1
|
Haghpanah M, Molla Ebrahimlo AR, Moshtaghi Zonouz A. Green synthesis of structural analogs of favipiravir. RSC Adv 2025; 15:17570-17579. [PMID: 40433038 PMCID: PMC12107697 DOI: 10.1039/d5ra02613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
A series of 3-hydroxy-5-arylpyrazine-2-carboxamides, structural analogs of favipiravir, have been successfully synthesized using a green and sustainable method through a one-pot condensation reaction of arylglyoxals 1a-i and 2-aminopropanediamide 2 in an alkaline solution under heating conditions. The reaction is temperature-sensitive; when conducted at 80 °C, 5-aryl substituted pyrazine derivatives were predominantly obtained. In reactions with arylglyoxals 1a, 1d, 1h, and 1i, temperatures exceeding 80 °C produced a mixture of two regioisomeric pyrazine derivatives with significant efficiency. This method is highly desirable due to its short reaction time, simple purification of products, and the use of water as an eco-friendly solvent.
Collapse
Affiliation(s)
- Maryam Haghpanah
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran
| | | | - Adeleh Moshtaghi Zonouz
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
2
|
Priya SP, Amalraj S, Padmanabhan V, Rahman MM, Chaitanya NCSK, Hashim NT, Prabhu S, Ayyanar M, Gurav S, Ceasar SA, Thiruvengadam R. Evaluating the Antiviral Potential of Polyherbal Formulation ( Kabasura Kudineer) Against Monkeypox Virus: Targeting E5, Poxin, and DNA Polymerase Through Multifaceted Drug Discovery Approaches. Life (Basel) 2025; 15:771. [PMID: 40430198 PMCID: PMC12113122 DOI: 10.3390/life15050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
The recent reemergence of the monkeypox pandemic in non-endemic regions has raised serious concerns regarding the possibility of a global outbreak. The study employed various modules of the Schrodinger suite through Maestro V 14.1 for molecular docking, MD simulations, MM-GBSA, and FMO. To explore the drug potential of Kabasura Kudineer against the key proteins of the Mpox virus: E5, poxin, and DNA polymerase, a total of 982 chemical constituents belonging to this herbal formulation were investigated. The molecular docking studies revealed that chlorogenic acid, chebulic acid, rosmarinic acid, and citric acid had high binding affinities for E5, with docking scores of -13.3289, -11.3933, -9.8999, and -9.59471 kcal/mol, respectively. Likewise, caffeic acid, citric acid, and plumbagic acid have good binding affinities for poxin with docking scores of -8.49023, -6.80386 and -5.91719 kcal/mol, respectively. Plumbagic acid and delphinidin have considerable binding affinities for DNA polymerase with docking scores of -7.57867 and -7.55301 kcal/mol, respectively. In the MD simulation, chlorogenic acid, chebulic acid, citric acid, and rosmarinic acid exhibited remarkable stability with strong binding affinities for the E5, poxin and DNA polymerase. We further explored the stability of the E5 complexes by calculating the binding free energy every 20 ns for 100 ns. The ΔG bind values of chlorogenic acid, chebulic acid, and rosmarinic acid were 61.10, 78.14, and 75.49 kcal/mol at 0 ns. Hence, the research suggests that this formulation has antiviral potential against Monkeypox and can be used to inhibit viral replication in hosts and boost the antiviral immune response.
