der Eycken
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; University of Leuven (KU Leuven); Celestijnenlaan 200F B-3001 Leuven Belgium
- Department of Chemistry; Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklaya street 6 117198 Moscow Russia
| | - Olga P. Pereshivko
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou P.R. China
- Department of Chemistry; School of Sciences and Humanities; Nazarbayev University; 53 Kabanbay Batyr Ave, Block 7 010000 Nur-Sultan Republic of Kazakhstan
| | - Vsevolod A. Peshkov
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou P.R. China
- Department of Chemistry; School of Sciences and Humanities; Nazarbayev University; 53 Kabanbay Batyr Ave, Block 7 010000 Nur-Sultan Republic of Kazakhstan
- The Environment and Resource Efficiency Cluster (EREC); Department of Chemistry; Nazarbayev University; 010000 Nur-Sultan Republic of Kazakhstan
| |
Collapse
|
18
|
Lambruschini C, Moni L, Banfi L. Diastereoselectivity in Passerini Reactions of Chiral Aldehydes and in Ugi Reactions of Chiral Cyclic Imines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 Genova Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 Genova Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 Genova Italy
| |
Collapse
|
19
|
El Bakri Y, Anouar EH, Subramani K, Ben-Yahya A, Essassi EM. Synthesis, spectroscopic characterizations, DFT, molecular docking and molecular dynamics simulations of a novel 2-methyl-3H-benzimidazolo[1,2-b][1,2,4]triazepin-4(5H)-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Pinna A, Basso A, Lambruschini C, Moni L, Riva R, Rocca V, Banfi L. Stereodivergent access to all four stereoisomers of chiral tetrahydrobenzo[f][1,4]oxazepines, through highly diastereoselective multicomponent Ugi–Joullié reaction. RSC Adv 2020; 10:965-972. [PMID: 35494435 PMCID: PMC9047508 DOI: 10.1039/c9ra10689h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Starting from easily accessible chiral enantiopure 1,2-amino alcohols and salicylaldehydes, a concise route to cyclic imines has been developed. These chiral cyclic imines undergo a highly diastereoselective Ugi–Joullié reaction to give trans tetrahydrobenzo[f][1,4]oxazepines with the introduction of up to 4 diversity inputs. The cis isomer may also be attained, thanks to a thermodynamically controlled base catalysed epimerization. Free secondary amines have been obtained using an unprecedented “removable” carboxylic acid. Starting from easily accessible enantiopure 1,2-aminoalcohols and salicylaldehydes, a concise and diastereodivergent route to tetrahydrobenzo[f][1,4]oxazepines has been developed.![]()
Collapse
Affiliation(s)
- Alessandro Pinna
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| | | | - Lisa Moni
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| | - Renata Riva
- Department of Pharmacy
- Università di Genova
- Italy
| | - Valeria Rocca
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry
- Università di Genova
- Italy
| |
Collapse
|
21
|
Zaman M, Hasan M, Peshkov AA, Van Hecke K, Van der Eycken EV, Pereshivko OP, Peshkov VA. Silver(I) Triflate‐Catalyzed Protocol for the Post‐Ugi Synthesis of Spiroindolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Manzoor Zaman
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Muhammad Hasan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Anatoly A. Peshkov
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Kristof Van Hecke
- XStruct, Department of ChemistryGhent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Erik V. Van der Eycken
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryUniversity of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 Moscow 117198 Russia
| | - Olga P. Pereshivko
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
- The Environment and Resource Efficiency Cluster (EREC)Nazarbayev University Nur-Sultan Republic of Kazakhstan
| |
Collapse
|
22
|
Sharma AK, Tiwari J, Jaiswal D, Singh S, Singh J, Singh J. Organophotoredox Catalysis: Visible-light-induced Multicomponent Synthesis of Chromeno[4, 3-b]chromene and Hexahydro-1H-xanthene Derivatives. CURRENT ORGANOCATALYSIS 2019. [DOI: 10.2174/2213337206666190306154327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:In recent years, photoredox catalysis using eosin Y has gained considerable significance in organic chemistry. It is evolving as a powerful approach in modern organic synthesis for the activation of small molecules.Objective:The use of organic dyes to convert visible light into chemical energy by involving a single-electron transfer with organic substrates has innumerable applications.Method and Results:The present strategy is the first example of visible light promoted, aerobic, oxidative cyclization of chromeno[4,3-b]chromenes and hexahydro-1H-xanthenes via the formation of C–O and C–C bonds to afford excellent yield of the products in a simple one-pot operation under mild reaction conditions.Conclusion:The major advantages of the present methodology include short reaction time, cost effectiveness, easy work-up, broad substrate scope and high atom economy.
