1
|
Praveena R, Balasankar A, Aruchamy K, Oh T, Polisetti V, Ramasundaram S, Anbazhakan K. Structural Activity and HAD Inhibition Efficiency of Pelargonidin and Its Glucoside-A Theoretical Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228016. [PMID: 36432125 PMCID: PMC9696994 DOI: 10.3390/molecules27228016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Anthocyanins are an important pharmaceutical ingredient possessing diet regulatory, antioxidant, anticancer, antidiabetic, anti-obesity, antimicrobial, and anti-inflammatory properties. Pelargonidin is an important anthocyanin-based orange-red flavonoid compound used in drugs for treating hypoglycemia, retinopathy, skeletal myopathy, etc. The main sources of pelargonidin are strawberries and food products with red pigmentation. There is a lack of evidence for supporting its use as an independent supplement. In the present study, pelargonidin and pelargonidin-3-O-glucoside are studied for their structural properties using quantum chemical calculations based on density functional theory. The results confirmed that the parent compound and its glycosylated derivative acted as good electron donors. Electrostatic potential, frontier molecular orbitals, and molecular descriptor analyses also substantiated their electron donating properties. Furthermore, based on the probability, a target prediction was performed for pelargonidin and pelargonidin-3-O-glucoside. Hydroxyacyl-coenzyme A dehydrogenase was chosen as an enzymatic target of interest, since the presence work focuses on glucuronidated compounds and their efficacy over diabetes. Possible interactions between these compounds and a target with nominable binding energies were also evaluated. Further, the structural stability of these two compounds were also analyzed using a molecular dynamics simulation.
Collapse
Affiliation(s)
- Rangasamy Praveena
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638401, India
| | | | - Kanakaraj Aruchamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Taehwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Veerababu Polisetti
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Correspondence: (V.P.); (S.R.); (K.A.)
| | - Subramaniyan Ramasundaram
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (V.P.); (S.R.); (K.A.)
| | - Kandasamy Anbazhakan
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam 638453, India
- Correspondence: (V.P.); (S.R.); (K.A.)
| |
Collapse
|
2
|
Patel DK. Medicinal Importance, Pharmacological Activities, and Analytical Aspects of Strictinin: A Mini-Review. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:86-94. [PMID: 35770392 DOI: 10.2174/2772434417666220628153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants and their derived products have been used in history as food and medicine. Plant materials are rich sources of fiber, minerals, vitamins, and bioactive phytochemicals, which are useful for human beings. Strictinin is an important phytoconstituent of green tea. METHODS Present work mainly focuses on the biological importance, therapeutic potential, and pharmacological activities of strictinin in medicine. Numerous scientific data have been collected from various literature databases such as Google Scholar, Science Direct, PubMed, and Scopus database in order to realize the health beneficial potential of strictinin. Pharmacological data has been collected and analyzed in the present work to find the effectiveness of strictinin against human disorders and complications. Analytical data of strictinin has been also collected and analyzed in the present work. RESULTS Scientific data analysis revealed the biological importance of strictinin in medicine. Scientific data analysis signified the therapeutic benefit of strictinin mainly due to its anticancer, antimicrobial, antibacterial, antiviral, and antioxidant activity. However, enzymatic activities, cytotoxicity, effectiveness on skin disorders, and osteogenic potential of strictinin have also been discussed. Analytical data revealed the importance of modern analytical techniques in medicine for the separation, identification, and isolation of strictinin. CONCLUSION Present work signified the biological importance and therapeutic benefits of strictinin in medicine and other allied health sectors.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| |
Collapse
|
3
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
4
|
Hwang E, Kim GW, Song KD, Lee HK, Kim SJ. The enhancing effect of Acanthopanax sessiliflorus fruit extract on the antibacterial activity of porcine alveolar 3D4/31 macrophages via NF-κB1 and lipid metabolism regulation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1776-1788. [PMID: 31010992 PMCID: PMC6817778 DOI: 10.5713/ajas.18.0874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022]
Abstract
Objective The demands for measures to improve disease resistance and productivity of livestock are increasing, as most countries prohibit the addition of antibiotics to feed. This study therefore aimed to uncover functional feed additives to help enhance livestock immunity and disease resistance, using Acanthopanax sessiliflorus fruit extract (ASF). Methods ASF was extracted with 70% EtOH, and total polyphenolic and catechin contents were measured by the Folin-Ciocalteu and vanillin assay, respectively. The 3D4/31 porcine macrophage cells (MΦ) were activated by phorbol 12-myristate 13-acetate (PMA), and cell survival and growth rate were measured with or without ASF treatment. Flow-cytometric analysis determined the lysosomal activity, reactive oxygen species levels (ROS), and cell cycle distribution. Nuclear factor kappa B (NF-κB) and superoxide dismutase (SOD) protein expression levels were quantified by western blotting and densitometry analysis. Quantitative polymerase chain reaction was applied to measure the lipid metabolism-related genes expression level. Lastly, the antibacterial activity of 3D4/31 MΦ cells was evaluated by the colony forming unit assay. Results ASF upregulated the cell viability and growth rate of 3D4/31 MΦ, with or without PMA activation. Moreover, lysosomal activity and intracellular ROS levels were increased after ASF exposure. In addition, the antioxidant enzyme SOD2 expression levels were proportionately increased with ROS levels. Both ASF and PMA treatment resulted in upregulation of NF-κB protein, tumor necrosis factor (TNF)α mRNA expression levels, lipid synthesis, and fatty acid oxidation metabolism. Interestingly, co-treatment of ASF with PMA resulted in recovery of NF-κB, TNFα, and lipid metabolism levels. Finally, ASF pretreatment enhanced the in vitro bactericidal activity of 3D4/31 MΦ against Escherichia coli. Conclusion This study provides a novel insight into the regulation of NF-κB activity and lipid metabolism in MΦ, and we anticipate that ASF has the potential to be effective as a feed additive to enhance livestock immunity.
