1
|
Chen D, Yang L, Yang F, Pei Q, Lu L, Huang X, Ouyang P, Geng Y, Li Z, Zhang X, Wang J, Chen D. Salvia miltiorrhiza polysaccharide activated macrophages and improved the disease resistance of sturgeon against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 127:594-603. [PMID: 35803508 DOI: 10.1016/j.fsi.2022.06.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The use of plant polysaccharides in aquaculture is recognized as a healthy strategy to enhance disease resistance and reduce medication use. Salvia miltiorrhiza polysaccharide (SMP) can regulate the immune function of higher vertebrates. However, the effects of SMP on fish have not been fully investigated. In this study, the ability of SMP to activate the macrophages of Siberian sturgeon (Acipenser bareii) was analyzed in vitro. The effects of SMP on immune cell activity of hybrid sturgeon (A. baerii ♀ × Acipenser schrenckii ♂) and resistance to Aeromonas hydrophila were further detected in vivo. The in vitro results showed that SMP up-regulated phagocytosis, respiratory burst, inducible nitric oxide synthase activity, nitric oxide (NO) concentration, and cytokine mRNA expression of macrophages. The in vivo results showed that dietary supplementation with SMP enhanced the respiratory burst of macrophages and proliferative activity of lymphocytes. Dietary supplementation with SMP increased serum concentrations of lysozyme and NO, and improved the survival rate of hybrid sturgeon challenged with A. hydrophila. Collectively, these results suggest that SMP can improve the immune function and disease resistance of sturgeon. This study provides a theoretical basis for the application of SMP for healthy farming of sturgeon.
Collapse
Affiliation(s)
- Daiyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Lei Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Fei Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Qiaolin Pei
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China
| | - Jun Wang
- Neijiang Normal University, Neijiang, 641000, Sichuan, PR China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, PR China.
| |
Collapse
|
2
|
Comparison of Phenolic Contents and Scavenging Activities of Miang Extracts Derived from Filamentous and Non-Filamentous Fungi-Based Fermentation Processes. Antioxidants (Basel) 2021; 10:antiox10071144. [PMID: 34356376 PMCID: PMC8301141 DOI: 10.3390/antiox10071144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The study investigated the impact of the fermentation process on the phenolic contents and antioxidant and anti-inflammatory activities in extracts of Miang, an ethnic fermented tea product of northern Thailand. The acetone (80%) extraction of Miang samples fermented by a non-filamentous fungi-based process (NFP) and filamentous fungi-based process (FFP) had elevated levels of total polyphenols, total tannins, and condensed tannins compared to young and mature tea leaves. The antioxidant studies also showed better the half-maximal inhibitory concentration (IC50) values for fermented leaves in both 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity assays as well as improved ferric reducing antioxidant power (FRAP) compared to young and mature tea leaves. Extracts of NFP and FFP samples at concentrations of 50 and 100 ppm showed better protective effects against hydrogen peroxide (H2O2)-induced intracellular reactive oxygen species (ROS) production in HT-29 colorectal cells without exerting cytotoxicity. Additionally, lipopolysaccharide (LPS)-induced production of nitric oxide (a proinflammatory mediator as well as a reactive nitrogen species) was also inhibited by these fermented Miang extracts with an IC50 values of 17.15 μg/mL (NFP), 20.17 μg/mL (FFP), 33.96 μg/mL (young tea leaves), and 31.33 μg/mL (mature tea leaves). Therefore, both NFP-Miang and FFP-Miang showed the potential to be targeted as natural bioactive functional ingredients with preventive properties against free radical and inflammatory-mediated diseases.
Collapse
|
3
|
Sergi CM. Epigallocatechin-3-Gallate Toxicity in Children: A Potential and Current Toxicological Event in the Differential Diagnosis With Virus-Triggered Fulminant Hepatic Failure. Front Pharmacol 2020; 10:1563. [PMID: 32063842 PMCID: PMC7000546 DOI: 10.3389/fphar.2019.01563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The use of nutraceuticals is considerably increasing worldwide with a demand for organic and clean foods in the last two decades, which is probably incomparable with other periods of our civilization. The consistent application of nutraceuticals and so-called "superfood" may have remarkable effects on the prevention of several chronic diseases, including cancer. Moreover, the increased rate of overweight and obesity in Western countries does not spare childhood and youth, and the number of parents using natural remedies for preventing pediatric illness is vastly increasing worldwide. However, the overwhelming effects on diseases often overshadow the side effects of such nutrition, particularly in societies without millennial experience with botanicals and natural elements. Thus, the final result may be disastrous for some individuals. The liver is the most important and conspicuous target organ of numerous molecular compounds, and the cell damage is particularly striking on the infantile and pediatric liver due to the immaturity of the hepatocytes. Here, we target some generic data on fulminant hepatic failure, the benefits, and toxicity of epigallocatechin-3-gallate, which is one of the major components of green tea, and the histopathology of the "green-tea"-associated liver disease.
Collapse
Affiliation(s)
- Consolato M. Sergi
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, China
- Stollery Children's Hospital, University Alberta Hospital, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|