1
|
Yu T, Wei Z, Wang J, Song C, Huang W, Zhang P, Shi J, Zhang R, Jiang M, Wang D, Zhang Y, Chen H, Wang H. Ginkgo biloba Extract GBE50 ameliorates cerebrovascular dysfunction and cognitive impairment in a mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156646. [PMID: 40138777 DOI: 10.1016/j.phymed.2025.156646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disorder in which neurovascular unit (NVU) dysfunction plays a critical role. GBE50, a refined extract of Ginkgo biloba containing over 50 % total flavonoids and terpene lactones, is widely used in the clinical prevention and treatment of cardiovascular and cerebrovascular diseases due to its anti-platelet aggregation, anti-inflammatory, and antioxidant properties. However, its specific effects on NVU integrity and cerebrovascular function in AD remain unclear. PURPOSE This study aims to investigate the therapeutic effects of GBE50 on NVU integrity and cognitive impairment in an AD mouse model. METHODS APP/PS1 transgenic mice were treated with GBE50 via intragastric administration for 10 weeks. Cognitive performance was assessed through behavioral tests, while the structural and functional integrity of the NVU was evaluated using immunofluorescence, laser speckle imaging, and in vivo multi-photon imaging. Furthermore, target prediction and transcriptomic analyses were conducted to uncover potential molecular mechanisms and identify specific targets of GBE50. RESULTS GBE50 treatment significantly alleviated cognitive deficits in APP/PS1 mice. It enhanced cerebrovascular structure and function by increasing vessel density, diameter, and branching, leading to improved cerebral blood flow (CBF). GBE50 also restored NVU components such as endothelial cells, astrocytes, and pericytes, promoted parenchyma and perivascular Aβ clearance, and reduced neuroinflammation. Bioinformatics and transcriptomic analyses revealed that GBE50 exerted its effects by regulating pathways related to vascular repair, neuroprotection, and Aβ clearance. CONCLUSION The findings demonstrate that GBE50 improves cognitive dysfunction in AD by restoring NVU integrity and cerebrovascular function through multi-target mechanisms. This study highlights the potential of GBE50 as a promising therapeutic approach for AD and other neurodegenerative diseases involved in cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Ting Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Zijie Wei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meifang Jiang
- SPH XingLing Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Dandan Wang
- SPH XingLing Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Clinical Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Meng Y, Yang Z, Quan Y, Zhao S, Zhang L, Yang L. Regulation of IkappaB Protein Expression by Early Gestation in the Thymus of Ewes. Vet Sci 2023; 10:462. [PMID: 37505866 PMCID: PMC10384501 DOI: 10.3390/vetsci10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The thymus is an essential component of maternal immune systems that play key roles in recognizing the placenta as immunologically foreign. The inhibitor of the NF-κB (IκB) family has essential effects on the NF-κB pathway; however, it is unclear whether early pregnancy modulates the expression of the IκB family in the thymus. In this study, maternal thymuses were sampled on day 16 of nonpregnancy and different gestation stages in the ovine, and the expression of IκB proteins was analyzed. The data showed that B cell leukemia-3 and IκBβ increased; however, IκBα, IκBε, and IKKγ deceased during gestation. Furthermore, there was an increase in IκBNS and IκBζ expression values on day 13 of pregnancy; however, this decreased on day 25 of gestation. In summary, the expression of the IκB family was modulated in the thymus during early gestation, suggesting that the maternal thymus can be associated with maternal immunologic tolerance and pregnancy establishment in ewes.
Collapse
Affiliation(s)
- Yao Meng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhen Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaodong Quan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shuxin Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
3
|
Feng Y, Chen Z, Xu Y, Han Y, Jia X, Wang Z, Zhang N, Lv W. The central inflammatory regulator IκBζ: induction, regulation and physiological functions. Front Immunol 2023; 14:1188253. [PMID: 37377955 PMCID: PMC10291074 DOI: 10.3389/fimmu.2023.1188253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
IκBζ (encoded by NFKBIZ) is the most recently identified IkappaB family protein. As an atypical member of the IkappaB protein family, NFKBIZ has been the focus of recent studies because of its role in inflammation. Specifically, it is a key gene in the regulation of a variety of inflammatory factors in the NF-KB pathway, thereby affecting the progression of related diseases. In recent years, investigations into NFKBIZ have led to greater understanding of this gene. In this review, we summarize the induction of NFKBIZ and then elucidate its transcription, translation, molecular mechanism and physiological function. Finally, the roles played by NFKBIZ in psoriasis, cancer, kidney injury, autoimmune diseases and other diseases are described. NFKBIZ functions are universal and bidirectional, and therefore, this gene may exert a great influence on the regulation of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Yanpeng Feng
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Zhiyuan Chen
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yi Xu
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yuxuan Han
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiujuan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zixuan Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nannan Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Lv
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Samy A, Yamano-Adachi N, Koga Y, Omasa T. Secretion of a low-molecular-weight species of endogenous GRP94 devoid of the KDEL motif during endoplasmic reticulum stress in Chinese hamster ovary cells. Traffic 2021; 22:425-438. [PMID: 34536241 PMCID: PMC9293085 DOI: 10.1111/tra.12818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 01/04/2023]
Abstract
GRP94 (glucose‐regulated protein 94) is a well‐studied chaperone with a lysine, aspartic acid, glutamic acid and leucine (KDEL) motif at its C‐terminal, which is responsible for GRP94 localization in the endoplasmic reticulum (ER). GRP94 is upregulated during ER stress to help fold unfolded proteins or direct proteins to ER‐associated degradation. In a previous study, engineered GRP94 without the KDEL motif stimulated a powerful immune response in vaccine cells. In this report, we show that endogenous GRP94 is naturally secreted into the medium in a truncated form that lacks the KDEL motif in Chinese hamster ovary cells. The secretion of the truncated form of GRP94 was stimulated by the induction of ER stress. These truncations prevent GRP94 recognition by KDEL receptors and retention inside the cell. This study sheds light on a potential trafficking phenomenon during the unfolded protein response that may help understand the functional role of GRP94 as a trafficking molecule.