Collapse
Affiliation(s)
- Sivan Padma Priya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Singamoorthy Amalraj
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683 104, Kerala, India;
| | - Vivek Padmanabhan
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Mohammed Mustahsen Rahman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Nallan CSK Chaitanya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Nada Tawfig Hashim
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683 104, Kerala, India;
| | - Muniappan Ayyanar
- PG and Research Department of Botany, AVVM Sri Pushpam College (Autonomous) Poondi, Bharathidasan University, Thanjavur 613 503, Tamil Nadu, India;
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji 403 001, Goa, India;
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683 104, Kerala, India;
| | - Rekha Thiruvengadam
- Department of Community Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai 602 105, Tamil Nadu, India;
| |
Collapse
|
3
|
Tegegn DF, Belachew HZ, Etefa HF, Salau AO. Investigation of substituent effects on the electronic structure and antiviral activity of favipiravir derivatives for Covid-19 treatment using DFT and molecular docking. Sci Rep 2024; 14:17697. [PMID: 39085399 PMCID: PMC11291664 DOI: 10.1038/s41598-024-68712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
In this study, Density-functional theory/Time-dependent density-functional theory (DFT/TDDFT) and Molecular docking method was used to investigate the effect of methyl acetate, tetrahydrofuran and cyanobenzylidene substituents on the electronic structure and antiviral activity of favipiravir for treating COVID-19. The DFT and TDDFT computations were employed using the Gaussian 09 software package. The values were calculated using the 6-311++G(d, p) basis set and the hybrid B3LYP functional method. Autodock vina software was used for simulations to better predictions and to validate the modified compounds' binding affinities and poses. Results of the study indicate that compounds 1 to 6 all displayed a planar structure, where the pyrazine ring, carboxamide, hydroxyl groups, and other substituents are all situated within the same plane. In addition, the energy gaps (Egap) of these six compounds (Cpd 1, 2, 3, 4, 5, and 6) were compared. The significant dipole moment and binding affinity achieved implies a particular orientation for binding within the target protein, signaling the anticipated strength of the binding interaction. In all six compounds, the electrophilic domain is situated in the vicinity of the amine functional group within the carboxamide compound, whereas the nucleophilic domain encompasses both the carbonyl and hydroxyl groups. The most negatively charged sites are susceptible to electrophilic interactions. In conclusion, compounds 5 and 6 exhibit a high binding affinity of the target protein, while compound 6 has a high energy gap, which could enhance its antiviral activity against the COVID-19 virus.
Collapse
Affiliation(s)
- Dereje Fedasa Tegegn
- Department of Chemistry, College of Natural and Computational Science, Dambi Dollo University, P. O. Box. 260, Dambi Dollo, Oromia, Ethiopia
| | - Habtamu Zewude Belachew
- Department of Chemistry, College of Natural and Computational Science, Dambi Dollo University, P. O. Box. 260, Dambi Dollo, Oromia, Ethiopia
| | - Habtamu Fekadu Etefa
- Department of Physics, Walter Sisulu University, Private Bag X-1, Mathatha, 5117, South Africa
| | - Ayodeji Olalekan Salau
- Department of Electrical/Electronics and Computer Engineering, Afe Babalola University, Ado-Ekiti, Nigeria.
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Qi W, Zhai D, Song D, Liu C, Yang J, Sun L, Li Y, Li X, Deng W. Optimized synthesis of anti-COVID-19 drugs aided by retrosynthesis software. RSC Med Chem 2023; 14:1254-1259. [PMID: 37484565 PMCID: PMC10357945 DOI: 10.1039/d2md00444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/21/2023] [Indexed: 07/25/2023] Open
Abstract
Considering the millions of COVID-19 patients worldwide, a global critical challenge of low-cost and efficient anti-COVID-19 drug production has emerged. Favipiravir is one of the potential anti-COVID-19 drugs, but its original synthetic route with 7 harsh steps gives a low product yield (0.8%) and has a high cost ($68 per g). Herein, we demonstrated a low-cost and efficient synthesis route for favipiravir designed using improved retrosynthesis software, which involves only 3 steps under safe and near-ambient air conditions. A yield of 32% and cost of $1.54 per g were achieved by this synthetic route. We also used the same strategy to optimize the synthesis of sabizabulin. We anticipate that these synthetic routes will contribute to the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Wentao Qi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Danna Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Chengcheng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Junxia Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou 215123 P. R. China
| | - Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
5
|
