1
|
Veerapagu M, Jeya K, Sankara Narayanan A. Gastrointestinal microbiome engineering in pig. HUMAN AND ANIMAL MICROBIOME ENGINEERING 2025:265-290. [DOI: 10.1016/b978-0-443-22348-8.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Van Bockstal L, Prims S, Van Cruchten S, Ayuso M, Che L, Van Ginneken C. Cell migration and proliferation capacity of IPEC-J2 cells after short-chain fatty acid exposure. PLoS One 2024; 19:e0309742. [PMID: 39213333 PMCID: PMC11364292 DOI: 10.1371/journal.pone.0309742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Novel antimicrobial strategies are necessary to tackle using antibiotics during the suckling and weaning period of piglets, often characterized by E. coli-induced diarrhea. In the last decades, acetate, propionate, and butyrate, all short-chain fatty acids (SCFAs), have been proposed as an alternative to antibiotics. SCFAs are instrumental in promoting the proliferation of enterocytes, preserving intestinal integrity, and modulating the microbial community by suppressing the growth of pathogenic bacteria in pigs. The effect of individual SCFAs (proprionate, acetate and butyrate) on the regenerative capacity of intestinal cells was investigated via an optimized wound-healing assay in IPEC-J2 cells, a porcine jejunal epithelial cell line. IPEC-J2 cells proved a good model as they express the free fatty acid receptor 2 (FFAR2), an important SCFA receptor with a high affinity for proprionate. Our study demonstrated that propionate (p = 0.005) and acetate (p = 0.037) were more effective in closing the wound than butyrate (p = 0.190). This holds promise in using SCFA's per os as an alternative to antibiotics.
Collapse
Affiliation(s)
- Lieselotte Van Bockstal
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sara Prims
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Miriam Ayuso
- Biogenesis Bagó, Development of Biotech Products, Madrid, Spain
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu City, Sichuan Province, China
| | - Chris Van Ginneken
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
3
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
4
|
Yang M, Zhang J, Yan H, Pan Y, Zhou J, Zhong H, Wang J, Cai H, Feng F, Zhao M. A comprehensive review of medium chain monoglycerides on metabolic pathways, nutritional and functional properties, nanotechnology formulations and applications in food system. Crit Rev Food Sci Nutr 2024; 65:2943-2964. [PMID: 38779723 DOI: 10.1080/10408398.2024.2353403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Guangdong Qingyunshan Pharmaceutical Co., Ltd, Shaoguan, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. An Update on the Role and Potential Molecules in Relation to Ruminococcus gnavus in Inflammatory Bowel Disease, Obesity and Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1235-1248. [PMID: 38496006 PMCID: PMC10942254 DOI: 10.2147/dmso.s456173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Ruminococcus gnavus (R. gnavus) is a gram-positive anaerobe commonly resides in the human gut microbiota. The advent of metagenomics has linked R. gnavus with various diseases, including inflammatory bowel disease (IBD), obesity, and diabetes mellitus (DM), which has become a growing area of investigation. The initial focus of research primarily centered on assessing the abundance of R. gnavus and its potential association with disease presentation, taking into account variations in sample size, sequencing and analysis methods. However, recent investigations have shifted towards elucidating the underlying mechanistic pathways through which R. gnavus may contribute to disease manifestation. In this comprehensive review, we aim to provide an updated synthesis of the current literature on R. gnavus in the context of IBD, obesity, and DM. We critically analyze relevant studies and summarize the potential molecular mediators implicated in the association between R. gnavus and these diseases. Across numerous studies, various molecules such as methylation-controlled J (MCJ), glucopolysaccharides, ursodeoxycholic acid (UDCA), interleukin(IL)-10, IL-17, and capric acid have been proposed as potential contributors to the link between R. gnavus and IBD. Similarly, in the realm of obesity, molecules such as hydrogen peroxide, butyrate, and UDCA have been suggested as potential mediators, while glycine ursodeoxycholic acid (GUDCA) has been implicated in the connection between R. gnavus and DM. Furthermore, it is imperative to emphasize the necessity for additional studies to evaluate the potential efficacy of targeting pathways associated with R. gnavus as a viable strategy for managing these diseases. These findings have significantly expanded our understanding of the functional role of R. gnavus in the context of IBD, obesity, and DM. This review aims to offer updated insights into the role and potential mechanisms of R. gnavus, as well as potential strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
6
|
