1
|
Correia R, Fernandes B, Castro R, Nagaoka H, Takashima E, Tsuboi T, Fukushima A, Viebig NK, Depraetere H, Alves PM, Roldão A. Asexual Blood-Stage Malaria Vaccine Candidate PfRipr5: Enhanced Production in Insect Cells. Front Bioeng Biotechnol 2022; 10:908509. [PMID: 35845392 PMCID: PMC9280424 DOI: 10.3389/fbioe.2022.908509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
The malaria asexual blood-stage antigen PfRipr and its most immunogenic fragment PfRipr5 have recently risen as promising vaccine candidates against this infectious disease. Continued development of high-yielding, scalable production platforms is essential to advance the malaria vaccine research. Insect cells have supplied the production of numerous vaccine antigens in a fast and cost-effective manner; improving this platform further could prove key to its wider use. In this study, insect (Sf9 and High Five) and human (HEK293) cell hosts as well as process-optimizing strategies (new baculovirus construct designs and a culture temperature shift to hypothermic conditions) were employed to improve the production of the malaria asexual blood-stage vaccine candidate PfRipr5. Protein expression was maximized using High Five cells at CCI of 2 × 106 cell/mL and MOI of 0.1 pfu/cell (production yield = 0.49 mg/ml), with high-purity PfRipr5 binding to a conformational anti-PfRipr monoclonal antibody known to hold GIA activity and parasite PfRipr staining capacity. Further improvements in the PfRipr5 expression were achieved by designing novel expression vector sequences and performing a culture temperature shift to hypothermic culture conditions. Addition of one alanine (A) amino acid residue adjacent to the signal peptide cleavage site and a glycine-serine linker (GGSGG) between the PfRipr5 sequence and the purification tag (His6) induced a 2.2-fold increase in the expression of secreted PfRipr5 over using the expression vector with none of these additions. Performing a culture temperature shift from the standard 27–22°C at the time of infection improved the PfRipr5 expression by up to 1.7 fold. Notably, a synergistic effect was attained when combining both strategies, enabling to increase production yield post-purification by 5.2 fold, with similar protein quality (i.e., purity and binding to anti-PfRipr monoclonal antibody). This work highlights the potential of insect cells to produce the PfRipr5 malaria vaccine candidate and the importance of optimizing the expression vector and culture conditions to boost the expression of secreted proteins.
Collapse
Affiliation(s)
- Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Fernandes
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute Castro
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Hilde Depraetere
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Paula M. Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: António Roldão,
| |
Collapse
|
2
|
Coker JA, Katis VL, Fairhead M, Schwenzer A, Clemmensen SB, Frandsen BU, de Jongh WA, Gileadi O, Burgess-Brown NA, Marsden BD, Midwood KS, Yue WW. FAS2FURIOUS: Moderate-Throughput Secreted Expression of Difficult Recombinant Proteins in Drosophila S2 Cells. Front Bioeng Biotechnol 2022; 10:871933. [PMID: 35600892 PMCID: PMC9117644 DOI: 10.3389/fbioe.2022.871933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Recombinant protein expression in eukaryotic insect cells is a powerful approach for producing challenging targets. However, due to incompatibility with standard baculoviral platforms and existing low-throughput methodology, the use of the Drosophila melanogaster “S2” cell line lags behind more common insect cell lines such as Sf9 or High-Five™. Due to the advantages of S2 cells, particularly for secreted and secretable proteins, the lack of a simple and parallelizable S2-based platform represents a bottleneck, particularly for biochemical and biophysical laboratories. Therefore, we developed FAS2FURIOUS, a simple and rapid S2 expression pipeline built upon an existing low-throughput commercial platform. FAS2FURIOUS is comparable in effort to simple E. coli systems and allows users to clone and test up to 46 constructs in just 2 weeks. Given the ability of S2 cells to express challenging targets, including receptor ectodomains, secreted glycoproteins, and viral antigens, FAS2FURIOUS represents an attractive orthogonal approach for protein expression in eukaryotic cells.
Collapse
Affiliation(s)
- Jesse A. Coker
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Vittorio L. Katis
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Fairhead
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Bent U. Frandsen
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | | | - Opher Gileadi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola A. Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brian D. Marsden
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Wyatt W. Yue
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Wyatt W. Yue,
| |
Collapse
|
3
|
Lorrine OE, Raja Abd. Rahman RNZ, Tan JS, Raja Khairuddin RF, Salleh AB, Oslan SN. Determination of Putative Vacuolar Proteases, PEP4 and PRB1 in a Novel Yeast Expression Host Meyerozyma guilliermondii Strain SO Using Bioinformatics Tools. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2022. [DOI: 10.47836/pjst.30.1.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meyerozyma guilliermondii strain SO, a newly isolated yeast species from spoilt orange, has been used as a host to express the recombinant proteins using methylotrophic yeast promoters. However, as a novel yeast expression system, the vacuolar proteases of this yeast have not been determined, which may have contributed to the low level of heterologous protein secretions. Thus, this study aimed to determine intra- and extracellular proteolytic activity and identify the putative vacuolar proteases using bioinformatics techniques. A clear zone was observed from the nutrient agar skimmed milk screening plate. Proteolytic activity of 117.30 U/ml and 75 U/ml were obtained after 72 h of cultivation for both extracellular and intracellular proteins, respectively. Next, the Hidden Markov model (HMM) was used to detect the presence of the vacuolar proteases (PEP4 and PRB1) from the strain SO proteome. Aspartyl protease (PEP4) with 97.55% identity to Meyerozyma sp. JA9 and a serine protease (PRB1) with 70.91% identity to Candida albicans were revealed. The homology with other yeast vacuolar proteases was confirmed via evolutionary analysis. PROSPER tool prediction of cleavage sites postulated that PEP4 and PRB1 might have caused proteolysis of heterologous proteins in strain SO. In conclusion, two putative vacuolar proteases (PEP4 and PRB1) were successfully identified in strain SO. Further characterization can be done to understand their specific properties, and their effects on heterologous protein expression can be conducted via genome editing.