Collapse
Affiliation(s)
- Amit K. Sharma
- Environmentally Benign Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002, India
| | - Jyoti Tiwari
- Environmentally Benign Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002, India
| | - Deepali Jaiswal
- Environmentally Benign Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002, India
| | - Shailesh Singh
- Environmentally Benign Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002, India
| | - Jaya Singh
- Department of Chemistry, LRPG College, Sahibabad, Ghaziabad-201005, India
| | - Jagdamba Singh
- Environmentally Benign Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
23
|
Sayahi MH, Saghanezhad SJ, Mahdavi M. Catalyst-free three-component synthesis of 2-amino-4,6-diarylpyridine-3-carbonitriles under solvent-free conditions. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02527-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Budragchaa T, Westermann B, Wessjohann LA. Multicomponent synthesis of α-acylamino and α-acyloxy amide derivatives of desmycosin and their activity against gram-negative bacteria. Bioorg Med Chem 2019; 27:3237-3247. [PMID: 31229422 DOI: 10.1016/j.bmc.2019.05.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/27/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022]
Abstract
Bacterial resistance to the existing drugs requires constant development of new antibiotics. Developing compounds active against gram-negative bacteria thereby is one of the more challenging tasks. Among the many approaches to develop successful antibacterials, medicinal chemistry driven evolution of existing successful antibiotics is considered to be the most effective one. Towards this end, the C-20 aldehyde moiety of desmycosin was modified into α-acylamino and α-acyloxy amide functionalities using isonitrile-based Ugi and Passerini reactions, aiming for enhanced antibacterial and physicochemical properties. The desired compounds were obtained in 45-93% yield under mild conditions. The antibacterial activity of the resulting conjugates was tested against gram-negative Aliivibrio fischeri. The antibiotic strength is mostly governed by the amine component introduced. Thus, methylamine derived desmycosin bis-amide 4 displayed an enhanced inhibition rate vs. desmycosin (99% vs. 83% at 1 µM). Derivatives with long acyclic or bulky amine and isocyanide Ugi components reduced potency, whereas carboxylic acid reagents with longer chain length afforded increased bioactivity. In Passerini 3-component products, the butyric ester amide 22 displayed a higher activity (90% at 1 µM) than the parent compound desmycosin (2).
Collapse
Affiliation(s)
- Tuvshinjargal Budragchaa
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale, Germany
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale, Germany; Institute of Organic Chemistry, Faculty of Natural Sciences II, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale, Germany; Institute of Organic Chemistry, Faculty of Natural Sciences II, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany.
| |
Collapse
|
25
|
Galante D, Banfi L, Baruzzo G, Basso A, D'Arrigo C, Lunaccio D, Moni L, Riva R, Lambruschini C. Multicomponent Synthesis of Polyphenols and their in vitro Evaluation as Potential β-Amyloid Aggregation Inhibitors. Molecules 2019; 24:E2636. [PMID: 31331116 PMCID: PMC6680962 DOI: 10.3390/molecules24142636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Abstract
While plant polyphenols possess a variety of biological properties, exploration of chemical diversity around them is still problematic. Here, an example of application of the Ugi multicomponent reaction to the combinatorial assembly of artificial, yet "natural-like", polyphenols is presented. The synthesized compounds represent a second-generation library directed to the inhibition of β-amyloid protein aggregation. Chiral enantiopure compounds, and polyphenol-β-lactam hybrids have been prepared too. The biochemical assays have highlighted the importance of the key pharmacophores in these compounds. A lead for inhibition of aggregation of truncated protein AβpE3-42 was selected.
Collapse
Affiliation(s)
- Denise Galante
- Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Giulia Baruzzo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Cristina D'Arrigo
- Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy
| | - Dario Lunaccio
- Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Renata Riva
- Department of Pharmacy, Università di Genova, viale Cembrano 4, 16147 Genova, Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy.
| |
Collapse
|
26
|
|
27
|
Ibarra IA, Islas-Jácome A, González-Zamora E. Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem 2019; 16:1402-1418. [PMID: 29238790 DOI: 10.1039/c7ob02305g] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyheterocycles are one of the most desired synthetic targets due to their numerous and valuable applications in various fields. Multicomponent reactions (MCRs) are highly convergent one-pot processes, in which three or more reagents are combined sequentially to construct complex products, with almost all the atoms coming from the starting reagents. In this context, the syntheses of 'heterocycles' via MCR-based processes have been reviewed a number of times. However, there is not a single review (recent or otherwise) covering the synthesis of 'polyheterocycles' via a direct MCR or via a one-pot process involving MCRs coupled to further cyclizations (via ionic, metal-catalyzed, pericyclic, or free-radical-mediated cyclizations). This issue is consequently the main topic of the present review, which considers work from the last decade. The work is categorized according to the key processes involved in the syntheses of polyheterocycles, aiming to give readers an easy understanding of this MCR-based chemistry and to provide insights for further investigations. The reaction mechanisms providing novel elements to these MCR-based methods for the synthesis of polyheterocycles are also discussed.