Zhao H, Tian M, Xiong L, Lin T, Zhang S, Yue X, Liu X, Chen F, Zhang S, Guan W. Maternal supplementation with glycerol monolaurate improves the intestinal health of suckling piglets by inhibiting the NF-κB/MAPK pathways and improving oxidative stability. Food Funct 2023; 14:3290-3303. [PMID: 36938595 DOI: 10.1039/d3fo00068k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Glycerol monolaurate (GML) is a food safe emulsifier and a kind of MCFA monoglyceride that has been proven to confer positive benefits in improving animal health, production and feed digestibility as a feed additive. This study aims to evaluate whether supplementation of a sow diet with GML could affect the intestinal barrier function and antioxidant status of newborn piglets and to explore its regulatory mechanism. A total of 80 multiparous sows were divided into two groups, which were fed a basal diet or a basal diet supplemented with 0.1% GML. The results indicated that maternal supplementation with GML significantly increased fat, lactose and protein in sow colostrum, as well as fat and protein in sow 14-day milk (P < 0.05). The results showed that GML significantly reduced the concentrations of IL-12 in the duodenum, TNF-α, IL-1β and IL-12 in the jejunum, and IL-1β in the ileum of piglets (P < 0.05). Higher concentrations of T-AOC, T-SOD, GSH and GSH-Px and lower MDA in the intestine were observed in the GML group than in the control group. Correspondingly, the villi height, crypt depth and the ratio of villi height to crypt depth (V/C) in the jejunum and the V/C in the ileum in the GML group were significantly higher than those in the control group (P < 0.05). Moreover, the GML group displayed significantly increased protein abundance of zonula occludens (ZO)-1, occludin, and claudin-1 in the small intestine (P < 0.05), mRNA expression of mucins (MUCs) in the small intestine (MUC-1, MUC-3 and MUC-4), and mRNA expression of porcine beta defensins (pBDs) in the duodenum (pBD1 and pBD2), jejunum (pBD1, pBD2 and pBD129) (P < 0.05), and ileum (pBD2, pBD3 and pBD114) (P < 0.05). Further research showed that GML significantly reduced the phosphorylation of the NF-κB/MAPK pathways in the small intestine (P < 0.05). In addition, the results of 16S rDNA sequencing showed that maternal supplementation with GML altered the colonic microbiotic structure of piglets, and reduced the relative abundance of Escherichia shigella. In summary, a sow diet supplemented with GML enhanced the offspring's intestinal oxidative stability and barrier function and attenuated the offspring's intestinal inflammatory response, possibly by suppressing the activation of the NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Saleri R, Borghetti P, Ravanetti F, Cavalli V, Ferrari L, De Angelis E, Andrani M, Martelli P. Effects of different short-chain fatty acids (SCFA) on gene expression of proteins involved in barrier function in IPEC-J2. Porcine Health Manag 2022; 8:21. [PMID: 35590351 PMCID: PMC9118747 DOI: 10.1186/s40813-022-00264-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gut microbial anaerobic fermentation produces short-chain fatty acids (SCFA), which are important substrates for energy metabolism and anabolic processes in mammals. SCFA can regulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction protein (TJp) functions, which prevent the passage of antigens through the paracellular space. The aim of this study was to evaluate the effect of in vitro supplementation with SCFA (acetate, propionate, butyrate, and lactate) at different concentrations on viability, nitric oxide (NO) release (oxidative stress parameter) in cell culture supernatants, and gene expression of TJp (occludin, zonula occludens-1, and claudin-4) and pro-inflammatory pathway-related mediators (β-defensin 1, TNF-α, and NF-κB) in intestinal porcine epithelial cell line J2 (IPEC-J2). Results The SCFA tested showed significant effects on IPEC-J2, which proved to be dependent on the type and specific concentration of the fatty acid. Acetate stimulated cell viability and NO production in a dose-dependent manner (P < 0.05), and specifically, 5 mM acetate activated the barrier response through claudin-4, and immunity through β-defensin 1 (P < 0.05). The same effect on these parameters was shown by propionate supplementation, especially at 1 mM (P < 0.05). Contrarily, lactate and butyrate showed different effects compared to acetate and propionate, as they did not stimulate an increase of cell viability and regulated barrier integrity through zonula occludens-1 and occludin, especially at 30 mM and 0.5 mM, respectively (P < 0.05). Upon supplementation with SCFA, the increase of NO release at low levels proved not to have detrimental effects on IPEC-J2 proliferation/survival, and in the case of acetate and propionate, such levels were associated with beneficial effects. Furthermore, the results showed that SCFA supplementation induced β-defensin 1 (P < 0.05) that, in turn, may have been involved in the inhibition of TNF-α and NF-κB gene expression (P < 0.05). Conclusions The present study demonstrates that the supplementation with specific SCFA in IPEC-J2 can significantly modulate the process of barrier protection, and that particularly acetate and propionate sustain cell viability, low oxidative stress activity and intestinal barrier function.