Collapse
|
4
|
Casler JC, Zajac AL, Valbuena FM, Sparvoli D, Jeyifous O, Turkewitz AP, Horne-Badovinac S, Green WN, Glick BS. ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms. Mol Biol Cell 2020; 31:2892-2903. [PMID: 33112725 PMCID: PMC7927198 DOI: 10.1091/mbc.e20-09-0591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Membrane traffic can be studied by imaging a cargo protein as it transits the secretory pathway. The best tools for this purpose initially block export of the secretory cargo from the endoplasmic reticulum (ER) and then release the block to generate a cargo wave. However, previously developed regulatable secretory cargoes are often tricky to use or specific for a single model organism. To overcome these hurdles for budding yeast, we recently optimized an artificial fluorescent secretory protein that exits the ER with the aid of the Erv29 cargo receptor, which is homologous to mammalian Surf4. The fluorescent secretory protein forms aggregates in the ER lumen and can be rapidly disaggregated by addition of a ligand to generate a nearly synchronized cargo wave. Here we term this regulatable secretory protein ESCargo (Erv29/Surf4-dependent secretory cargo) and demonstrate its utility not only in yeast cells, but also in cultured mammalian cells, Drosophila cells, and the ciliate Tetrahymena thermophila. Kinetic studies indicate that rapid export from the ER requires recognition by Erv29/Surf4. By choosing an appropriate ER signal sequence and expression vector, this simple technology can likely be used with many model organisms.
Collapse
Affiliation(s)
- Jason C. Casler
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Allison L. Zajac
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Fernando M. Valbuena
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Okunola Jeyifous
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - William N. Green
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
5
|
Ling WL, Su CTT, Lua WH, Poh JJ, Ng YL, Wipat A, Gan SKE. Essentially Leading Antibody Production: An Investigation of Amino Acids, Myeloma, and Natural V-Region Signal Peptides in Producing Pertuzumab and Trastuzumab Variants. Front Immunol 2020; 11:604318. [PMID: 33365032 PMCID: PMC7750424 DOI: 10.3389/fimmu.2020.604318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022] Open
Abstract
Boosting the production of recombinant therapeutic antibodies is crucial in both academic and industry settings. In this work, we investigated the usage of varying signal peptides by antibody V-genes and their roles in recombinant transient production, systematically comparing myeloma and the native signal peptides of both heavy and light chains in 168 antibody permutation variants. We found that amino acids count and types (essential or non-essential) were important factors in a logistic regression equation model for predicting transient co-transfection protein production rates. Deeper analysis revealed that the culture media were often incomplete and that the supplementation of essential amino acids can improve the recombinant protein yield. While these findings are derived from transient HEK293 expression, they also provide insights to the usage of the large repertoire of antibody signal peptides, where by varying the number of specific amino acids in the signal peptides attached to the variable regions, bottlenecks in amino acid availability can be mitigated.
Collapse
Affiliation(s)
- Wei-Li Ling
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Newcastle Research and Innovation Institute (NewRIIS), Singapore, Singapore
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chinh Tran-To Su
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wai-Heng Lua
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuen-Ling Ng
- Newcastle Research and Innovation Institute (NewRIIS), Singapore, Singapore
| | - Anil Wipat
- School of Computing, Newcastle University, Singapore, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
6
|
Owji H, Hemmati S. A comprehensive in silico characterization of bacterial signal peptides for the excretory production of Anabaena variabilis phenylalanine ammonia lyase in Escherichia coli. 3 Biotech 2018; 8:488. [PMID: 30498661 DOI: 10.1007/s13205-018-1517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022] Open
Abstract
Anabaena variabilis double mutant (C503S/C565S) phenylalanine ammonia-lyase (PAL) is an appealing enzyme in the enzyme-replacement therapy of phenylketonuria. Yet abundant production of this enzyme has been of concern for industrial production. In this study, we have characterized 1175 bacterial signal peptides (SPs) and identified the most efficient ones for the excretory production of mutant AvPAL. Analysis by SignalP 4.1 revealed that more than 61% of SPs had a D-score greater than 0.7, denoting to be highly efficient. The optimum length of a bacterial SP was 25-30. The preferable net positive charge and the second residue of N-region were + 2 and Lys/Arg, respectively. Highly efficient SPs possessed 3-5 Leus in their H-region and A/L/VXA-FF cleavage site. Highly efficient SPs were from Escherichia coli, corroborating the necessity of an agreement between SPs and the host. Physiochemical characterization of mutant AvPAL conjugates via ProtParam and PROSOII, revealed that ~ 99.5% of proteins would not be entraped in inclusion bodies. Secretory pathways were identified by EffectiveDB and more than 98% of SPs were cleavable. Chimeras were modeled using the I-TASSER program, being evaluated by the Ramachandran plots. The mRNA secondary structure of mutant AvPAL upon linkage to SPs was assessed using the mfold program. It was shown that the linkage of a SP does not affect mutant AvPAL's stability at the protein or mRNA level. AllergenFP tool demonstrated that chimeras were not allergen. SPs, including FMF4_ECOLX, E2BB_ECOLX, and LPTA_ECOLI exhibited the highest propensity for secretion and appropriate features in all analyses.
Collapse
Affiliation(s)
- Hajar Owji
- 1Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- 1Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|