Collapse
Affiliation(s)
- Eunmi Hwang
- Division of Cosmetics and Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, Korea
| | - Gye Won Kim
- Brewing Research Center, Academic Industry Cooperation, Hankyong National University, Anseong 17579, Korea
| | - Ki Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Sung-Jo Kim
- Division of Cosmetics and Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, Korea
| |
Collapse
|
5
|
Wang J, Pan Y, Hu J, Ma Q, Xu Y, Zhang Y, Zhang F, Liu Y. Tea polyphenols induce S phase arrest and apoptosis in gallbladder cancer cells. ACTA ACUST UNITED AC 2018. [PMID: 29513793 PMCID: PMC5856445 DOI: 10.1590/1414-431x20176891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gallbladder cancer (GBC) is the most common malignancy in the biliary tract. Without effective treatment, its prognosis is notoriously poor. Tea polyphenols (TPs) have many pharmacological and health benefits, including antioxidant, anti-inflammatory, anti-tumor, anti-thrombotic, antibacterial, and vasodilatory properties. However, the anti-cancer effect of TPs in human gallbladder cancer has not yet been determined. Cell viability and colony formation assay were used to investigate the cell growth. Cell cycle and apoptosis were evaluated by flow cytometry analysis. Western blot assay was used to detect the expression of proteins related to cell cycle and apoptosis. Human tumor xenografts were used to examine the effect of TPs on gallbladder cancer cells in vivo. TPs significantly inhibited cell growth of gallbladder cancer cell lines in a dose- and time-dependent manner. Cell cycle progression in GBC cells was blocked at the S phase by TPs. TPs also induced mitochondrial-related apoptosis in GBC cells by upregulating Bax, cleaved caspase-3, and cleaved PARP expressions and downregulating Bcl-2, cyclin A, and Cdk2 expressions. The effects of TPs on GBC were further proven in vivo in a mouse xenograft model. Our study is the first to report that TPs inhibit GBC cell growth and these compounds may have potential as novel therapeutic agents for treating gallbladder cancer.
Collapse
Affiliation(s)
- Jiaqi Wang
- High School Affiliated Fudan University, Shanghai, China
| | - Yixuan Pan
- High School Affiliated Fudan University, Shanghai, China
| | - Jiacheng Hu
- High School Affiliated Fudan University, Shanghai, China
| | - Qiang Ma
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yi Xu
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yijian Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Fei Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
6
|
Amini AM, Muzs K, Spencer JP, Yaqoob P. Pelargonidin-3-O-glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutr Res 2017; 46:88-95. [PMID: 29132841 PMCID: PMC5711348 DOI: 10.1016/j.nutres.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
This study hypothesized that the predominant strawberry anthocyanin, pelargonidin-3-O-glucoside (Pg-3-glc), and 3 of its plasma metabolites (4-hydroxybenzoic acid, protocatechuic acid, and phloroglucinaldehyde [PGA]) would affect phagocytosis, oxidative burst, and the production of selected pro- and anti-inflammatory cytokines in a whole blood culture model. For the assessment of phagocytosis and oxidative burst activity of monocytes and neutrophils, whole blood was preincubated in the presence or absence of the test compounds at concentrations up to 5 μmol/L, followed by analysis of phagocytic and oxidative burst activity using commercially available test kits. For the cytokine analysis, diluted whole blood was stimulated with lipopolysaccharide in the presence or absence of the test compounds at concentrations up to 5 μmol/L. Concentrations of selected cytokines (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, IL-8, and IL-10) were determined using a cytometric bead array kit. There were no effects of any of the test compounds on phagocytosis of opsonized or nonopsonized Escherichia coli or on oxidative burst activity. Pg-3-glc and PGA at 0.08 μmol/L increased the concentration of IL-10 (P < .01 and P < .001, respectively), but there was no effect on tumor necrosis factor-α, IL-1β, IL-6, and IL-8, and there were no effects of the other compounds. In conclusion, this study demonstrated a lack of effect of these compounds on the opsonization, engulfment, and subsequent destruction of bacteria. Pg-3-glc and PGA, at physiologically relevant concentrations, had anti-inflammatory properties; however, effects were modest, only observed at the lowest dose tested and limited to IL-10.