Collapse
Affiliation(s)
- Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
8
|
Ullah S, Zhang J, Xu B, Tegomo AF, Sagada G, Zheng L, Wang L, Shao Q. Effect of dietary supplementation of lauric acid on growth performance, antioxidative capacity, intestinal development and gut microbiota on black sea bream (Acanthopagrus schlegelii). PLoS One 2022; 17:e0262427. [PMID: 35025934 PMCID: PMC8758039 DOI: 10.1371/journal.pone.0262427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023] Open
Abstract
A feeding trial of eight weeks was conducted to examine the influence of food supplementation with lauric acid (LA) on Acanthopagrus schlegelii (juvenile black sea bream). A 24 percent fish meal baseline diet was created, while the other two diets were generated with dietary supplementation of graded points of LA at 0.1 percent and 0.8 percent, respectively. Each diet was given a triplicate tank with 20 fish weighing 6.22 ± 0.19 g. In comparison with the control group, the weight gain rate, growth rate, as well as feed efficiency of fish fed of 0.1 percent diet of LA were considerably (P < 0.05) greater. The total body and dorsal muscle proximate compositions did not change significantly between groups (P > 0.05). Triglyceride (TG) content was considerably (P < 0.05) greater in the LA-supplemented meals eating group in comparison with the control group. In the group eating LA-supplemented meals, the height of villus and the number of goblet cells/villus were considerably (P < 0.05) larger. The microbial makeup of the gut was also studied. The differences in phyla, class, and family level were not statistically significant (P > 0.05). Firmicutes in the phylum, Betaproteobacteri, Gammaproteobacteria, and Clostridia in the class, and Clostridiaceae in the family were all substantially increased with higher levels of LA supplementation (P < 0.05). According to the findings of this study, an LA-supplemented diet improves fish development, antioxidative capability, gut microbiota and intestinal health.
Collapse
Affiliation(s)
- Sami Ullah
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bingying Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | - Gladstone Sagada
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lu Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lei Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingjun Shao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ocean Academy, Zhejiang University, Zhoushan, China
- * E-mail:
| |
Collapse
|
9
|
Zhao J, Hu J, Ma X. Sodium Decanoate Improves Intestinal Epithelial Barrier and Antioxidation via Activating G Protein-Coupled Receptor-43. Nutrients 2021; 13:nu13082756. [PMID: 34444916 PMCID: PMC8401944 DOI: 10.3390/nu13082756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
The study was conducted to explore actions of decanoic acid on regulating intestinal barrier and antioxidant functions in intestinal epithelium cells isolated from porcine jejunum (IPEC-J2) and C57/BL6 mice models. In vitro and vivo assays, mice and IPEC-J2 cells treated by H2O2 were disposed of sodium decanoate and sodium butyrate to determine intestinal barrier and antioxidant functions of the host. Results showed that sodium decanoate upregulated expression of tight junction proteins and improved antioxidant capacity in both IPEC-J2 cells treated by H2O2 and mice models (p < 0.05). Sodium decanoate increased weight gain and ileal villus height of mice compared with control and sodium butyrate treatments (p < 0.05). Sodium decanoate increased α-diversity of ileal microbiota, volatile fatty acids concentration, and G protein-coupled receptor-43 (GPR-43) expression in the ileum and colon of mice (p < 0.05). In conclusion, sodium decanoate improved antioxidant capacity, intestinal morphology, and gut physical barrier of intestinal epithelial cells, resulting in an increase growth performance of mice, which is mediated through activating GPR-43 signaling.