Vaz ES, Vassiliades SV, Giarolla J, Polli MC, Parise-Filho R. Drug repositioning in the COVID-19 pandemic: fundamentals, synthetic routes, and overview of clinical studies. Eur J Clin Pharmacol 2023; 79:723-751. [PMID: 37081137 PMCID: PMC10118228 DOI: 10.1007/s00228-023-03486-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Drug repositioning is a strategy to identify a new therapeutic indication for molecules that have been approved for other conditions, aiming to speed up the traditional drug development process and reduce its costs. The high prevalence and incidence of coronavirus disease 2019 (COVID-19) underline the importance of searching for a safe and effective treatment for the disease, and drug repositioning is the most rational strategy to achieve this goal in a short period of time. Another advantage of repositioning is the fact that these compounds already have established synthetic routes, which facilitates their production at the industrial level. However, the hope for treatment cannot allow the indiscriminate use of medicines without a scientific basis. RESULTS The main small molecules in clinical trials being studied to be potentially repositioned to treat COVID-19 are chloroquine, hydroxychloroquine, ivermectin, favipiravir, colchicine, remdesivir, dexamethasone, nitazoxanide, azithromycin, camostat, methylprednisolone, and baricitinib. In the context of clinical tests, in general, they were carried out under the supervision of large consortiums with a methodology based on and recognized in the scientific community, factors that ensure the reliability of the data collected. From the synthetic perspective, compounds with less structural complexity have more simplified synthetic routes. Stereochemical complexity still represents the major challenge in the preparation of dexamethasone, ivermectin, and azithromycin, for instance. CONCLUSION Remdesivir and baricitinib were approved for the treatment of hospitalized patients with severe COVID-19. Dexamethasone and methylprednisolone should be used with caution. Hydroxychloroquine, chloroquine, ivermectin, and azithromycin are ineffective for the treatment of the disease, and the other compounds presented uncertain results. Preclinical and clinical studies should not be analyzed alone, and their methodology's accuracy should also be considered. Regulatory agencies are responsible for analyzing the efficacy and safety of a treatment and must be respected as the competent authorities for this decision, avoiding the indiscriminate use of medicines.
Collapse
Affiliation(s)
- Elisa Souza Vaz
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Sandra Valeria Vassiliades
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Michelle Carneiro Polli
- Pharmacy Course, São Francisco University (USF), Waldemar César da Silveira St, 105, SP, Campinas, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil.
| |
Collapse
|
6
|
Chandra G, Singh DV, Mahato GK, Patel S. Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. CHEMICKE ZVESTI 2023; 77:1-22. [PMID: 37362786 PMCID: PMC10099028 DOI: 10.1007/s11696-023-02804-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development. Graphical abstract
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| |
Collapse
|
7
|
An economical and practical procedure of favipiravir synthesis for the treatment of Covid-19. CHEMICAL PAPERS 2023; 77:1695-1702. [PMID: 36466109 PMCID: PMC9685009 DOI: 10.1007/s11696-022-02595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Favipiravir is a wide-spectrum antiviral generic drug that has received large attention during the recent COVID-19 pandemic. While there are synthetic strategies for favipiravir synthesis, economical procedures could contribute to industrial scale synthesis and availability. Accordingly, our efforts focused on an economic and scalable procedure for favipiravir synthesis via the 3,6-dichloropyrazine-2-carbonitrile intermediate obtained from 3-aminopyrazine-2-carboxylic acid. The process afforded favipiravir with 43% yield (from 3,6-dichloropyrazine-2-carbonitrile, by fluorination, hydroxylation, and nitrile hydrolysis reactions) and greater than 99% purity without a chromatographic purification step. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02595-1.
Collapse
|
8
|
Madasamy K, Balakrishnan MH, Korivi R, Mannathan S. Trifluoroacetic Acid-Mediated Denitrogenative ortho-Hydroxylation of 1,2,3-Benzotriazin-4(3 H)-ones: A Metal-Free Approach. J Org Chem 2022; 87:8752-8756. [PMID: 35700398 DOI: 10.1021/acs.joc.2c00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient trifluoroacetic acid-mediated denitrogenative hydroxylation of 1,2,3-benzotriazin-4(3H)-ones is described. This metal-free approach is compatible with a wide range of 1,2,3-benzotriazin-4(3H)-ones, affording ortho-hydroxylated benzamides in good to high yields with a short reaction time. The reaction is believed to proceed via a benzene diazonium intermediate. The synthetic utility of the reaction was successfully demonstrated by the preparation of an antimicrobial drug, Riparin C, and benzoxazine-2,4(3H)-diones in good yields.