Collapse
Affiliation(s)
- Andrew Samy
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Chai YR, Cao XX, Ge MM, Mi CL, Guo X, Wang TY. Knockout of cytidine monophosphate-N-acetylneuraminic acid hydroxylase in Chinese hamster ovary cells by CRISPR/Cas9-based gene-editing technology. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Fol M, Włodarczyk M, Druszczyńska M. Host Epigenetics in Intracellular Pathogen Infections. Int J Mol Sci 2020; 21:ijms21134573. [PMID: 32605029 PMCID: PMC7369821 DOI: 10.3390/ijms21134573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Some intracellular pathogens are able to avoid the defense mechanisms contributing to host epigenetic modifications. These changes trigger alterations tothe chromatin structure and on the transcriptional level of genes involved in the pathogenesis of many bacterial diseases. In this way, pathogens manipulate the host cell for their own survival. The better understanding of epigenetic consequences in bacterial infection may open the door for designing new vaccine approaches and therapeutic implications. This article characterizes selected intracellular bacterial pathogens, including Mycobacterium spp., Listeria spp., Chlamydia spp., Mycoplasma spp., Rickettsia spp., Legionella spp. and Yersinia spp., which can modulate and reprogram of defense genes in host innate immune cells.
Collapse
Affiliation(s)
- Marek Fol
- Correspondence: ; Tel.: +48-42-635-44-72
| | | | | |
Collapse
|
7
|
Amadi IM, Agrawal V, Christianson T, Bardliving C, Shamlou P, LeBowitz JH. Inhibition of endogenous miR-23a/miR-377 in CHO cells enhances difficult-to-express recombinant lysosomal sulfatase activity. Biotechnol Prog 2020; 36:e2974. [PMID: 31990124 DOI: 10.1002/btpr.2974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/11/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022]
Abstract
Difficult-to-express (DTE) recombinant proteins such as multi-specific proteins, DTE monoclonal antibodies, and lysosomal enzymes have seen difficulties in manufacturability using Chinese hamster ovary (CHO) cells or other mammalian cells as production platforms. CHO cells are preferably used for recombinant protein production for their ability to secrete human-like recombinant proteins with posttranslational modification, resistance to viral infection, and familiarity with drug regulators. However, despite huge progress made in engineering CHO cells for high volumetric productivity, DTE proteins like recombinant lysosomal sulfatase represent one of the poorly understood proteins. Furthermore, there is growing interest in the use of microRNA (miRNA) to engineer CHO cells expressing DTE proteins to improve cell performance of relevant bioprocess phenotypes. To our knowledge, no research has been done to improve CHO cell production of DTE recombinant lysosomal sulfatase using miRNA. We identified miR-23a and miR-377 as miRNAs predicted to target SUMF1, an activator of sulfatases, using in silico prediction tools. Transient inhibition of CHO endogenous miR-23a/miR-377 significantly enhanced recombinant sulfatase enzyme-specific activity by ~15-21% compared to scramble without affecting cell growth. Though inhibition of miR-23a/miR-377 had no significant effect on the mRNA and protein levels of SUMF1, overexpression of miR-23a/377 caused ~30% and ~27-29% significant reduction in endogenous SUMF1 protein and mRNA expression levels, respectively. In summary, our data demonstrate the importance of using miRNA to optimize the CHO cell line secreting DTE recombinant lysosomal sulfatase.
Collapse
Affiliation(s)
- Ifeanyi Michael Amadi
- BioMarin Pharmaceutical Inc., Novato, California.,Keck Graduate Institute, Claremont, California
| | | | | | | | | | | |
Collapse
|
8
|
Onitsuka M, Kadoya Y, Omasa T. Secretory leakage of IgG1 aggregates from recombinant Chinese hamster ovary cells. J Biosci Bioeng 2018; 127:752-757. [PMID: 30580968 DOI: 10.1016/j.jbiosc.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Aggregation of therapeutic antibodies is one of the most important issues to be resolved in manufacturing processes because of reduced efficacy and immunogenicity. Despite aggregation studies in vitro, little is known about the aggregation mechanism in cell culture processes. In this study, we investigated the process of aggregate formation of IgG1 antibodies during the culture of Chinese hamster ovary (CHO) cells to determine how aggregation occurs. A recombinant CHO cell line was cultivated in a bioreactor, and purified IgG1 from daily culture supernatants was analyzed by size exclusion chromatography. We found a linear correlation between the peak plots of IgG1 by-products, dimeric and aggregated IgG1, and integrated viable cell density, indicating that these by-products were secreted from CHO cells at a constant secretion rate. In addition, aggregate formation was not reproduced in pseudo-culture experiments, and the solution structures of intracellular and extracellular IgG1 aggregates were similar. These results support the concept of secretory leakage of IgG1 by-products. Secreted aggregates appeared to be in an alternatively folded state, which can pass through the protein quality control system in mammalian cells.
Collapse
Affiliation(s)
- Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| | - Yukinori Kadoya
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, U1E-801, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Lu Y, Zhou Q, Han Q, Wu P, Zhang L, Zhu L, Weaver DT, Xu C, Zhang B. Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2018; 102:6081-6093. [DOI: 10.1007/s00253-018-9070-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
|