Collapse
Affiliation(s)
| | | | - Xi Ma
- Correspondence: ; Tel.: +86-10-62733588
| |
Collapse
|
10
|
Jia M, Zhang Y, Gao Y, Ma X. Effects of Medium Chain Fatty Acids on Intestinal Health of Monogastric Animals. Curr Protein Pept Sci 2021; 21:777-784. [PMID: 31889482 DOI: 10.2174/1389203721666191231145901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
Medium-chain fatty acids (MCFAs) are the main form of Medium Chain Triglycerides (MCTs) utilized by monogastric animals. MCFAs can be directly absorbed and supply rapid energy to promote the renewal and repair of intestinal epithelial cells, maintain the integrity of intestinal mucosal barrier function, and reduce inflammation and stress. In our review, we pay more attention to the role of MCFAs on intestinal microbiota and mucosa immunity to explore MCFA's positive effect. It was found that MCFAs and their esterified forms can decrease pathogens while increasing probiotics. In addition, being recognized via specific receptors, MCFAs are capable of alleviating inflammation to a certain extent by regulating inflammation and immune-related pathways. MCFAs may also have a certain value to relieve intestinal allergy and inflammatory bowel disease (IBD). Unknown mechanism of various MCFA characteristics still causes dilemmas in the application, thus MCFAs are used generally in limited dosages and combined with short-chain organic acids (SOAs) to attain ideal results. We hope that further studies will provide guidance for the practical use of MCFAs in animal feed.
Collapse
Affiliation(s)
- Manyi Jia
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yuqi Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
11
|
Guo X, Chen J, Yang J, He Q, Luo B, Lu Y, Zou T, Wang Z, You J. Seaweed polysaccharide mitigates intestinal barrier dysfunction induced by enterotoxigenic Escherichia coli through NF-κB pathway suppression in porcine intestinal epithelial cells. J Anim Physiol Anim Nutr (Berl) 2021; 105:1063-1074. [PMID: 33817860 DOI: 10.1111/jpn.13540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the protective effects and underlying mechanism of seaweed polysaccharide (SWP) on intestinal epithelial barrier dysfunction induced by E. coli in an IPEC-J2 model. A preliminary study was done to screen optimum SWP concentrations by cell viability, cytotoxicity, apoptosis and proliferation evaluation. The regular study was conducted to evaluate the protective effects of SWP against E. coli challenge via the analysis of transepithelial electrical resistance (TEER), tight junction proteins, NF-κB signalling pathway, proinflammatory cytokines and the E. coli adhesion and invasion. Our results show that 4 h E. coli challenge down-regulated tight junction proteins expression, decreased TEER, activated NF-κB signalling pathway and increased proinflammatory response, which indicates that the E. coli infection model was well-established. Pre-treatment with 240 μg/ml SWP for 24 h alleviated the 4 h E. coli -induced intestinal epithelial barrier dysfunction, as evidenced by the up-regulated expression of Occludin, Claudin-1 and ZO-1 at both mRNA and protein level and the increased TEER of IPEC-J2 cells. Pre-incubation with 240 μg/ml SWP for 24 h inhibited the activation of the NF-κB signalling pathway by 4 h E. coli challenge, including the decreased mRNA expression of TLR-4, MyD88, IκBα, p-65, as well as the reduced ratio of protein expression of p-p65/p65. Also, pre-treatment with 240 μg/ml SWP for 24 h decreased proinflammatory response (IL-6 and TNF-α) induced by 4 h E. coli challenge and decreased the E. coli adhesion and invasion. In conclusion, SWP mitigated intestinal barrier dysfunction caused by E. coli through NF-κB pathway in IPEC-J2 cells and 240 μg/ml SWP exhibited better effect. Our results also provide a fundamental basis for SWP in reducing post-weaning diarrhoea of weaned piglets, especially under E. coli -infected or in-feed antibiotic-free conditions.
