1
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Cabiati M, Di Giorgi N, Salvadori C, Finamore F, Del Turco S, Cecchettini A, Rocchiccioli S, Del Ry S. Transcriptional level evaluation of osteopontin/miRNA-181a axis in hepatocellular carcinoma cell line-secreted extracellular vesicles. Pathol Res Pract 2022; 238:154088. [PMID: 36084428 DOI: 10.1016/j.prp.2022.154088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
Abstract
Recent evidence suggested the role of secreted extracellular vesicles (EVs) in the intracellular signalling within the liver becoming a promising candidate as biomarker in hepatocellular carcinoma (HCC). Osteopontin (OPN) seems to play a relevant role both for early diagnosis of HCC than on the mechanisms that drive oncogenesis but, to date, information on the expression levels of OPN in EVs secreted by HCC tumor cell line are missing. The study aimed to verify, by transcriptional and proteomic study, the presence of OPN in EVs secreted by tumorigenic (HepG2) and non-tumorigenic hepatocyte cell line (WRL68), and to analyse the expression variations of OPN, its isoforms and miRNA-181a in both these EVs. "In silico analysis" was also performed via the Gene expression Profiling Interactive analysis (GEPIA) and Hepatocellular Carcinoma Database (HCCDB). An up-regulation of OPN in EVs secreted by HepG2 with respect to WRL68 was found in line with the results obtained by the "in silico analysis". The study demonstrates, for the first time, the OPN isoforms and its modulator miRNA-181a expression in EVs secreted by both cell lines, highlighting high levels of OPN isoforms in EVs secreted by HepG2 and identifying OPN as a promising biomarker for HCC diagnosis.
Collapse
Affiliation(s)
- Manuela Cabiati
- Institute of Clinical Physiology, National Research Council CNR, Pisa, Italy
| | - Nicoletta Di Giorgi
- Institute of Clinical Physiology, National Research Council CNR, Pisa, Italy
| | - Costanza Salvadori
- Institute of Clinical Physiology, National Research Council CNR, Pisa, Italy
| | - Francesco Finamore
- Institute of Clinical Physiology, National Research Council CNR, Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council CNR, Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council CNR, Pisa, Italy; University of Pisa, Dept. Experimental and Clinical Medicine, Pisa, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council CNR, Pisa, Italy
| | - Silvia Del Ry
- Institute of Clinical Physiology, National Research Council CNR, Pisa, Italy.
| |
Collapse
|
3
|
Liu Y, Chen L, Jiang D, Luan L, Huang J, Hou Y, Xu C. HER2 promotes epithelial-mesenchymal transition through regulating osteopontin in gastric cancer. Pathol Res Pract 2021; 227:153643. [PMID: 34634565 DOI: 10.1016/j.prp.2021.153643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
AIMS HER2 and osteopontin (OPN) are both important biomarkers in gastric cancer (GC). The relationships between them remain to be revealed. The purpose of this study is to explore the role of OPN in epithelial-mesenchymal transition (EMT) in HER2 positive GCs. METHODS Nanostring analysis was used to compare the mRNA levels of 730 cancer related genes between paired HER2 3+ and non-3+ areas in GC patients. Immunohistochemistry (IHC) staining was performed to analyze the expression levels of OPN, as well as EMT markers including E-cad, N-cad, twist and vimentin in both areas. To further verify the role of OPN in EMT, the expression levels of OPN and EMT markers, tumor invasion/migration were analyzed after down-regulating HER2 and OPN in GC cell lines MKN-45 and N-87. RESULTS Nanostring analysis identified 8 differential expression genes between HER2 3+ and non-3+ areas. Among them, the expression level of OPN was positively correlated with that of HER2. In GC specimens, OPN showed higher expression level in HER2 3+ areas where higher E-cad expression levels and lower N-cad and twist levels were also found. After knocking down OPN and HER2 by siRNA, both cell lines show decreased invasion/migration abilities, along with the down-regulation of the EMT phenotype, supporting by the decrease of E-cad, and the increase of N-cad and twist at both mRNA and protein levels. In addition, HER2 knock-down lead to a dramatic decrease of OPN expression. CONCLUSIONS These findings indicate that HER2 may promote EMT via the regulation of OPN in GCs.