Collapse
Affiliation(s)
- Kanagaraj Madasamy
- Department of Chemistry, SRM University, AP, Amaravati, Andhra Pradesh 522 502, India
| | - Madasamy Hari Balakrishnan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
| | - Ramaraju Korivi
- Department of Chemistry, SRM University, AP, Amaravati, Andhra Pradesh 522 502, India
| | | |
Collapse
|
9
|
Zhang C. Fluorine in Medicinal Chemistry: In Perspective to COVID-19. ACS OMEGA 2022; 7:18206-18212. [PMID: 35663284 PMCID: PMC9159071 DOI: 10.1021/acsomega.2c01121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/05/2022] [Indexed: 05/17/2023]
Abstract
Over two years into the outbreak of COVID-19, the quest for effective and economical drugs has become starkly clear to reduce the risk of progression of coronavirus disease. A number of drugs have been investigated, and they can be taken orally at home and be used after exposure to SARS-CoV-2 or at the first sign of COVID-19. Fluorinated oral anti-COVID-19 drugs-including Paxlovid, the first oral tablet for the treatment of COVID-19-constitute an important subgroup. Fluorine has been widely used in the pharmaceutical market and can lead to improved selectivity indices, increased lipophilicity, greater metabolic stability, and improved anti-COVID-19 efficacy. In this mini-review, we will give an update on fluorinated anti-COVID-19 drugs by providing the key information and current knowledge of these drugs, including their molecular design, metabolism and pharmacokinetics, and mechanism of action.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering
and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano
Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Konstantinova ID, L.Andronova V, Fateev IV, Esipov RS. Favipiravir and Its Structural Analogs: Antiviral Activity and Synthesis Methods. Acta Naturae 2022; 14:16-38. [PMID: 35923566 PMCID: PMC9307979 DOI: 10.32607/actanaturae.11652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/27/2022] [Indexed: 01/18/2023] Open
Abstract
1,4-Pyrazine-3-carboxamide-based antiviral compounds have been under intensive study for the last 20 years. One of these compounds, favipiravir (6-fluoro-3-hydroxypyrazine-2-carboxamide, T-705), is approved for use against the influenza infection in a number of countries. Now, favipiravir is being actively used against COVID-19. This review describes the in vivo metabolism of favipiravir, the mechanism of its antiviral activity, clinical findings, toxic properties, and the chemical synthesis routes for its production. We provide data on the synthesis and antiviral activity of structural analogs of favipiravir, including nucleosides and nucleotides based on them.
Collapse
Affiliation(s)
- I. D. Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. L.Andronova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia, Moscow, 123098 Russia
| | - I. V. Fateev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - R. S. Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
11
|
Zhang C, Xiang JJ, Zhao J, Meng YL, Zhang FR, Jin Z, Shaw PC, Liu XP, Hu C. Design, synthesis, and biological activity of a novel series of 2-ureidonicotinamide derivatives against influenza A virus. Curr Med Chem 2022; 29:4610-4627. [PMID: 35209813 DOI: 10.2174/0929867329666220224114627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral resistance to existing inhibitors and the time-dependent effectiveness of neuraminidase inhibitors have limited the number of antivirals that can be used for prophylaxis and therapeutic treatment of severe influenza infection. Thus, there is an urgent need to develop new drugs to prevent and treat influenza infection. OBJECTIVE The aim of this study was to design and synthesize a novel series of 2-ureidonicotinamide derivatives, and evaluate their anti-IAV activities. Furthermore, we predicted the abilities of these compounds inhibiting PA-PB1 subunit and forecasted the docking poses of these compounds with RNA polymerase protein (PDB ID 3CM8). METHOD The novel designed compounds were synthesized using classical methods of organic chemistry and tested in vitro for their abilities inhibiting RNP and against influenza A virus. In addition, the 23 synthesized molecules were subjected to the generated pharmacophore Hypo1 to forecast the activity target PA-PB1 subunit of RNA polymerase. The ADMET pharmacokinetic parameters were calculated by the ADMET modules in Discovery Studio 2016. The docking results helped us to demonstrate the possible interactions between these compounds with 3CM8. RESULTS The synthesized 2-ureidonicotinamide derivatives were characterized as potent anti-influenza inhibitors. The target compounds 7b and 7c demonstrated significant antiviral activities, and could be considered as novel lead compounds of antiviral inhibitors. In addition, compound 7b revealed suitable ADME properties expressed, and might be a significant RNA polymerase inhibitor targeting PA-PB1 subunit based on the predictable results and the docking results. CONCLUSION This study revealed a novel series of compounds that might be useful in the search for an effective drug against influenza virus.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun-Jie Xiang