Collapse
Affiliation(s)
- Anna M Amini
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| | - Karolin Muzs
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| | - Jeremy Pe Spencer
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| |
Collapse
|
7
|
Selvarajan V, Bidkar AP, Shome R, Banerjee A, Chaubey N, Ghosh SS, Sanpui P. Studying in vitro phagocytosis of apoptotic cancer cells by recombinant GMCSF-treated RAW 264.7 macrophages. Int J Biol Macromol 2017; 102:1138-1145. [DOI: 10.1016/j.ijbiomac.2017.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/03/2023]
|
8
|
Huang Q, Du T, Qu QX. Tea polyphenol decreased growth and invasion in human ovarian cancer cells. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x16674480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tea polyphenols (TP) are functional substances present in tea, which is one of the most promising preventive agents for cancer. This study was carried out to analyze the effects of TP on the ovarian cancer cells and possible mechanisms involved. TP led to inhibition of cell growth in a time- and dose-dependent manner, and promoted entry into the apoptosis-phase of the cell cycle. TP also decreased the invasion of ovarian cancer cells in vitro. In addition, TP treatment upregulated the mRNA expressions rate of Bax/Bcl-2 and downregulated Cyclin D and MMP2 mRNA expressions. Taken together, our data highlight that TP could be a potential therapeutic strategy for ovarian cancer. These findings also suggested that oncogens are involved in the anti-cancer effects of TP.
Collapse
Affiliation(s)
- Qin Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Ting Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Qiu-Xia Qu
- Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| |
Collapse
|
9
|
|
10
|
Mrvová N, Škandík M, Kuniaková M, Račková L. Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochem Int 2015; 90:246-54. [PMID: 26386394 DOI: 10.1016/j.neuint.2015.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 01/16/2023]
Abstract
Chronic inflammation in brain plays a critical role in major neurodegenerative diseases such as Alzheimer's, Parkinson's disease, stroke or multiple sclerosis. Microglia, resident macrophages and intristinc components of CNS, appear to be main effectors in this pathological process. Quercetin, a naturally occurring flavonoid, was proven to downregulate inflammatory genes in microglia. Synthetically modified quercetin, 3'-O-(3-chloropivaloyl) quercetin (CPQ), is assumed to possess better biological availability and enhanced antioxidant properties. In the present study, antineuroinflammatory capability of the novel compound CPQ was assessed in BV-2 microglial cells. Our data show that treatment with CPQ attenuated the production of the inflammatory mediators, nitric oxide (NO) and tumour necrosis factor-α (TNF-α), in LPS-stimulated microglia somewhat more efficiently than did quercetin (p > 0.05 for CPQ vs. quercetin-treated group). Also, protein level of inducible NO synthase (iNOS) in LPS-activated BV-2 microglia was to some extent more effectively supressed by CPQ than by unmodified flavonoid. In consistence with the extent of their effects on pro-inflammatory markers, CPQ and quercetin showed down-regulation of NFκB activation. This quercetin analogue caused also a decline in BV-2 microglia proliferation with interfering with cell cycle progression (p < 0.001 for CPQ vs. quercetin-treated group). However, CPQ did not remarkably affect cell viability. In addition, CPQ showed a minor better suppression of PMA-induced generation of superoxide than did quercetin. Neither CPQ nor quercetin influenced phagocytosis of BV-2 cells. These results point to the therapeutic potential of 3'-O-(3-chloropivaloyl)quercetin (CPQ) as a novel antiinflammatory drug in neurodegenerative diseases, mediating favourable modulation of pro-inflammatory functions of microglia.
