1
|
Couto Rodrigues S, Silva Moratório de Moraes R, Tavares de Almeida Pinto G, Miranda Martins MT, Antunes do Nascimento P, Alves Soares DL, Mestre Botelho AB, Cardoso Cruz C, Cunha AC. A Review on Chemistry and Methods of Synthesis of 1,2,4-Triazole Derivatives. CHEM REC 2025; 25:e202400190. [PMID: 39543436 DOI: 10.1002/tcr.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 11/17/2024]
Abstract
This review provides a comprehensive overview of research on 1,2,4-triazoles conducted over the last fifteen years. 1,2,4-Triazoles are highly significant in the pharmaceutical industry, with numerous compounds from this class used clinically as antifungal, antiviral, antibacterial, anti-inflammatory, and antitubercular agents. Beyond their pharmaceutical relevance, this review also explores their role in material science and agriculture. In material science, 1,2,4-triazoles are gaining prominence, particularly in the development of energetic materials (EMs), due to their exceptional properties such as thermal stability, coordination ability, and performance comparable to well-known explosives. Their applications extend to polymers, corrosion inhibitors, and metal-organic frameworks (MOFs), and they play a significant role in the development of functional materials for sensors, catalysis, and energy storage. Additionally, the review addresses general aspects and synthetic methodologies for the functionalization and construction of the 1,2,4-triazole ring. Synthetic methods discussed include metalation synthesis, cyclization of hydrazine derivatives, multicomponent reactions, cyclization of amides and amidines, and microwave-assisted synthesis. Given the significance of the triazole scaffold, its synthesis has garnered considerable attention due to its wide-ranging applications across various industrial sectors.
Collapse
Affiliation(s)
- Searitha Couto Rodrigues
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Raphael Silva Moratório de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Gabriel Tavares de Almeida Pinto
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Maria Tereza Miranda Martins
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Patrick Antunes do Nascimento
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Deivid Lucas Alves Soares
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Ana Beatriz Mestre Botelho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Camille Cardoso Cruz
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Anna Claudia Cunha
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Yoon JH, Kim DO, Lee S, Lee BH, Kim ES, Son YK, Kopalli SR, Lee JH, Ju Y, Lee J, Cho JY. Anti-apoptotic, anti-inflammatory, and anti-melanogenic effects of the ethanol extract of Picrasma quassioides (D. Don) Benn. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118374. [PMID: 38789093 DOI: 10.1016/j.jep.2024.118374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Dong-Ock Kim
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Byong-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Eun Sil Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Youn Kyoung Son
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, South Korea.
| | - Ji Heun Lee
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Youngwoon Ju
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Jongsung Lee
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jae Youl Cho
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
3
|
Li Y, Luo Z, Liu W, Chen W, Wang J, Zhu G, Guo B, Tang L, Fan L. Design and Synthesis of Novel Phthalide Derivatives containing 1,3,4-Oxadiazole/1,2,4-Triazole Units as Potential Antifungal Agents. Chem Biodivers 2024; 21:e202400043. [PMID: 38361278 DOI: 10.1002/cbdv.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Four series of novel 1,3,4-oxadiazole/1,2,4-triazole hybrids of phthalide derivatives were designed and synthesized to search for novel potential antifungal agents. Preliminary antifungal activity assay results showed that compounds 4 a, 4 b, 4 m, 5 b, 5 f, 5 h, and 7 h exhibited moderate to excellent inhibitory activity against some phytopathogenic fungi. Among them, compound 5 b displayed the most outstanding antifungal effects against V. mali and S. sclerotiorum, with the EC50 mean of 3.96 μg/mL and 5.60 μg/mL, respectively, which was superior to those of commercial fungicides hymexazol and chlorothalonil. Furthermore, compound 5 b could completely suppress the spore germination of V. mali at a concentration of 10 μg/mL. Finally, molecular docking revealed that the potential target for the antifungal activity of compound 5 b was succinate dehydrogenase (SDH). This research provides novel candidate compounds for the prevention of phytopathogenic fungi.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Zhongfu Luo
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Wenjing Liu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Wenzhang Chen
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Jianta Wang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Gaofeng Zhu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Bing Guo
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Lei Tang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Lingling Fan
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| |
Collapse
|
4
|
Irfan M, Khan HA, Bibi S, Wu G, Ali A, Khan SG, Alhokbany N, Rasool F, Chen K. Exploration of nonlinear optical properties of 4-methyl-4H-1,2,4-triazol-3-yl)thio)-N-phenylpropanamide based derivatives: experimental and DFT approach. Sci Rep 2024; 14:2732. [PMID: 38302494 PMCID: PMC10834427 DOI: 10.1038/s41598-024-51788-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Triazoles, nitrogen-containing heterocycles, have gained attention for their applications in medicinal chemistry, drug discovery, agrochemicals, and material sciences. In the current study, we synthesized novel derivatives of N-substituted 2-((5-(3-bromophenyl)-4-methyl-4H-1,2,4-triazol-3-yl)thio)-N-phenylpropanamide and conducted a comprehensive investigation using density functional theory (DFT). These novel structural hybrids of 1,2,4-triazole were synthesized through the multi-step chemical modifications of 3-bromobenzoic acid (1). Initially, compound 1 was converted into its methyl-3-bromobenzoate (2) which was then transformed into 3-bromobenzohydrazide (3). The final step involved the cyclization of compound 3, producing its 1,2,4-triazole derivative (4). This intermediate was then coupled with different electrophiles, resulting in the formation of the final derivatives (7a-7c). Additionally, the characterization of these triazole-based compounds (7a, 7b, and 7c) were carried out using techniques such as IR, HNMR, and UV-visible spectroscopy to understand their structural and spectroscopic properties. The DFT study utilized M06/6-311G(d,p) functional to investigate geometrical parameters, HOMO-LUMO energies, natural bond orbital analyses, transition density matrix (TDM), density of states, and nonlinear optical (NLO) properties. The FMO analysis revealed that compound 7c exhibited the lowest band gap value (4.618 eV). Notably, compound 7c exhibited significant linear polarizability (4.195 > × 10-23) and first and second hyperpolarizabilities (6.317 > × 10-30, 4.314 × 10-35), signifying its potential for nonlinear optical applications. These NLO characteristics imply that each of our compounds, especially 7c, plays a crucial part in fabricating materials showing promising NLO properties for optoelectronic applications.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Chemistry, Faculty of Physical Science, Government College University, Faisalabad, 38000, Pakistan
| | - Hammad Ali Khan
- Department of Chemistry, Faculty of Physical Science, Government College University, Faisalabad, 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Gang Wu
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Akbar Ali
- Department of Chemistry, Faculty of Physical Science, Government College University, Faisalabad, 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Faculty of Physical Science, Government College University, Faisalabad, 38000, Pakistan.