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Zhao
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan-Li Meng
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fu-Rong Zhang
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhe Jin
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pang-Chui Shaw
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Ping Liu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Ghosh P, Panda SJ, Purohit CS. A new short synthesis route for favipiravir and its analogue: Their tautomerization behaviour. NEW J CHEM 2022. [DOI: 10.1039/d2nj02996k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogen substitution in a pyrazine ring is achieved in an efficient manner. The solid state data revealed the formation of two types of halogen bonding in the structures.
Collapse
Affiliation(s)
- Priyanka Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400 04, Maharashtra, India
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400 04, Maharashtra, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400 04, Maharashtra, India
| |
Collapse
|
13
|
Gaonkar SL, D D, Hakkimane SS. Favipiravir (6‐Fluoro‐3‐hydroxy‐2‐pyrazinecarboxamide) a Broad Spectrum Inhibitor of Viral RNA Polymerase in COVID‐19 Treatment. ChemistrySelect 2021. [DOI: 10.1002/slct.202103659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Santosh L. Gaonkar
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Deepika D
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Sushruta S. Hakkimane
- Department of Biotechnology Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 Karnataka India
| |
Collapse
|
14
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
15
|
Tiyasakulchai T, Charoensetakul N, Khamkhenshorngphanuch T, Thongpanchang C, Srikun O, Yuthavong Y, Srimongkolpithak N. Scalable synthesis of favipiravir via conventional and continuous flow chemistry. RSC Adv 2021; 11:38691-38693. [PMID: 35493228 PMCID: PMC9044180 DOI: 10.1039/d1ra06963b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Decagram scale synthesis of favipiravir was performed in 9 steps using diethyl malonate as cheap starting material. Hydrogenation and bromination steps were achieved by employing a continuous flow reactor. The synthetic process provided a total of 16% yield and it is suitable for larger-scale synthesis and production.
Collapse
Affiliation(s)
- Thanat Tiyasakulchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Netnapa Charoensetakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | | | - Chawanee Thongpanchang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Onsiri Srikun
- Government Pharmaceutical Organization (GPO) Bangkok Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| |
Collapse
|
16
|
Rajabzadeh H, Sharafat A, Abbasi M, Gharaati ME, Alipourfard I. Exploring chemistry features of favipiravir in octanol/water solutions. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Favipiravir (Fav) has become a well-known drug for medication of patients by appearance of COVID-19. Heterocyclic structure and connected peptide group could make changes for Fav yielding different features from those required features. Therefore, it is indeed a challenging task to prepare a Fav compound with specific features of desired function. In this work, existence of eight Fav structures by tautomeric formations and peptide group rotations were obtained using density functional theory (DFT) optimization calculations. Gas phase, octanol solution, and water solution were employed to show impact of solution on features of Fav besides obtaining partition coefficients (LogP) for Fav compounds. Significant impacts of solutions were seen on features of Fav with the obtained LogP order: Fav-7 > Fav-8 > Fav-4 > Fav-3 > Fav-2 > Fav-5 > Fav-1 > Fav-6. As a consequence, internal changes yielded significant impacts on features of Fav affirming its carful medication of COVID-19 patients.
