1
|
Ran Y, Zhang Y, Wang X, Li G. Nematicidal Metabolites from the Actinomycete Micromonospora sp. WH06. Microorganisms 2022; 10:microorganisms10112274. [PMID: 36422344 PMCID: PMC9693860 DOI: 10.3390/microorganisms10112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
A nematicidal actinomycete strain WH06 was isolated from soil samples and was identified using 16S rRNA as Micromonospora sp. Through medium screening and fermentation, 10 metabolites were isolated from the ethyl acetate extract of its fermentation broth using Sephadex LH-20 and silica gel column chromatography. These compounds were identified as N-acetyltyramine (1), N-acetyltryptamine (2), 1-methylhydantoin (3), benzenepropanoic acid (4), cyclo-(L-Pro-L-Tyr) (5), cyclo(L-Phe-Gly) (6), catechol (7), methyl (4-hydroxyphenyl)acetate (8), 3-hydroxybenzoic acid (9), and 4-hydroxybenzoic acid (10). In an in vitro assay against Meloidogyne incognita, a root-knot nematode, compounds 1, 4, 9, and 10 show nematicidal activity. Among them, benzenepropanoic acid (4) causes 99.02% mortality of nematode at 200 μg mL−1 after 72 h. Moreover, compound 4 also displays activity in inhibiting egg hatching of M. incognita. This suggests that Micromonospora sp. WH06 is a promising candidate for biocontrol of M. incognita.
Collapse
|
2
|
Newaz AW, Yong K, Lian XY, Zhang Z. Streptoindoles A–D, novel antimicrobial indole alkaloids from the marine-associated actinomycete Streptomyces sp. ZZ1118. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Munir S, Shahid A, Aslam B, Ashfaq UA, Akash MSH, Ali MA, Almatroudi A, Allemailem KS, Rajoka MSR, Khurshid M. The Therapeutic Prospects of Naturally Occurring and Synthetic Indole Alkaloids for Depression and Anxiety Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8836983. [PMID: 33123212 PMCID: PMC7585661 DOI: 10.1155/2020/8836983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
Depression and anxiety are the most common disorders among all age groups. Several antidepressant drugs including benzodiazepine, antidepressant tricyclics, azapirone, noradrenaline reuptake inhibitors, serotonin selective reuptake inhibitors, serotonin, noradrenaline reuptake inhibitors, and monoamine oxidase inhibitors have been used to treat these psychiatric disorders. However, these antidepressants are generally synthetic agents and can cause a wide range of side effects. The potential efficacy of plant-derived alkaloids has been reviewed against various neurodegenerative diseases including Alzheimer's disease, Huntington disease, Parkinson's disease, schizophrenia, and epilepsy. However, data correlating the indole alkaloids and antidepressant activity are limited. Natural products, especially plants and the marine environment, are rich sources of potential new drugs. Plants possess a variety of indole alkaloids, and compounds that have an indole moiety are related to serotonin, which is a neurotransmitter that regulates brain function and cognition, which in turn alleviates anxiety, and ensures a good mood and happiness. The present review is a summary of the bioactive compounds from plants and marine sources that contain the indole moiety, which can serve as potent antidepressants. The prospects of naturally occurring as well as synthetic indole alkaloids for the amelioration of anxiety and depression-related disorders, structure-activity relationship, and their therapeutic prospects have been discussed.
Collapse
Affiliation(s)
- Samman Munir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Aqsa Shahid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | | | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Selvaratnam C, Thevarajoo S, Ee R, Chan KG, Bennett JP, Goh KM, Chong CS. Genome sequence of Roseivirga sp. strain D-25 and its potential applications from the genomic aspect. Mar Genomics 2016; 28:29-31. [DOI: 10.1016/j.margen.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
|
6
|
Antioxidative Activity and Chemical Constituents of Edible Terrestrial AlgaNostoc communeVauch. Biosci Biotechnol Biochem 2014; 75:2175-7. [DOI: 10.1271/bbb.110466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Lin ZJ, Lu XM, Zhu TJ, Fang YC, Gu QQ, Zhu W. GPR12 selections of the metabolites from an endophytic Streptomyces sp. associated with Cistanches deserticola. Arch Pharm Res 2008; 31:1108-14. [PMID: 18806952 DOI: 10.1007/s12272-001-1276-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 07/04/2008] [Accepted: 08/12/2008] [Indexed: 12/01/2022]
Abstract
An endophytic Streptomyces sp. (AC-2) was isolated from the root of Cistanches deserticola Y.C.Ma.. Chemical investigations of the culture broth of AC-2 afforded fifteen compounds including K1115 A (1), tyrosol (2), phenylethylamine derivatives (3, 4), cyclic dipeptides (5-8), nucleosides and their aglycones (9-13), N-acetyltryptamine (14), and pyrrole-2-carboxylic acid (15). Only tyrosol can promote an increase of intracellular cAMP special on GPR12 transfected cells, such as CHO and HEK293, which means it may be a possible ligand for GPR12.
Collapse
Affiliation(s)
- Zhen-Jian Lin
- Key laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2008; 25:35-94. [PMID: 18250897 DOI: 10.1039/b701534h] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the literature published in 2006 for marine natural products, with 758 citations (534 for the period January to December 2006) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidaria, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (779 for 2006), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|