Collapse
Affiliation(s)
- Yalan Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijuan Luan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Becerril S, Rodríguez A, Catalán V, Ramírez B, Unamuno X, Gómez-Ambrosi J, Frühbeck G. iNOS Gene Ablation Prevents Liver Fibrosis in Leptin-Deficient ob/ob Mice. Genes (Basel) 2019; 10:genes10030184. [PMID: 30818874 PMCID: PMC6470935 DOI: 10.3390/genes10030184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The role of extracellular matrix (ECM) remodeling in fibrosis progression in nonalcoholic fatty liver disease (NAFLD) is complex and dynamic, involving the synthesis and degradation of different ECM components, including tenascin C (TNC). The aim was to analyze the influence of inducible nitric oxide synthase (iNOS) deletion on inflammation and ECM remodeling in the liver of ob/ob mice, since a functional relationship between leptin and iNOS has been described. The expression of molecules involved in inflammation and ECM remodeling was analyzed in the liver of double knockout (DBKO) mice simultaneously lacking the ob and the iNOS genes. Moreover, the effect of leptin was studied in the livers of ob/ob mice and compared to wild-type rodents. Liver inflammation and fibrosis were increased in leptin-deficient mice. As expected, leptin treatment reverted the obesity phenotype. iNOS deletion in ob/ob mice improved insulin sensitivity, inflammation, and fibrogenesis, as evidenced by lower macrophage infiltration and collagen deposition as well as downregulation of the proinflammatory and profibrogenic genes including Tnc. Circulating TNC levels were also decreased. Furthermore, leptin upregulated TNC expression and release via NO-dependent mechanisms in AML12 hepatic cells. iNOS deficiency in ob/ob mice improved liver inflammation and ECM remodeling-related genes, decreasing fibrosis, and metabolic dysfunction. The activation of iNOS by leptin is necessary for the synthesis and secretion of TNC in hepatocytes, suggesting an important role of this alarmin in the development of NAFLD.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Medical Engineering Laboratory, University of Navarra, Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
5
|
Labrousse-Arias D, Martínez-Ruiz A, Calzada MJ. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications. Antioxid Redox Signal 2017; 27:802-822. [PMID: 28715969 DOI: 10.1089/ars.2017.7275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. CRITICAL ISSUES Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. FUTURE DIRECTIONS Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Collapse
Affiliation(s)
- David Labrousse-Arias
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Madrid, Spain
| | - María J Calzada
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Departmento de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
6
|
Sakr HF, Abbas AM, Bin-Jaliah I. Modulation of the neurological and vascular complications by grape seed extract in a rat model of spinal cord ischemia–reperfusion injury by downregulation of both osteopontin and cyclooxygenase-2. Can J Physiol Pharmacol 2016; 94:719-27. [DOI: 10.1139/cjpp-2015-0498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the effects of grape seed extract (GSE) on the expression of osteopontin (OPN) and cyclooxygenase-2 (COX-2) in a rat model of spinal cord ischemia–reperfusion injury (SC-IRI). Fifty male rats were divided into 5 groups: control (CON); control + GSE (CON + GSE) (received GSE for 28 days); sham operated (Sham); IRI; and IRI + GSE. SC-IRI was induced by clamping the aorta just above the bifurcation for 45 min, and then the clamp was released for 48 h for reperfusion. IRI + GSE group received GSE for 28 days before SC-IRI. Sensory, motor, and placing/stepping reflex assessment was performed. Prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBARs), and total antioxidant capacity (TAC) were measured in spinal cord homogenate. Immunohistochemical examination of the spinal cord for OPN and COX-2 were carried out. SC-IRI resulted in significant increase in plasma nitrite/nitrate level and spinal cord homogenate levels of TBARs and PGE2, and OPN and COX-2 expression with significant decrease in TAC. GSE improves the sensory and motor functions through decreasing OPN and COX-2 expression with reduction of oxidative stress parameters. We conclude a neuroprotective effect of GSE in SC-IRI through downregulating COX-2 and OPN expression plus its antioxidants effects.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Physiology Department, College of Medicine, King Khalid University, KSA
| | - Amr M. Abbas
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ismaeel Bin-Jaliah
- Medical Physiology Department, College of Medicine, King Khalid University, KSA