Collapse
Affiliation(s)
- Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico
| | | | | |
Collapse
|
28
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Lambruschini C, Basso A, Moni L, Pinna A, Riva R, Banfi L. Bicyclic Heterocycles from Levulinic Acid through a Fast and Operationally Simple Diversity-Oriented Multicomponent Approach. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso, 31 16146 GENOVA Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso, 31 16146 GENOVA Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso, 31 16146 GENOVA Italy
| | - Alessandro Pinna
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso, 31 16146 GENOVA Italy
| | - Renata Riva
- Department of Pharmacy; University of Genova; viale Cembrano 4 16147 GENOVA Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso, 31 16146 GENOVA Italy
| |
Collapse
|
30
|
Nechaev AA, Van Hecke K, Zaman M, Kashtanov S, Ungur L, Pereshivko OP, Peshkov VA, Van der Eycken EV. Gold-Catalyzed Post-Ugi Ipso-Cyclization with Switchable Diastereoselectivity. J Org Chem 2018; 83:8170-8182. [DOI: 10.1021/acs.joc.8b00953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anton A. Nechaev
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Manzoor Zaman
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, China
| | - Stepan Kashtanov
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liviu Ungur
- Theory of Nanomaterials Group, Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Olga P. Pereshivko
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, China
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, China
| | - Erik V. Van der Eycken
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow 117198, Russia
| |
Collapse
|
31
|
Vakhula AR, Horak YI, Lytvyn RZ, Lesyuk AI, Kinzhybalo V, Zubkov FI, Obushak MD. 5-Aryl-2-furaldehydes in the synthesis of tetrahydropyrimidinones by Biginelli reaction. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2301-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Saya JM, Berabez R, Broersen P, Schuringa I, Kruithof A, Orru RVA, Ruijter E. Hexafluoroisopropanol as the Acid Component in the Passerini Reaction: One-Pot Access to β-Amino Alcohols. Org Lett 2018; 20:3988-3991. [PMID: 29906122 DOI: 10.1021/acs.orglett.8b01561] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new Passerini-type reaction in which hexafluoroisopropanol functions as the acid component is reported. The reaction tolerates a broad range of isocyanides and aldehydes, and the formed imidates can be reduced toward β-amino alcohols under mild and metal-free conditions. In addition, the imidate products were shown to undergo an unprecedented retro-Passerini-type reaction under microwave conditions, providing valuable mechanistic information about the Passerini reaction and its variations.
Collapse
Affiliation(s)
- Jordy M Saya
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Rayan Berabez
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Pim Broersen
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Imme Schuringa
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Art Kruithof
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Romano V A Orru
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| |
Collapse
|
33
|
Differentiating alkyne reactivity in the post-Ugi transformations: Access to polycyclic indole-fused frameworks. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
|
35
|
Wang H, Wang B, Sun S, Cheng J. Copper-catalyzed radical Heck type cyclization: a three-component reaction of DABCO·(SO2)2, aryldiazonium tetrafluoroborates and dienes toward sulfonated benzo- seven-membered nitrogen heterocycles. Org Chem Front 2018. [DOI: 10.1039/c8qo00615f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A three-component reaction of the sulfur dioxide surrogate of DABCO·(SO2)2, aryldiazonium tetrafluoroborates and dienes has been developed, affording a series of sulfonated nitrogen heterocycles.
Collapse
Affiliation(s)
- Hepan Wang
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Bingbing Wang
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Song Sun
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|
36
|
Gibadullina NN, Latypova DR, Nugumanov TR, Spirikhin LV, Dokichev VA. Synthesis of polyfunctionalized 1,1'-(α,ω-alkanediyl)bis(1,2,3,4-tetrahydropyridines). Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2176-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Caputo S, Banfi L, Basso A, Galatini A, Moni L, Riva R, Lambruschini C. Diversity-Oriented Synthesis of Various Enantiopure Heterocycles by Coupling Organocatalysis with Multicomponent Reactions. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Samantha Caputo
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Andrea Galatini
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Renata Riva
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry; University of Genova; via Dodecaneso 31 16146 Genova Italy
| |
Collapse
|
38
|
Convenient two-step synthesis of highly functionalized benzo-fused 1,4-diazepin-3-ones and 1,5-diazocin-4-ones by sequential Ugi and intramolecular S N Ar reactions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|