1
|
Du X, Zheng J, Lu X, Zhang Y. A Truncated Mutation of TP53 Promotes Chemoresistance in Tongue Squamous Cell Carcinoma. Int J Mol Sci 2025; 26:2353. [PMID: 40076972 PMCID: PMC11900931 DOI: 10.3390/ijms26052353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Tongue squamous cell carcinoma (TSCC), a subtype of head and neck squamous cell carcinoma, is characterized by frequent chemoresistance. Genetic mutations commonly observed in TSCC play a critical role in malignant progression; thus, elucidating their functional significance is essential for developing effective treatment strategies. To more accurately investigate the relationship between mutations and chemoresistance, we established low-passage TSCC cells, CTSC-1, obtained from a chemoresistant patient, and CTSC-2, from a treatment-naïve patient. Sanger sequencing revealed a specific TP53 mutation (Q331*) in CTSC-1, leading to the loss of the tetramerization and C-terminal regulatory domains. Notably, CTSC-1 cells harboring TP53-Q331* and CTSC-2 cells with TP53 knockout that have been engineered to ectopically express TP53-Q331* exhibit enhanced chemoresistance and increased cancer stem cell-like properties. Mechanistically, TP53-Q331* upregulates the expression of inhibitor of DNA binding 2 (ID2), which is crucial for maintaining the stemness of TSCC cells. Subsequently, ID2 activates the expression of nucleotide excision repair (NER) pathway-related genes ERCC4 and ERCC8, thereby enhancing the chemoresistance in TSCC. In conclusion, our study demonstrates that the TP53-Q331* mutation enhances TSCC chemoresistance through an ID2-mediated NER pathway, providing a potential prognostic marker and therapeutic target for TSCC chemotherapy resistance.
Collapse
Affiliation(s)
| | | | | | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.D.); (J.Z.); (X.L.)
| |
Collapse
|
2
|
Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Kumsri N, Arpornsuwan T. Secretomic changes of amyloid beta peptides on Alzheimer's disease related proteins in differentiated human SH-SY5Y neuroblastoma cells. PeerJ 2024; 12:e17732. [PMID: 39035166 PMCID: PMC11260076 DOI: 10.7717/peerj.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes physical damage to neuronal connections, leading to brain atrophy. This disruption of synaptic connections results in mild to severe cognitive impairments. Unfortunately, no effective treatment is currently known to prevent or reverse the symptoms of AD. The aim of this study was to investigate the effects of three synthetic peptides, i.e., KLVFF, RGKLVFFGR and RIIGL, on an AD in vitro model represented by differentiated SH-SY5Y neuroblastoma cells exposed to retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). The results demonstrated that RIIGL peptide had the least significant cytotoxic activity to normal SH-SY5Y while exerting high cytotoxicity against the differentiated cells. The mechanism of RIIGL peptide in the differentiated SH-SY5Y was investigated based on changes in secretory proteins compared to another two peptides. A total of 380 proteins were identified, and five of them were significantly detected after treatment with RIIGL peptide. These secretory proteins were found to be related to microtubule-associated protein tau (MAPT) and amyloid-beta precursor protein (APP). RIIGL peptide acts on differentiated SH-SY5Y by regulating amyloid-beta formation, neuron apoptotic process, ceramide catabolic process, and oxidative phosphorylation and thus has the potentials to treat AD.
Collapse
Affiliation(s)
- Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitithorn Kumsri
- Undergraduate Student of Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Teerakul Arpornsuwan
- Medical Technology Research and Service Unit, Health Care Service Center, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
3
|
Yang D, Huang L, Wang J, Wu H, Liu Z, Abudureyimu A, Qiao Z. Tumorigenesis mechanism and application strategy of the MDCK cell line: A systematic review. Biologicals 2023; 83:101699. [PMID: 37573790 DOI: 10.1016/j.biologicals.2023.101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Influenza is an acute respiratory infectious disease caused by influenza virus that seriously endangers people's health. Influenza vaccination is the most effective means to prevent influenza virus infection and its serious complications. MDCK cells are considered to be superior to chicken embryos for the production of influenza vaccines, but the tumorigenicity of cells is a concern over the theoretical possibility of the risk of adverse events. The theoretical risks need to be adequately addressed if public confidence in programs of immunization are to be maintained. In this paper, studies of the tumorigenic potential of cell lines, with MDCK cells as an example, published since 2010 are reviewed. The mechanism of tumorigenicity of MDCK cells is discussed with reference to cell heterogeneity and epithelial to mesenchymal transition (EMT). Understanding the mechanism of the acquisition of a tumorigenic phenotype by MDCK cells might assist in estimating potential risks associated with using tumorigenic cell substrates for vaccine production.