| |
Collapse
|
7
|
Hsiao CC, Chen PH, Cheng CI, Tsai MS, Chang CY, Lu SC, Hsieh MC, Lin YC, Lee PH, Kao YH. Toll-like receptor-4 is a target for suppression of proliferation and chemoresistance in HepG2 hepatoblastoma cells. Cancer Lett 2015; 368:144-152. [DOI: 10.1016/j.canlet.2015.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
|
8
|
Bazer FW, Ying W, Wang X, Dunlap KA, Zhou B, Johnson GA, Wu G. The many faces of interferon tau. Amino Acids 2015; 47:449-460. [PMID: 25557050 DOI: 10.1007/s00726-014-1905-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 01/05/2023]
Abstract
Interferon tau (IFNT) was discovered as the pregnancy recognition signal in ruminants, but is now known to have a plethora of physiological functions in the mammalian uterus. The mammalian uterus includes, from the outer surface to the lumen, the serosa, myometrium and endometrium. The endometrium consists of the luminal, superficial glandular, and glandular epithelia, each with a unique phenotype, stromal cells, vascular elements, nerves and immune cells. The uterine epithelia secrete or selectively transport molecules into the uterine lumen that are collectively known as histotroph. Histotroph is required for growth and development of the conceptus (embryo and its associated extra-embryonic membranes) and includes nutrients such as amino acids and glucose, enzymes, growth factors, cytokines, lymphokines, transport proteins for vitamins and minerals and extracellular matrix molecules. Interferon tau and progesterone stimulate transport of amino acids in histotroph, particularly arginine. Arginine stimulates the mechanistic target of rapamycin pathway to induce proliferation, migration and protein synthesis by cells of the conceptus, and arginine is the substrate for synthesis of nitric oxide and polyamines required for growth and development of the conceptus. In ruminants, IFNT also acts in concert with progesterone from the corpus luteum to increase expression of genes for transport of nutrients into the uterine lumen, as well as proteases, protease inhibitors, growth factors for hematopoiesis and angiogenesis and other molecules critical for implantation and placentation. Collectively, the pleiotropic effects of IFNT contribute to survival, growth and development of the ruminant conceptus.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA,
| | | | | | | | | | | | | |
Collapse
|
9
|
Bazer FW, Johnson GA, Wu G. Amino Acids and Conceptus Development During the Peri-Implantation Period of Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:23-52. [DOI: 10.1007/978-1-4939-2480-6_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Lin F, Cao J, Huang Z, Pei Z, Gu W, Fan S, Li K, Weng J. Effect of thalidomide on the proliferation of hepatoma cells assessed by osteopontin levels in nude mice. Exp Ther Med 2013; 5:1403-1407. [PMID: 23737889 PMCID: PMC3671833 DOI: 10.3892/etm.2013.1010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/08/2013] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the inhibitory effects of thalidomide in the hepatocellular carcinoma nude mouse model in order to provide new insights into a comprehensive clinical intervention for hepatocellular carcinoma. MHCC97 cells were routinely cultured, passaged and adjusted to a single cell suspension with a concentration of 2×107/ml. Six-week-old, BALB/C male nude mice were anesthetized and fixed in the prone position, then a subcapsular injection of the single cell suspension was administered into the spleen and their abdomens were closed. A laparotomy and left hepatic lobectomy was performed 14 days later and the abdomens were closed once again. Subsequent to the establishment of the hepatocellular carcinoma model, the nude mice were randomly divided into three groups, each consisting of 12 mice. The early intervention group were immediately provided with the post-operative thalidomide intervention, the late intervention group were provided with the post-operative thalidomide intervention one week subsequent to the surgery, and the negative control group were provided with a placebo intervention (0.9% physiological saline). Each intervention was continuously administered once per day for one week. The osteopontin (OPN) content of the liver tumors was detected using immunohistochemistry. The data were analyzed using an analysis of variance (ANOVA) test. There were significant differences in the OPN levels of the tumors among the early intervention, late intervention and negative control groups. Thalidomide may inhibit the generation of OPN and thereby inhibit the infiltration and metastasis of tumors; the immediate use of thalidomide following hepatectomy in the present study may block the invasion and metasis for liver cancer more effectively.