Collapse
Affiliation(s)
- Xiaobo Guo
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China.,Gannan Academy of Sciences, Ganzhou, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Jin Yang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Qin He
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Bowen Luo
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Yafei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
Li Y, Li C, Feng F, Wei W, Zhang H. Synthesis of medium and long-chain triacylglycerols by enzymatic acidolysis of algal oil and lauric acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Soliman S, Faris ME, Ratemi Z, Halwani R. Switching Host Metabolism as an Approach to Dampen SARS-CoV-2 Infection. ANNALS OF NUTRITION & METABOLISM 2020; 76:297-303. [PMID: 32950986 PMCID: PMC7573915 DOI: 10.1159/000510508] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND COVID-19 pandemic, a global threat, adversely affects all daily lives, altered governmental plans around the world, and urges the development of therapeutics and prophylactics to avoid the expansion of the viral infection. With the recent gradual opening after long lockdown, several recommendations have been placed, with dietary modification as one of the most important approaches that have been appraised. SUMMARY Here, we are reviewing how changing the host metabolism, particularly changing the host metabolic state from the carbohydrate-dependent glycolytic state to a fat-dependent ketogenic state, may affect viral replication. Furthermore, the impact of intermittent fasting (IF) in triggering metabolic switch along with the impact of supplementation with medium-chain triglycerides (MCTs) such as lauric acid in repressing the envelope formation and viral replication is also addressed. The amalgamation of IF and a ketogenic diet rich in MCTs is thought to work as a prophylactic measure for normal people and adjunct therapy for infected persons. Key Message: A diet regimen of ketogenic breakfast along with supplementation with two doses of lauric acid-rich MCTs at breakfast and lunch times, followed by 8-12-h IF and a dinner rich with fruits and vegetables, could be a potential prophylactic strategy and adjuvant therapy to combat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Sameh Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - MoezAlIslam E Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates,
| | - Zakaria Ratemi
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Rabih Halwani
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Zheng Y, Chen L, Zhu Z, Li D, Zhou P. Multigene engineering of medium-chain fatty acid biosynthesis in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. 3 Biotech 2020; 10:340. [PMID: 32714735 DOI: 10.1007/s13205-020-02340-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) are an ideal feedstock for biodiesel and a range of oleochemical products. In this study, different combinations of CnFATB3, CnLPAAT-B and CnKASI from coconut (Cocos nucifera L.) were coexpressed in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. Transgenic lines expressing different combinations of these genes were designated FL (FatB3 + LPAAT-B), FK (FatB3 + KASI) and FLK (FatB3 + LPAAT-B + KASI). The homozygous seeds of transgenic Arabidopsis thaliana expressing high levels of these genes were screened, and their fatty acid composition and lipid contents were determined. Compared with its content in wild-type A. thaliana, the lauric acid (C12:0) content was significantly increased by at least 395%, 134% and 124% in FLK, FL and FK seeds, respectively. Meanwhile, the myristic acid (C14:0) content was significantly increased by at least 383%, 106% and 102% in FL, FLK and FK seeds, respectively, compared to its level in wild-type seeds. Therefore, the FLK plants exhibited the best effects to increase the level of C12:0, and FL expressed the optimal combination of genes to increase the level of 14:0 MCFA.
Collapse
Affiliation(s)
- Yusheng Zheng
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Lizhi Chen
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Zhiyong Zhu
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Dongdong Li
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Peng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
15
|
Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol 2020; 11:44. [PMID: 32337029 PMCID: PMC7178611 DOI: 10.1186/s40104-020-00446-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ongoing challenges in the swine industry, such as reduced access to antibiotics and virus outbreaks (e.g., porcine epidemic diarrhea virus, African swine fever virus), have prompted calls for innovative feed additives to support pig production. Medium-chain fatty acids (MCFAs) and monoglycerides have emerged as a potential option due to key molecular features and versatile functions, including inhibitory activity against viral and bacterial pathogens. In this review, we summarize recent studies examining the potential of MCFAs and monoglycerides as feed additives to improve pig gut health and to mitigate feed pathogens. The molecular properties and biological functions of MCFAs and monoglycerides are first introduced along with an overview of intervention needs at different stages of pig production. The latest progress in testing MCFAs and monoglycerides as feed additives in pig diets is then presented, and their effects on a wide range of production issues, such as growth performance, pathogenic infections, and gut health, are covered. The utilization of MCFAs and monoglycerides together with other feed additives such as organic acids and probiotics is also described, along with advances in molecular encapsulation and delivery strategies. Finally, we discuss how MCFAs and monoglycerides demonstrate potential for feed pathogen mitigation to curb disease transmission. Looking forward, we envision that MCFAs and monoglycerides may become an important class of feed additives in pig production for gut health improvement and feed pathogen mitigation.
