1
|
Dutta N, Dutta B, Dutta A, Sarma B, Sarma D. Room temperature ligand-free Cu 2O-H 2O 2 catalyzed tandem oxidative synthesis of quinazoline-4(3 H)-one and quinazoline derivatives. Org Biomol Chem 2023; 21:748-753. [PMID: 36602007 DOI: 10.1039/d2ob02085h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient and simple copper catalytic system has been developed for the synthesis of medicinally important 2-substituted quinazoline-4(3H)-ones from 2-aminobenzonitrile and benzyl alcohol derivatives and additionally 2-substituted quinazolines from 2-aminobenzylamine and benzaldehyde derivatives. Mild oxidant H2O2 was utilized, providing excellent product yields. The molecular structure of one of the compounds was substantiated through SC-XRD. The versatility of the protocol was demonstrated through gram-scale syntheses.
Collapse
Affiliation(s)
- Nilakshi Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India.
| | - Bidyutjyoti Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India.
| | - Apurba Dutta
- Department of Chemistry, DHSK College, Dibrugarh-786001, Assam, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India.
| |
Collapse
|
2
|
Vavsari VF, Nikbakht A, Balalaie S. Annulation of 2‐Alkynylanilines: The Versatile Chemical Compounds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vaezeh Fathi Vavsari
- KN Toosi: KN Toosi University of Technology Chemistry IRAN (ISLAMIC REPUBLIC OF)
| | - Ali Nikbakht
- K N Toosi University of Technology Faculty of General Science Chemistry Department of Chemistry, Kavian 9, Dr. Shariati Street 15875-4416 Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Saeed Balalaie
- K N Toosi University of Technology Faculty of General Science Chemistry Department PO Box 15875-4416 15875-4416 Tehran IRAN (ISLAMIC REPUBLIC OF)
| |
Collapse
|
3
|
Nomula V, Rao SN. KO tBu-BF 3.OEt 2 mediated synthesis of quinazolin-4( 3H)-ones from 2-substituted amides with nitriles and aldehydes. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1928218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vishnuvardhan Nomula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of scientific and innovative research(AcSIR), Ghaziabad, India
| | - Sadu Nageswara Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
4
|
Xie Z, Lan J, Zhu H, Lei G, Jiang G, Le Z. Visible light induced tandem reactions: An efficient one pot strategy for constructing quinazolinones using in-situ formed aldehydes under photocatalyst-free and room-temperature conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Xie Z, Lan J, Yan L, Chen X, Li Q, Meng J, Le Z. Photocatalyst-free visible-light-promoted quinazolinone synthesis at room temperature utilizing aldehydes generated in situ via C[double bond, length as m-dash]C bond cleavage. Org Biomol Chem 2021; 19:2436-2441. [PMID: 33406170 DOI: 10.1039/d0ob02268c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first report on a facile tandem route for synthesizing quinazolinones at room temperature from various aminobenzamides and in situ-generated aldehydes. The latter was formed via C[double bond, length as m-dash]C bond cleavage, and the overall reaction proceeded using molecular oxygen as a clean oxidant in the absence of a photocatalyst. Visible light, which was indispensable for the entire course of the reaction, played multiple roles. It initially cleaved styrene to an aldehyde, then facilitated its cyclization with an o-substituted aniline, and finally promoted the dehydrogenation of the cyclized intermediate. The previous step provided the feedstock for the next step in the reaction, thereby preventing volatilization, oxidation, and polymerization of the aldehyde. Thus, the overall process is simple, environmentally benign, and economically feasible.
