1
|
Wang Y, Tan PC, Xu X, Zhou S. Protective function of adipocyte-derived extracellular vesicles and adipose stem cells in damage repair and regeneration. CHINESE JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY 2024. [DOI: 10.1016/j.cjprs.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Tian G, Yin H, Zheng J, Yu R, Ding Z, Yan Z, Tang Y, Wu J, Ning C, Yuan X, Liao C, Sui X, Zhao Z, Liu S, Guo W, Guo Q. Promotion of osteochondral repair through immune microenvironment regulation and activation of endogenous chondrogenesis via the release of apoptotic vesicles from donor MSCs. Bioact Mater 2024; 41:455-470. [PMID: 39188379 PMCID: PMC11347043 DOI: 10.1016/j.bioactmat.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Han Yin
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhengang Ding
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zineng Yan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jiang Wu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chao Ning
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xun Yuan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiang Sui
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhe Zhao
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuyun Liu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510080, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| |
Collapse
|
3
|
Huang X, Deng Y, Xiao J, Wang H, Yang Q, Cao Z. Genetically engineered M2-like macrophage-derived exosomes for P. gingivalis-suppressed cementum regeneration: From mechanism to therapy. Bioact Mater 2024; 32:473-487. [PMID: 37965240 PMCID: PMC10640966 DOI: 10.1016/j.bioactmat.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Cementum, a thin layer of mineralized tissue covering tooth root surface, is recognized as the golden standard in periodontal regeneration. However, current efforts mainly focus on alveolar bone regeneration rather than cementum regeneration, and rarely take Porphyromonas gingivalis (Pg), the keystone pathogen responsible for periodontal tissue destruction, into consideration. Though M2 macrophage-derived exosomes (M2-EXO) show promise in tissue regeneration, the exosome-producing M2 macrophages are induced by exogenous cytokines with transitory and unstable effects, restricting the regeneration potential of M2-EXO. Here, exosomes derived from genetically engineered M2-like macrophages are constructed by silencing of casein kinase 2 interacting protein-1 (Ckip-1), a versatile player involved in various biological processes. Ckip-1 silencing is proved to be an effective gene regulation strategy to obtain permanent M2-like macrophages with mineralization-promoting effect. Further, exosomes derived from Ckip-1-silenced macrophages (sh-Ckip-1-EXO) rescue Pg-suppressed cementoblast mineralization and cementogenesis. Mechanismly, sh-Ckip-1-EXO delivers Let-7f-5p targeting and silencing Ckip-1, a negative regulator also for cementum formation and cementoblast mineralization. More deeply, downregulation of Ckip-1 in cementoblasts by exosomal Let-7f-5p activates PGC-1α-dependent mitochondrial biogenesis. In all, this study provides a new strategy of genetically engineered M2-like macrophage-derived exosomes for cementum regeneration under Pg-dominated inflammation.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifei Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qiudong Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Shou J, Li S, Shi W, Zhang S, Zeng Z, Guo Z, Ye Z, Wen Z, Qiu H, Wang J, Zhou M. 3WJ RNA Nanoparticles-Aptamer Functionalized Exosomes From M2 Macrophages Target BMSCs to Promote the Healing of Bone Fractures. Stem Cells Transl Med 2023; 12:758-774. [PMID: 37740533 PMCID: PMC10630079 DOI: 10.1093/stcltm/szad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/25/2023] [Indexed: 09/24/2023] Open
Abstract
Up to now, impaired bone regeneration severely affects the healing of bone fractures, thus bringing tremendous suffering to patients. As a vital mediator between inflammatory response and bone regeneration, M2 macrophage-derived exosomes (M2-Exos) attenuate inflammation and promote tissue repair. However, due to a lack of specific targeting property, M2-Exos will be rapidly eliminated after systematic administration, thus compromising their effectiveness in promoting bone regeneration. To solve this hurdle, we initially harvested and characterized the pro-osteogenic properties of M2-Exos. A bone marrow mesenchymal stem cell (BMSC)-specific aptamer was synthesized and 3-way junction (3WJ) RNA nanoparticles were applied to conjugate the BMSC-specific aptamer and M2-Exos. In vitro assays revealed that M2-Exos bore the representative features of exosomes and significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. 3WJ RNA nanoparticles-aptamer functionalized M2-Exos (3WJ-BMSCapt/M2-Exos) maintained the original physical characteristics of M2-Exos, but bore a high specific binding ability to BMSCs. Furthermore, when being systemically administered in the mice model with femoral bone fractures, these functionalized M2-Exos mainly accumulated at the bone fracture site with a slow release of exosomal cargo, thereby significantly accelerating the healing processes compared with the M2-Exos group. Our study indicated that the 3WJ-BMSCapt/M2-Exos with BMSCs targeting ability and controlled release would be a promising strategy to treat bone fractures.