Collapse
Affiliation(s)
- Halimeh Rajabzadeh
- Department of Chemistry, Dezful Branch, Islamic Azad University, Dezful, Iran
| | - Ayla Sharafat
- Department of Chemistry, Payame Noor University, Bandar Abbas, Iran
| | - Maryam Abbasi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Maryam Eslami Gharaati
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
17
|
Paul SS, Biswas G. Repurposed Antiviral Drugs for the Treatment of COVID-19: Syntheses, Mechanism of Infection and Clinical Trials. Mini Rev Med Chem 2021; 21:1123-1143. [PMID: 33355053 DOI: 10.2174/1389557521666201222145842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
COVID-19 is a public health emergency of international concern. Although considerable knowledge has been acquired with time about the viral mechanism of infection and mode of replication, yet no specific drugs or vaccines have been discovered against SARS-CoV-2 to date. There are few small molecule antiviral drugs like Remdesivir and Favipiravir, which have shown promising results in different advanced stages of clinical trials. Chloroquinine, Hydroxychloroquine, and Lopinavir- Ritonavir combination, although initially were hypothesized to be effective against SARSCoV- 2, are now discontinued from the solidarity clinical trials. This review provides a brief description of their chemical syntheses along with their mode of action, and clinical trial results available on Google and in different peer-reviewed journals till 24th October 2020.
Collapse
Affiliation(s)
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Panchanan Nagar, Cooch Behar 736101, India
| |
Collapse
|
18
|
Hansen F, Jarvis MA, Feldmann H, Rosenke K. Lassa Virus Treatment Options. Microorganisms 2021; 9:microorganisms9040772. [PMID: 33917071 PMCID: PMC8067676 DOI: 10.3390/microorganisms9040772] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Lassa fever causes an approximate 5000 to 10,000 deaths annually in West Africa and cases have been imported into Europe and the Americas, challenging public health. Although Lassa virus was first described over 5 decades ago in 1969, no treatments or vaccines have been approved to treat or prevent infection. In this review, we discuss current therapeutics in the development pipeline for the treatment of Lassa fever, focusing on those that have been evaluated in humans or animal models. Several treatments, including the antiviral favipiravir and a human monoclonal antibody cocktail, have shown efficacy in preclinical rodent and non-human primate animal models and have potential for use in clinical settings. Movement of the promising preclinical treatment options for Lassa fever into clinical trials is critical to continue addressing this neglected tropical disease.
Collapse
Affiliation(s)
- Frederick Hansen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Michael A Jarvis
- The Vaccine Group Ltd., University of Plymouth, Plymouth PL4 8AA, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
19
|
Sorouri F, Emamgholipour Z, Keykhaee M, Najafi A, Firoozpour L, Sabzevari O, Sharifzadeh M, Foroumadi A, Khoobi M. The situation of small molecules targeting key proteins to combat SARS-CoV-2: Synthesis, metabolic pathway, mechanism of action, and potential therapeutic applications. Mini Rev Med Chem 2021; 22:273-311. [PMID: 33687881 DOI: 10.2174/1389557521666210308144302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Due to the global epidemic and high mortality of 2019 coronavirus disease (COVID-19), there is an immediate need to discover drugs that can help before a vaccine becomes available. Given that the process of producing new drugs is so long, the strategy of repurposing existing drugs is one of the promising options for the urgent treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19 disease. Although FDA has approved Remdesivir for the use in hospitalized adults and pediatric patients suffering from COVID-19, no fully effective and reliable drug has been yet identified worldwide to treat COVID-19 specifically. Thus, scientists are still trying to find antivirals specific to COVID-19. This work reviews the chemical structure, metabolic pathway, mechanism of action of existing drugs with potential therapeutic applications for COVID-19. Further, we summarized the molecular docking stimulation of the medications related to key protein targets. These already drugs could be developed for further clinical trials to supply suitable therapeutic options for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Farzaneh Sorouri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Alireza Najafi
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran. Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| |
Collapse
|
20
|
Popov AV, Kobelevskaya VA, Titov ID, Larina LI, Rozentsveig IB. Synthesis of 5-Chloroisoxazoles Derived from 2,2-Dichlorovinyl Ketones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s107042802011010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|