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Faiz Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Farghaly TA, Masaret GS, Riyadh SM, Harras MF. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles. Mini Rev Med Chem 2024; 24:1602-1629. [PMID: 38008942 DOI: 10.2174/0113895575277122231108095511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sayed M Riyadh
- Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Riaz N, Yasin M, Ashraf M, Saleem M, Bashir B, Iqbal A, Aziz-ur-Rehman, Ejaz SA, Ejaz S, Mahmood HMK, Bhattarai K. Vetting of new N-furfurylated p-chlorophenyl-1,2,4-triazole acetamides as lipoxygenase inhibitors assisted with in vitro and in silico studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
The Synthesis of Triazolium Salts as Antifungal Agents: A Biological and In Silico Evaluation. Antibiotics (Basel) 2022; 11:antibiotics11050588. [PMID: 35625232 PMCID: PMC9137982 DOI: 10.3390/antibiotics11050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
The control of fungal pathogens is increasingly difficult due to the limited number of effective drugs available for antifungal therapy. In addition, both humans and fungi are eukaryotic organisms; antifungal drugs may have significant toxicity due to the inhibition of related human targets. Furthermore, another problem is increased incidents of fungal resistance to azoles, such as fluconazole, ketoconazole, voriconazole, etc. Thus, the interest in developing new azoles with an extended spectrum of activity still attracts the interest of the scientific community. Herein, we report the synthesis of a series of triazolium salts, an evaluation of their antifungal activity, and docking studies. Ketoconazole and bifonazole were used as reference drugs. All compounds showed good antifungal activity with MIC/MFC in the range of 0.0003 to 0.2/0.0006–0.4 mg/mL. Compound 19 exhibited the best activity among all tested with MIC/MFC in the range of 0.009 to 0.037 mg/mL and 0.0125–0.05 mg/mL, respectively. All compounds appeared to be more potent than both reference drugs. The docking studies are in accordance with experimental results.
Collapse
|
8
|
Khomenko DM, Doroshchuk RO, Ohorodnik YM, Ivanova HV, Zakharchenko BV, Raspertova IV, Vaschenko OV, Dobrydnev AV, Grygorenko OO, Lampeka RD. Expanding the chemical space of 3(5)-functionalized 1,2,4-triazoles. Chem Heterocycl Compd (N Y) 2022; 58:116-128. [PMID: 35340781 PMCID: PMC8940976 DOI: 10.1007/s10593-022-03064-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/30/2022] [Indexed: 01/30/2023]
Abstract
An efficient approach to the gram-scale synthesis of 3(5)-substituted, 1,3- and 1,5-disubstituted 1,2,4-triazole-derived building blocks is described. The key synthetic precursors - 1,2,4-triazole-3(5)-carboxylates (20 examples, 35-89% yield) were prepared from readily available acyl hydrazides and ethyl 2-ethoxy-2-iminoacetate hydrochloride. Further transformations were performed following the convergent synthetic strategy and allowed the preparation of 1,3- and 1,5-disubstituted 1,2,4-triazole-derived esters (16 examples, 25-75% yield), 3(5)-substituted, 1,3- and 1,5-disubstituted carboxylate salts (18 examples, 78-93% yield), amides (5 examples, 82-93% yield), nitriles (5 examples, 30-85% yield), hydrazides (6 examples, 84-89% yield), and hydroxamic acids (3 examples, 73-78% yield). Considering wide applications of the 1,2,4-triazole motif in medicinal chemistry, these compounds are valuable building blocks for lead-oriented synthesis; they have also great potential for coordination chemistry. Supplementary Information The online version contains supplementary material available at 10.1007/s10593-022-03064-z.
Collapse
Affiliation(s)
- Dmytro M. Khomenko
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Roman O. Doroshchuk
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Yulia M. Ohorodnik
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Hanna V. Ivanova
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Borys V. Zakharchenko
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Ilona V. Raspertova
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | | | - Alexey V. Dobrydnev
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Rostyslav D. Lampeka
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| |
Collapse
|