Collapse
Affiliation(s)
- Jiali Shou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
- Department of Ultrasound Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, the People’s Republic of China
| | - Shuyi Li
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, the People’s Republic of China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, the People’s Republic of China
| | - Wenzhe Shi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Sijuan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zheng Zeng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zecong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Ziming Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zhuohao Wen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Huiguo Qiu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Jinheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, the People’s Republic of China
| | - Miao Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, the People’s Republic of China
| |
Collapse
|
5
|
Huang X, Xiao J, Wang H, Peng Y, Liu H, Ma L, Wang X, Cao Z. CKIP-1 mediates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells partially via p38 signaling pathway. J Oral Microbiol 2023; 15:2236427. [PMID: 37483640 PMCID: PMC10360982 DOI: 10.1080/20002297.2023.2236427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES Casein kinase 2 interacting protein-1 (CKIP-1) is a versatile player involved in various biological processes. However, whether CKIP-1 mediates the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) under Porphyromonas gingivalis (Pg) stimulation remains unknown. MATERIAL AND METHODS The effect of Pg on PDLC differentiation was first verified. CKIP-1 expression in Pg-infected PDLCs or in PDL of apical periodontitis (AP) mice was detected. The changes of CKIP-1 during PDLC differentiation was also determined. PDLC differentiation capacity in CKIP-1 knockout (KO) mice and CKIP-1-silenced PDLCs with or without Pg stimulation were further studied. Inhibitor was finally applied to verify the involvement of p38 signaling pathway in PDLC differentiation. RESULTS The suppression effect of Pg on PDLC differentiation was demonstrated. CKIP-1 increased in the PDL of AP mice and Pg-induced PDLCs, and decreased gradually during PDLC differentiation. Increased OSX and RUNX2 expression in PDL were observed in CKIP-1 KO mice. Also, CKIP-1 silencing facilitated and rescued Pg-inhibited PDLC differentiation. Inhibitor for p38 signaling pathway blocked CKIP-1 silencing-facilitated PDLC differentiation. CONCLUSIONS CKIP-1 mediated the osteogenic/cementogenic differentiation of PDLCs partially through p38 signaling pathway, which may provide evidence for the regeneration of periodontal hard tissues damaged by Pg.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Breulmann FL, Hatt LP, Schmitz B, Wehrle E, Richards RG, Della Bella E, Stoddart MJ. Prognostic and therapeutic potential of microRNAs for fracture healing processes and non-union fractures: A systematic review. Clin Transl Med 2023; 13:e1161. [PMID: 36629031 PMCID: PMC9832434 DOI: 10.1002/ctm2.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Approximately 10% of all bone fractures result in delayed fracture healing or non-union; thus, the identification of biomarkers and prognostic factors is of great clinical interest. MicroRNAs (miRNAs) are known to be involved in the regulation of the bone healing process and may serve as functional markers for fracture healing. AIMS AND METHODS This systematic review aimed to identify common miRNAs involved in fracture healing or non-union fractures using a qualitative approach. A systematic literature search was performed with the keywords 'miRNA and fracture healing' and 'miRNA and non-union fracture'. Any original article investigating miRNAs in fracture healing or non-union fractures was screened. Eventually, 82 studies were included in the qualitative analysis for 'miRNA and fracture healing', while 19 were selected for the 'miRNA and fracture non-union' category. RESULTS AND CONCLUSIONS Out of 151 miRNAs, miR-21, miR-140 and miR-214 were the most investigated miRNAs in fracture healing in general. miR-31-5p, miR-221 and miR-451-5p were identified to be regulated specifically in non-union fractures. Large heterogeneity was detected between studies investigating the role of miRNAs in fracture healing or non-union in terms of patient population, sample types and models used. Nonetheless, our approach identified some miRNAs with the potential to serve as biomarkers for non-union fractures, including miR-31-5p, miR-221 and miR-451-5p. We provide a discussion of involved pathways and suggest on alignment of future research in the field.