Collapse
Affiliation(s)
- Joshua A Jackman
- 1School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - R Dean Boyd
- Hanor Company, Franklin, KY 42134 USA.,3North Carolina State University, Raleigh, NC 27695 USA
| | - Charles C Elrod
- Natural Biologics Inc., Newfield, NY 14867 USA.,5Department of Animal Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
16
|
Porcine Colostrum Protects the IPEC-J2 Cells and Piglet Colon Epithelium against Clostridioides (syn. Clostridium) difficile Toxin-Induced Effects. Microorganisms 2020; 8:microorganisms8010142. [PMID: 31968636 PMCID: PMC7022787 DOI: 10.3390/microorganisms8010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile toxins are one of the main causative agents for the clinical symptoms observed during C. difficile infection in piglets. Porcine milk has been shown to strengthen the epithelial barrier function in the piglet’s intestine and may have the potential to neutralise clostridial toxins. We hypothesised that porcine colostrum exerts protective effects against those toxins in the IPEC-J2 cells and in the colon epithelium of healthy piglets. The IPEC-J2 cells were treated with either the toxins or porcine colostrum or their combination. Analyses included measurement of trans-epithelial electrical resistance (TEER), cell viability using propidium iodide by flow cytometry, gene expression of tight junction (TJ) proteins and immune markers, immunofluorescence (IF) histology of the cytoskeleton and a TJ protein assessment. Colon tissue explants from one- and two-week-old suckling piglets and from five-week-old weaned piglets were treated with C. difficile toxins in Ussing chamber assays to assess the permeability to macromolecules (FITC-dextran, HRP), followed by analysis of gene expression of TJ proteins and immune markers. Toxins decreased viability and integrity of IPEC-J2 cells in a time-dependent manner. Porcine colostrum exerted a protective effect against toxins as indicated by TEER and IF in IPEC-J2 cells. Toxins tended to increase paracellular permeability to macromolecules in colon tissues of two-week-old piglets and downregulated gene expression of occludin in colon tissues of five-week-old piglets (p = 0.05). Porcine milk including colostrum, besides other maternal factors, may be one of the important determinants of early immune programming towards protection from C. difficile infections in the offspring.
Collapse
|
17
|
López-Colom P, Castillejos L, Rodríguez-Sorrento A, Puyalto M, Mallo JJ, Martín-Orúe SM. Efficacy of medium-chain fatty acid salts distilled from coconut oil against two enteric pathogen challenges in weanling piglets. J Anim Sci Biotechnol 2019; 10:89. [PMID: 31728192 PMCID: PMC6842466 DOI: 10.1186/s40104-019-0393-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The search for alternatives to antibiotics in pig production has increased the interest in natural resources with antimicrobial properties, such as medium-chain fatty acids (MCFA) as in-feed additives. This study evaluated the potential of a novel blend of MCFA salts (DIC) from distilled coconut oil with a lauric acid content to reduce enteropathogens and control intestinal diseases around weaning. Two experimental disease models were implemented in early-weaned piglets, consisting of two oral challenges: Salmonella Typhimurium (1.2 × 108 CFU) or enterotoxigenic Escherichia coli (ETEC) F4 (1.5 × 109 CFU). The parameters assessed were: animal performance, clinical signs, pathogen excretion, intestinal fermentation, immune-inflammatory response, and intestinal morphology. RESULTS The Salmonella challenge promoted an acute course of diarrhea, with most of the parameters responding to the challenge, whereas the ETEC F4 challenge promoted a mild clinical course. A consistent antipathogenic effect of DIC was observed in both trials in the hindgut, with reductions in Salmonella spp. plate counts in the cecum (P = 0.03) on d 8 post-inoculation (PI) (Salmonella trial), and of enterobacteria and total coliform counts in the ileum and colon (P < 0.10) on d 8 PI (ETEC F4 trial). When analyzing the entire colonic microbiota (16S rRNA gene sequencing), this additive tended (P = 0.13) to reduce the Firmicutes/Bacteroidetes ratio and enriched Fibrobacteres after the Salmonella challenge. In the ETEC F4 challenge, DIC prompted structural changes in the ecosystem with increases in Dialister, and a trend (P = 0.14) to increase the Veillonellaceae family. Other parameters such as the intestinal fermentation products or serum pro-inflammatory mediators were not modified by DIC supplementation, nor were the histological parameters. Only the intraepithelial lymphocyte (IEL) counts were lowered by DIC in animals challenged with Salmonella (P = 0.07). With ETEC F4, the IEL counts were higher with DIC on d 8 PI (P = 0.08). CONCLUSIONS This study confirms the potential activity of this MCFA salts mixture to reduce intestinal colonization by opportunistic pathogens such as Salmonella or E. coli and its ability to modulate colonic microbiota. These changes could explain to some extent the local immune cell response at the ileal level.