Collapse
Affiliation(s)
- Nataša Mrvová
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic
| | - Martin Škandík
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic
| | - Marcela Kuniaková
- Faculty of Medicine Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - Lucia Račková
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Effect on the Epigallocatechin Gallate/Epigallocatechin Ratio in a Green Tea (Camellia sinensisL.) Extract of Different Extraction Temperatures and Its Effect on IgA Production in Mice. Biosci Biotechnol Biochem 2014; 74:2501-3. [DOI: 10.1271/bbb.100498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Chen X, Li Y, Lin Q, Wang Y, Sun H, Wang J, Cui G, Cai L, Dong X. Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of Survivin. Sci Rep 2014; 4:4416. [PMID: 24646833 PMCID: PMC3960584 DOI: 10.1038/srep04416] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/21/2014] [Indexed: 11/09/2022] Open
Abstract
To study the mechanism of tea polyphenols (TP)-induced apoptosis of breast cancer cells. Proliferation of MCF-7 and SK-BR-3 cells was evaluated by MTT assays. Cellular ultrastructure was examined by electron microscopy. Apoptosis was detected by TUNEL. PCNA、 Cyclin D1、 Cyclin E and Survivin expression was measured by Western blot. Cell proliferation was significantly inhibited by TP. Spindle and round cells were loosely distributed with increased particles after TP treatment. Increased cell size, frequent nuclear atypia and a collapse of apoptosis were observed. The nucleus was pushed towards one side, while the cytoplasm was rich in free ribosome. The membrane of mitochondria was thickening, and the cell apoptotic body was observed. TP treated cells experienced significantly enhanced apoptosis compared with 5-Fu treated or control groups. The expression of survivin was downregulated by TP. To conclude, TP can inhibit cell growth and induce apoptosis through downregulating the expression of survivin in breast cancer.
Collapse
Affiliation(s)
- Xuesong Chen
- 1] Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China [2]
| | - Yu Li
- 1] Bacteriologic Laboratory, Harbin Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China [2]
| | - Qiushi Lin
- 1] Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881, USA [2]
| | - Yan Wang
- Bacteriologic Laboratory, Harbin Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China
| | - Hong Sun
- Bacteriologic Laboratory, Harbin Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China
| | - Jian Wang
- Bacteriologic Laboratory, Harbin Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China
| | - Guoquan Cui
- Bacteriologic Laboratory, Harbin Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China
| | - Li Cai
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xiaoqun Dong
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
13
|
Monobe M, Ema K, Tokuda Y, Maeda-Yamamoto M. Green tea catechin induced phagocytosis can be blocked by catalase and an inhibitor of transient receptor potential melastatin 2 (TRPM2). Cytotechnology 2013; 66:561-6. [PMID: 23896702 DOI: 10.1007/s10616-013-9618-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022] Open
Abstract
The major polyphenols in green tea, (-)-epigallocatechin and (-)-epigallocatechin gallate, have been shown to enhance the phagocytic activity of macrophage-like cells; however, the mechanism involved was not clarified. In this study, we have identified that the catechins induced phagocytosis can be blocked by catalase and an inhibitor of transient receptor potential melastatin 2.
Collapse
Affiliation(s)
- Manami Monobe
- NARO Institute of Vegetable and Tes Science, 2769 Kanaya-Shishidoi, Shimada, Shizuoka, 428-8501, Japan,
| | | | | | | |
Collapse
|
14
|
Zhang H, Shao D, Wu Y, Dai B, Cai C, Fang W, Ye B, Zhang Y, liu J, Jia X. Regulation of nodularin-induced apoptosis by epigallocatechin-3-gallate on fish lymphocytes in vitro. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1085-1093. [PMID: 23403155 DOI: 10.1016/j.fsi.2013.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/10/2013] [Accepted: 01/20/2013] [Indexed: 06/01/2023]
Abstract
Nodularin is one of the most conspicuous and widespread pollutants that elicit water ecological hazards to fish, causing serious damage on the immune system and physiological functions. Nodularin can cause oxidative stress-induced apoptosis on fish lymphocytes. The regulatory effects of epigallocatechin-3-gallate (EGCG) at 10, 100, and 1000 μg/L levels on the antioxidant defense system and apoptosis of Carassius auratus lymphocytes exposed to a high dose of nodularin (100 μg/L) were quantified in vitro. EGCG reduced nodularin-induced oxidative damage on fish immune cells. This compound significantly increased the activities of superoxide dismutase and catalase and the level of glutathione but decreased the levels of intracellular reactive oxygen species and malondialdehyde. Flow cytometry results showed that the percentages of apoptotic cells after treatment with 10, 100, and 1000 μg/L EGCG for 12 h reached 27.9%, 19.1%, and 13.7%, respectively. By contrast, the nodularin alone-induced group showed a high percentage of apoptosis (44.2%). Western blot analysis showed the increased expression of bcl-2 and the decreased expression of bax and caspase-3 in EGCG-treated fish lymphocytes. EGCG also inhibited the potential collapse of the mitochondrial membrane. Overall, EGCG can inhibit nodularin-induced apoptosis and protect the normal immunity of fish by regulating bax/bcl-2 and blocking the downstream of mitochondrial apoptosis pathway with increased intracellular antioxidant enzyme activity.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|