Collapse
Affiliation(s)
- Franziska Lioba Breulmann
- AO Research Institute DavosDavos PlatzSwitzerland
- Department of Orthopedic Sports MedicineKlinikum Rechts der IsarTechnical University of MunichMunichGermany
| | - Luan Phelipe Hatt
- AO Research Institute DavosDavos PlatzSwitzerland
- Institute for BiomechanicsETH ZürichZurichSwitzerland
| | - Boris Schmitz
- Department of Rehabilitation SciencesFaculty of HealthUniversity of Witten/HerdeckeWittenGermany
- DRV Clinic KönigsfeldCenter for Medical RehabilitationEnnepetalGermany
| | - Esther Wehrle
- AO Research Institute DavosDavos PlatzSwitzerland
- Institute for BiomechanicsETH ZürichZurichSwitzerland
| | - Robert Geoff Richards
- AO Research Institute DavosDavos PlatzSwitzerland
- Faculty of MedicineMedical Center‐Albert‐Ludwigs‐University of FreiburgAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | | | - Martin James Stoddart
- AO Research Institute DavosDavos PlatzSwitzerland
- Faculty of MedicineMedical Center‐Albert‐Ludwigs‐University of FreiburgAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| |
Collapse
|
7
|
Zhang X, Xue T, Hu Z, Guo X, Li G, Wang Y, Zhang L, Xu L, Cao X, Zhang S, Shi F, Wang K. Bioinformatic analysis of the RNA expression patterns in microgravity-induced bone loss. Front Genet 2022; 13:985025. [PMID: 36425065 PMCID: PMC9681495 DOI: 10.3389/fgene.2022.985025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Researchers have linked microgravity in space to the significant imbalance between bone formation and bone resorption that induces persistent bone loss in load-bearing bones. However, the underlying molecular mechanisms are still unclear, which hinders the development of therapeutic measures. The aim of this study was to identify hub genes and explore novel molecular mechanisms underlying microgravity-induced bone loss using transcriptome datasets obtained from the GEO and SRA databases. In summary, comparative RNA expression pattern studies that differ in species (Homo or Mus), models (in vitro or in vivo), microgravity conditions (real microgravity or ground-based simulators) and microgravity duration showed that it is difficult to reach a consistent conclusion about the pathogenesis of microgravity-induced bone loss across these studies. Even so, we identified 11 hub genes and some miRNA-mRNA interactions mainly based on the GSE100930 dataset. Also, the expression of CCL2, ICAM1, IGF1, miR-101-3p and miR-451a markedly changed under clinorotation-microgravity condition. Remarkedly, ICAM1 and miR-451a were key mediators of the osteogenesis of hMSCs under clinorotation-microgravity condition. These findings provide novel insights into the molecular mechanisms of bone loss during microgravity and could indicate potential targets for further countermeasures against this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
| |
Collapse
|
8
|
Ho ML, Hsu CJ, Wu CW, Chang LH, Chen JW, Chen CH, Huang KC, Chang JK, Wu SC, Shao PL. Enhancement of Osteoblast Function through Extracellular Vesicles Derived from Adipose-Derived Stem Cells. Biomedicines 2022; 10:biomedicines10071752. [PMID: 35885057 PMCID: PMC9312889 DOI: 10.3390/biomedicines10071752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cell that is investigated in bone tissue engineering (BTE). Osteoblasts are the main cells responsible for bone formation in vivo and directing ADSCs to form osteoblasts through osteogenesis is a research topic in BTE. In addition to the osteogenesis of ADSCs into osteoblasts, the crosstalk of ADSCs with osteoblasts through the secretion of extracellular vesicles (EVs) may also contribute to bone formation in ADSC-based BTE. We investigated the effect of ADSC-secreted EVs (ADSC-EVs) on osteoblast function. ADSC-EVs (size ≤ 1000 nm) were isolated from the culture supernatant of ADSCs through ultracentrifugation. The