Collapse
Affiliation(s)
- Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
El-Sayed NNE, Almaneai NM, Ben Bacha A, Al-Obeed O, Ahmad R, Abdulla M, Alafeefy AM. Synthesis and evaluation of anticancer, antiphospholipases, antiproteases, and antimetabolic syndrome activities of some 3H-quinazolin-4-one derivatives. J Enzyme Inhib Med Chem 2019; 34:672-683. [PMID: 30821525 PMCID: PMC6407576 DOI: 10.1080/14756366.2019.1574780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Some new 3H-quinazolin-4-one derivatives were synthesised and screened for anticancer, antiphospholipases, antiproteases, and antimetabolic syndrome activities. Compound 15d was more potent in reducing the cell viabilities of HT-29 and SW620 cells lines to 38%, 36.7%, compared to 5-FU which demonstrated cell viabilities of 65.9 and 42.7% respectively. The IC50 values of 15d were ∼20 µg/ml. Assessment of apoptotic activity revealed that 15d decreased the cell viability by down regulating Bcl2 and BclxL. Moreover, compounds, 8j, 8d/15a/15e, 5b, and 8f displayed lowered IC50 values than oleanolic acid against proinflammatory isoforms of hGV, hG-X, NmPLA2, and AmPLA2. In addition, 8d, 8h, 8j, 15a, 15b, 15e, and 15f showed better anti-α-amylase than quercetin, whereas 8g, 8h, and 8i showed higher anti-α-glucosidase activity than allopurinol. Thus, these compounds can be considered as potential antidiabetic agents. Finally, none of the compounds showed higher antiproteases or xanthine oxidase activities than the used reference drugs.
Collapse
Affiliation(s)
- Nahed N. E. El-Sayed
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- National Organization for Drug Control and Research, Giza, Egypt
| | - Norah M. Almaneai
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Omar Al-Obeed
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Maha Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. Alafeefy
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
7
|
Wang Q, Lv M, Liu J, Li Y, Xu Q, Zhang X, Cao H. Efficient Synthesis of Quinazolinones by Transition-Metal-Free Direct Aerobic Oxidative Cascade Annulation of Alcohols with o-Aminoarylnitriles. CHEMSUSCHEM 2019; 12:3043-3048. [PMID: 30791215 DOI: 10.1002/cssc.201900265] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
A mild and atom-economic method was developed for direct and efficient synthesis of quinazolinones through a transition-metal-free aerobic oxidative cascade annulation reaction of widely available o-aminoarylnitriles and alcohols. Air could be employed as an effective oxidant under mild conditions, generating water as the only byproduct. Possibly owing to the "cesium effect", the water-soluble base CsOH was found to be crucial in all key steps of the reaction mechanism. Because a wide range of substrates can be used to prepare substituted quinazolinones without contamination by transition-metal residues, this method may be of interest for application in pharmaceutical synthesis. Possible reaction paths were also proposed according to control reactions.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Miao Lv
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Jianping Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Yang Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Qing Xu
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Hongen Cao
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| |
Collapse
|
8
|
|
9
|
Tran PH, Thi Bui TP, Bach Lam XQ, Thi Nguyen XT. Synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines and 2,3-dihydroquinazolin-4(1H)-ones under metal-free and solvent-free conditions for minimizing waste generation. RSC Adv 2018; 8:36392-36399. [PMID: 35558474 PMCID: PMC9088831 DOI: 10.1039/c8ra07256f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Brønsted acidic ionic liquid was found to be an efficient and recyclable catalyst for the synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines and 2,3-dihydroquinazolin-4(1H)-ones. The reactions proceeded smoothly with a broad scope of substrates providing the expected products in good to excellent yields under an atom-economical pathway. The low-cost recyclable catalyst, metal- and solvent-free conditions, and the ease of product isolation are the highlighted advantages in solving the issue of trace metal contamination in synthesized pharmaceuticals. A facile, efficient, and atom-economic method for preparing benzo[4,5]imidazo[1,2-a]pyrimidines and 2,3-dihydroquinazolin-4(1H)-ones under metal- and solvent-free condition has been developed.![]()
Collapse
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Viet Nam National University
- Ho Chi Minh City 721337
| | - Thanh-Phuong Thi Bui
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Viet Nam National University
- Ho Chi Minh City 721337
| | - Xuan-Quynh Bach Lam
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Viet Nam National University
- Ho Chi Minh City 721337
| | - Xuan-Trang Thi Nguyen
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Viet Nam National University
- Ho Chi Minh City 721337
| |
Collapse
|