Collapse
Affiliation(s)
- Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China; College of Veterinary Medicine, Gansu Agricultural University, 730030, Lanzhou, China; Department of Experiment & Teaching, Northwest Minzu University, 730030, Lanzhou, China.
| | - Lingwei Huang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Huihao Wu
- Department of Experiment & Teaching, Northwest Minzu University, 730030, Lanzhou, China.
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Ayimuguli Abudureyimu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| |
Collapse
|
4
|
Fusi M, Dotti S. Adaptation of the HEp-2 cell line to totally animal-free culture systems and real-time analysis of cell growth. Biotechniques 2021; 70:319-326. [PMID: 34024160 DOI: 10.2144/btn-2020-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Routine cell culture demands the use of animal-derived products, mainly fetal bovine serum and swine or bovine trypsin. According to the 3Rs principle and to the European Centre for the Validation of Alternative Methods, animal-free substitutes are strongly recommended for in vitro methods. In this study, the HEp-2 cell line was adapted to different totally animal-free culture systems, such as a serum-free complete medium (VP-SFM), human platelet lysate and a synthetic trypsin (TrypLE™ Express); afterward, cell growth was assessed with the xCELLigence instrument. Animal-free products provided promising results, with performances similar or preferable to the common reagents; therefore their use could be encouraged for both ethical and technical advantages.
Collapse
Affiliation(s)
- Mara Fusi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy
| |
Collapse
|
5
|
Chavarria-Miró G, de Castellarnau M, Fuentes C, D'Andrea L, Pérez-Rodríguez FJ, Beguiristain N, Bosch A, Guix S, Pintó RM. Advances for the Hepatitis A Virus Antigen Production Using a Virus Strain With Codon Frequency Optimization Adjustments in Specific Locations. Front Microbiol 2021; 12:642267. [PMID: 33679679 PMCID: PMC7935560 DOI: 10.3389/fmicb.2021.642267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The available cell-adapted hepatitis A virus (HAV) strains show a very slow replication phenotype hampering the affordable production of antigen. A fast-growing strain characterized by the occurrence of mutations in the internal ribosome entry site (IRES), combined with changes in the codon composition has been selected in our laboratory. A characterization of the IRES activity of this fast-growing strain (HM175-HP; HP) vs. its parental strain (HM175; L0) was assessed in two cell substrates used in vaccine production (MRC-5 and Vero cells) compared with the FRhK-4 cell line in which its selection was performed. The HP-derived IRES was significantly more active than the L0-derived IRES in all cells tested and both IRES were more active in the FRhK-4 cells. The translation efficiency of the HP-derived IRES was also much higher than the L0-derived IRES, particularly, in genes with a HP codon usage background. These results correlated with a higher virus production in a shorter time for the HP strain compared to the L0 strain in any of the three cell lines tested, and of both strains in the FRhK-4 cells compared to Vero and MRC-5 cells. The addition of wortmannin resulted in the increase of infectious viruses and antigen in the supernatant of FRhK-4 infected cells, independently of the strain. Finally, the replication of both strains in a clone of FRhK-4 cells adapted to grow with synthetic sera was optimal and again the HP strain showed higher yields.
Collapse
Affiliation(s)
- Gemma Chavarria-Miró
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Montserrat de Castellarnau
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Cristina Fuentes
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Lucía D'Andrea
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Francisco-Javier Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Nerea Beguiristain
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| |
Collapse
|