Collapse
Affiliation(s)
- Fan Lin
- Department of General Surgery, The First People's Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510180
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cao DX, Li ZJ, Jiang XO, Lum YL, Khin E, Lee NP, Wu GH, Luk JM. Osteopontin as potential biomarker and therapeutic target in gastric and liver cancers. World J Gastroenterol 2012; 18:3923-30. [PMID: 22912540 PMCID: PMC3419986 DOI: 10.3748/wjg.v18.i30.3923] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/11/2012] [Accepted: 05/26/2012] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer and liver cancer are among the most common malignancies and the leading causes of death worldwide, due to late detection and high recurrence rates. Today, these cancers have a heavy socioeconomic burden, for which a full understanding of their pathophysiological features is warranted to search for promising biomarkers and therapeutic targets. Osteopontin (OPN) is overexpressed in most patients with gastric and liver cancers. Over the past decade, emerging evidence has revealed a correlation of OPN level and clinicopathological features and prognosis in gastric and liver cancers, indicating its potential as an independent prognostic indicator in such patients. Functional studies have verified the potential of OPN knockdown as a therapeutic approach in vitro and in vivo. Furthermore, OPN mediates multifaceted roles in the interaction between cancer cells and the tumor microenvironment, in which many details need further exploration. OPN signaling results in various functions, including prevention of apoptosis, modulation of angiogenesis, malfunction of tumor-associated macrophages, degradation of extracellular matrix, activation of phosphoinositide 3-kinase-Akt and nuclear factor-κB pathways, which lead to tumor formation and progression, particularly in gastric and liver cancers. This editorial aims to review recent findings on alteration in OPN expression and its clinicopathological associations with tumor progression, its potential as a therapeutic target, and putative mechanisms in gastric and liver cancers. Better understanding of the implications of OPN in tumorigenesis might facilitate development of therapeutic regimens to benefit patients with these deadly malignancies.
Collapse
|
12
|
A mutant of hepatitis B virus X protein (HBx Delta 127) enhances hepatoma cell migration via osteopontin involving 5-lipoxygenase. Acta Pharmacol Sin 2010; 31:593-600. [PMID: 20364155 DOI: 10.1038/aps.2010.36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM To explore a novel function of a mutant of the hepatitis B virus X protein (HBx Delta 127) in the promotion of hepatoma cell migration. METHODS The effect of HBx Delta 127 and wild type HBx on the migration ability of hepatoblastoma HepG2 cells were examined using wound healing assays in stable transfection systems. The full-length osteopontin(OPN) promoter sequence was cloned into the pGL3-Basic plasmid. The promoter activities of OPN in stably HBx Delta 127-transfected hepatoblastoma HepG2 (HepG2-X Delta 127) and hepatocellular carcinoma H7402 (H7402-X Delta 127) cells were determined using luciferase reporter gene assays. The mRNA expression levels of OPN were detected by RT-PCR. And the effect of MK886, a specific inhibitor of 5-lipoxygenase (5-LOX), on OPN promoter activity and mRNA expression in HepG2-X Delta 127 and H7402-X Delta 127 cells were examined using luciferase reporter gene assays and RT-PCR, respectively. Finally, the migration ability of HepG2-X Delta 127 was observed after treatment with siRNA targeting OPN mRNA and HBx mRNA using wound healing assays. RESULTS HepG2-X Delta 127 cells exhibited a greater capacity for wound repair compared to HepG2-X cells. The promoter activity and mRNA expression levels of OPN were also increased in HepG2-X Delta 127 and H7402-X Delta 127 cells. Moreover, MK886 abolished the HBx Delta 127-mediated upregulation of OPN. Wound healing assays demonstrated that the migration ability of HepG2-X Delta 127 cells can be suppressed by treatment with siRNA targeting OPN mRNA and siRNA targeting HBx mRNA. CONCLUSION HBx Delta 127 strongly promotes hepatoma cell migration via activation of OPN involving 5-LOX.
Collapse
|
13
|
Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G. Comparative aspects of implantation. Reproduction 2009; 138:195-209. [PMID: 19502456 DOI: 10.1530/rep-09-0158] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uterine receptivity to implantation of blastocysts in mammals includes hatching from zona pellucida, precontact with uterine luminal (LE) and superficial glandular (sGE) epithelia and orientation of blastocyst, apposition between trophectoderm and uterine LE and sGE, adhesion of trophectoderm to uterine LE/sGE, and, in some species, limited or extensive invasion into the endometrial stroma and induction of decidualization of stromal cells. These peri-implantation events are prerequisites for pregnancy recognition signaling, implantation, and placentation required for fetal-placental growth and development through the remainder of pregnancy. Although there is a range of strategies for implantation in mammals, a common feature is the requirement for progesterone (P(4)) to downregulate expression of its receptors in uterine epithelia and P(4) prior to implantation events. P(4) then mediates its effects via growth factors expressed by stromal cells in most species; however, uterine luminal epithelium may express a growth factor in response to P(4) and/or estrogens in species with a true epitheliochorial placenta. There is also compelling evidence that uterine receptivity to implantation involves temporal and cell-specific expression of interferon (IFN)-stimulated genes that may be induced directly by an IFN or induced by P(4) and stimulated by an IFN. These genes have many roles including nutrient transport, cellular remodeling, angiogenesis and relaxation of vascular tissues, cell proliferation and migration, establishment of an antiviral state, and protection of conceptus tissues from challenges by the maternal immune cells.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science Veterinary Integrative Biosciences, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA.