ADSC-EVs were observed to be spherical under a transmission electron microscope. The ADSC-EVs were positive for CD9, CD81, and Alix, but β-actin was not detected. ADSC-EV treatment did not change survival but did increase osteoblast proliferation and activity. The 48 most abundant known microRNAs (miRNAs) identified within the ADSC-EVs were selected and then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GO analysis revealed that these miRNAs are highly relevant to skeletal system morphogenesis and bone development. The KEGG analysis indicated that these miRNAs may regulate osteoblast function through autophagy or the mitogen-activated protein kinase or Ras-related protein 1 signaling pathway. These results suggest that ADSC-EVs enhance osteoblast function and can contribute to bone regeneration in ADSC-based BTE.
Collapse
Affiliation(s)
- Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Chinese Medicine, China Medical University, Taichung 406040, Taiwan
| | - Che-Wei Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Ling-Hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Jhen-Wei Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kui-Chou Huang
- Department of Orthopedics, Asia University Hospital, Taichung 413505, Taiwan;
- Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Post-Baccalaureate Program in Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-C.W.); (P.-L.S.); Tel.: +(886)-7-3121101 (ext. 2553) (S.-C.W.); +(886)-7-3121101 (ext. 20030) (P.-L.S.)
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-C.W.); (P.-L.S.); Tel.: +(886)-7-3121101 (ext. 2553) (S.-C.W.); +(886)-7-3121101 (ext. 20030) (P.-L.S.)
| |
Collapse
|
9
|
Luo W, Wang J, Zhou Y, Pang M, Yu X, Tong J. Dynamic mRNA and miRNA expression of the head during early development in bighead carp (Hypophthalmichthys nobilis). BMC Genomics 2022; 23:168. [PMID: 35232381 PMCID: PMC8887032 DOI: 10.1186/s12864-022-08387-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Head of fish species, an exquisitely complex anatomical system, is important not only for studying fish evolution and development, but also for economic values. Currently, although some studies have been made on fish growth and body shapes, very limited information is available on the molecular mechanism of head development. Results In this study, RNA sequencing (RNA–Seq) and small RNA sequencing (sRNA–Seq) technologies were used to conduct integrated analysis for the head of bighead carp at different development stages, including 1, 3, 5, 15 and 30 Dph (days post hatch). By RNA-Seq data, 26 pathways related to growth and bone formation were identified as the main physiological processes during early development. Coupling this to sRNA–Seq data, we picked out six key pathways that may be responsible for head development, namely ECM receptor interaction, TNF signaling pathway, osteoclast differentiation, PI3K–Akt signaling pathway, Neuroactive ligand–receptor interaction and Jak–STAT signaling pathway. Totally, 114 important candidate genes from the six pathways were obtained. Then we found the top 20 key genes according to the degree value by cytohubba, which regulated cell growth, skeletal formation and blood homeostasis, such as pik3ca, pik3r1, egfr, vegfa, igf1 and itga2b. Finally, we also acquired 19 key miRNAs playing multiple roles in the perfection of various tissues in the head (such as brain, eye and mouth) and mineralization of head bone system, such as let–7e, miR–142a–5p, miR–144–3p, miR–23a–3p and miR–223. Conclusions Results of this study will be informative for genetic mechanisms of head development and also provide potential candidate targets for the interaction regulation during early growth in bighead carp. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08387-x.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|