Collapse
Affiliation(s)
- Paola López-Colom
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Agustina Rodríguez-Sorrento
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | - Susana María Martín-Orúe
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
18
|
Caprate Modulates Intestinal Barrier Function in Porcine Peyer's Patch Follicle-Associated Epithelium. Int J Mol Sci 2019; 20:ijms20061418. [PMID: 30897851 PMCID: PMC6471651 DOI: 10.3390/ijms20061418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Many food components influence intestinal epithelial barrier properties and might therefore also affect susceptibility to the development of food allergies. Such allergies are triggered by increased antibody production initiated in Peyer’s patches (PP). Usually, the presentation of antigens in the lumen of the gut to the immune cells of the PP is strongly regulated by the follicle-associated epithelium (FAE) that covers the PP. As the food component caprate has been shown to impede barrier properties in villous epithelium, we hypothesized that caprate also affects the barrier function of the PP FAE, thereby possibly contributing a risk factor for the development of food allergies. Methods: In this study, we have focused on the effects of caprate on the barrier function of PP, employing in vitro and ex vivo experimental setups to investigate functional and molecular barrier properties. Incubation with caprate induced an increase of transepithelial resistance, and a marked increase of permeability for the paracellular marker fluorescein in porcine PP to 180% of control values. These effects are in accordance with changes in the expression levels of the barrier-forming tight junction proteins tricellulin and claudin-5. Conclusions: This barrier-affecting mechanism could be involved in the initial steps of a food allergy, since it might trigger unregulated contact of the gut lumen with antigens.
Collapse
|
19
|
Keimer B, Pieper R, Simon A, Zentek J. Effect of time and dietary supplementation with processed yeasts (Kluyveromyces fragilis) on immunological parameters in weaned piglets. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Meng Y, Zhang J, Zhang F, Ai W, Zhu X, Shu G, Wang L, Gao P, Xi Q, Zhang Y, Liang X, Jiang Q, Wang S. Lauric Acid Stimulates Mammary Gland Development of Pubertal Mice through Activation of GPR84 and PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:95-103. [PMID: 27978622 DOI: 10.1021/acs.jafc.6b04878] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It has been demonstrated that dietary fat affects pubertal mammary gland development. However, the role of lauric acid (LA) in this process remains unclear. Thus, this study aimed to investigate the effects of LA on mammary gland development in pubertal mice and to explore the underlying mechanism. In vitro, 100 μM LA significantly promoted proliferation of mouse mammary epithelial cell line HC11 by regulating expression of proliferative markers (cyclin D1/3, p21, PCNA). Meanwhile, LA activated the G protein-coupled receptor 84 (GPR84) and PI3K/Akt signaling pathway. In agreement, dietary 1% LA enhanced mammary duct development, increased the expression of GPR84 and cyclin D1, and activated PI3K/Akt in mammary gland of pubertal mice. Furthermore, knockdown of GPR84 or inhibition of PI3K/Akt totally abolished the promotion of HC11 proliferation induced by LA. These results showed that LA stimulated mammary gland development of pubertal mice through activation of GPR84 and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yingying Meng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Jing Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Wei Ai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University , Nanning 530004, P. R. China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| |
Collapse
|