| | | | | | | | | |
Collapse
|
14
|
Emani S, Zhang J, Guo L, Guo H, Kuo PC. RNA stability regulates differential expression of the metastasis protein, osteopontin, in hepatocellular cancer. Surgery 2008; 143:803-12. [PMID: 18549897 PMCID: PMC2494577 DOI: 10.1016/j.surg.2008.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/17/2008] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteopontin (OPN) is a potential therapeutic target in hepatocellular carcinoma (HCC), because it is a critical mediator of metastatic function. The molecular mechanisms that determine expression of OPN in HCC, however, are unknown. In this study, we examine differential OPN expression in the 2 HCC cell lines: HepG2 and Hep3B. METHODS OPN expression, metastatic function, OPN promoter activity, and active transcription of OPN mRNA and its decay were assessed in the 2 HCC cell lines using standard techniques. RNA gel-shift assays were performed to determine binding of cytoplasmic proteins to OPN mRNA. RESULTS Expression of OPN cellular/secreted protein and mRNA was greater in HepG2 than Hep3B cells (P < .01). Transient transfection of the OPN promoter construct demonstrated equivalent luciferase activities in the 2 cell lines; the rate of transcription was also equivalent as determined by chromatin immuno-precipitation assay. OPN mRNA half-life was 21 +/- 1 h and 3 +/- 1 h in HepG2 and Hep3B, respectively (P < .02). In HepG2 and Hep3B, the nucleotide sequence of OPN and its 5'-UTR, 3'-UTR, and poly (A) tail lengths were identical. A luciferase construct coupled in line with OPN-5'-UTR and OPN 3'-UTR presented greater expression in HepG2 (P < .01 vs Hep3B). Deletion of nt 10-57 of the OPN 5'-UTR restored luciferase and HA-tagged OPN protein expression in Hep3B but not in Hep G2. RNA gel-shift assays demonstrate different patterns of protein binding to OPN 5'-UTR between the 2 HCC cell lines. CONCLUSIONS We conclude that RNA stability is a new, previously unrecognized mechanism that regulates OPN expression in HCC to convey metastatic function.
Collapse
Affiliation(s)
- Sirisha Emani
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
15
|
Da Silva APB, Pollett A, Rittling SR, Denhardt DT, Sodek J, Zohar R. Exacerbated tissue destruction in DSS-induced acute colitis of OPN-null mice is associated with downregulation of TNF-alpha expression and non-programmed cell death. J Cell Physiol 2006; 208:629-39. [PMID: 16741956 DOI: 10.1002/jcp.20701] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteopontin (OPN), a pro-inflammatory mediator, is constitutively expressed in normal gut and is upregulated in inflammatory colitis. To determine the significance of OPN in inflammatory bowel disease, we studied the development of acute, experimental colitis induced by dextran sulfate sodium (DSS) in OPN-null and wild-type (WT) mice. OPN expression was markedly increased in WT diseased colons, while a higher disease activity index, including spleen enlargement, bowel shortening, and mucosal destruction, was observed in OPN-null mice. Although peripheral blood neutrophil numbers were lower in DSS-treated OPN-null mice, tissue myeloperoxidase levels, reflecting enhanced neutrophil activity, were increased in the diseased colons. In comparison, lymphocyte numbers in peripheral blood were increased earlier than in DSS-treated WT mice. Despite a significantly greater spleen enlargement, flow cytometric analysis of splenocytes from the DSS-treated OPN-null mice revealed lower numbers of differentiated macrophages and (CD4+ and CD8alpha+) lymphocytes. Whereas pro-inflammatory cytokines, including G-CSF, RANTES, MIP1alpha, and TNF-alpha, were increased < 10-fold in DSS-treated WT splenocytes, expression of these cytokines was dramatically suppressed in the DSS-treated OPN-null splenocytes as well as gut tissues. The suppressed TNF-alpha response in OPN-null mice was reflected in a marked increase in non-apoptotic cell death in diseased colons. Collectively, these studies demonstrate that OPN is required for mucosal protection in acute inflammatory colitis.
Collapse
|