1
|
Zhu M, Lu EQ, Fang YX, Liu GW, Cheng YJ, Huang K, Xu E, Zhang YY, Wang XJ. Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway. Molecules 2024; 29:855. [PMID: 38398607 PMCID: PMC10891758 DOI: 10.3390/molecules29040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Deoxynivalenol (DON) is a common mycotoxin that is widely found in various foods and feeds, posing a potential threat to human and animal health. This study aimed to investigate the protective effect of the natural polyphenol piceatannol (PIC) against DON-induced damage in porcine intestinal epithelial cells (IPEC-J2 cells) and the underlying mechanism. The results showed that PIC promotes IPEC-J2 cell proliferation in a dose-dependent manner. Moreover, it not only significantly relieved DON-induced decreases in cell viability and proliferation but also reduced intracellular reactive oxygen species (ROS) production. Further studies demonstrated that PIC alleviated DON-induced oxidative stress damage by increasing the protein expression levels of the antioxidant factors NAD(P)H quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase modifier subunit (GCLM), and the mRNA expression of catalase (CAT), Superoxide Dismutase 1 (SOD1), peroxiredoxin 3 (PRX3), and glutathione S-transferase alpha 4 (GSTα4). In addition, PIC inhibited the activation of the nuclear factor-B (NF-κB) pathway, downregulated the mRNA expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) to attenuate DON-induced inflammatory responses, and further mitigated DON-induced cellular intestinal barrier injury by regulating the protein expression of Occludin. These findings indicated that PIC had a significant protective effect against DON-induced damage. This study provides more understanding to support PIC as a feed additive for pig production.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yong-Xia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Guo-Wei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yu-Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Ke Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yi-Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Yu S, Zou L, Zhao J, Zhu Y. Resveratrol alleviates fumonisin-induced intestinal cytotoxicity by modulating apoptosis, tight junction, and inflammation in IPEC-J2 porcine intestinal epithelial cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:905-914. [PMID: 37955343 DOI: 10.1002/tox.24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Fumonisins are common contaminants in the global food and environment, pose a variety of health risks to humans and animals. However, the method of mitigating fumonisin toxicity is still unclear. Resveratrol is a natural compound with antioxidant and anti-inflammatory properties. In this study, the protective effect of resveratrol against fumonisin-induced intestinal toxicity was investigated by the porcine intestinal epithelial cell line (IPEC-J2). The cells were treated with 0-40 μM fumonisin for 24 or 48 h with or without the 24 h resveratrol (15 μM) pretreatment. The data showed that resveratrol could alleviate the fumonisin B1 (FB1)-induced decrease in cell viability and amplify in membrane permeability. At the same time, it could reduce the accumulation of intracellular reactive oxygen species and increase the expression ranges of Nrf2 and downstream genes (SOD1 and NQO-1), thereby counteracting FB1-induced apoptosis. Furthermore, resveratrol was able to reduce the expression levels of inflammatory factors (TNF-α, IL-1β, and IL-6), increase the expression levels of tight junction proteins (Claudin-1, Occludin, and ZO-1), and the integrity of the IPEC-J2 monolayer. Our data also showed that resveratrol could attenuate the toxicity of the co-occurrence of three fumonisins. It is implied that resveratrol represents a promising protective approach for fumonisin, even other mycotoxins in the future. This provided a new strategy for further blocking and controlling the toxicity of fumonisin, subsequently avoiding adverse effects on the human and animal health.
Collapse
Affiliation(s)
- Song Yu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lianpeng Zou
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiawei Zhao
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yiping Zhu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
3
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Early-life galacto-oligosaccharides supplementation alleviates the small intestinal oxidative stress and dysfunction of lipopolysaccharide-challenged suckling piglets. J Anim Sci Biotechnol 2022; 13:70. [PMID: 35655292 PMCID: PMC9164537 DOI: 10.1186/s40104-022-00711-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) are non-digestible food ingredients that promote the growth of beneficial bacteria in the gut. This study investigated the protective effect of the early-life GOS supplement on the piglets' gut function against the oxidative stress induced by lipopolysaccharide (LPS)-challenge. METHODS Eighteen neonatal piglets were assigned to three groups including CON, LPS and LPS + GOS groups. The piglets in CON group and LPS group received physiological saline, while those in LPS + GOS group received GOS solution for 13 d after birth. On d 14, the piglets in LPS group and LPS + GOS group were injected with LPS solutions, while the piglets in CON group were injected with the same volume of physiological saline. RESULTS The results showed that the early-life GOS supplement blocked the LPS-induced reactive oxygen species (ROS) secretion, malondialdehyde (MDA) production and the increase of pro-apoptotic factor expression. Meanwhile, the early-life GOS supplement improved the activities of antioxidant enzymes, disaccharidase enzymes activities, and digestive enzymes activities, and increased the mRNA abundance of the gene related to nutrient digestion and absorption and the relative protein expression of tight junction. The study also showed that the early-life GOS supplement improved the expression of Hemeoxygenase-1 (HO-1) and NAD(P)H/quinone acceptor oxidoreductase-1 (NQO-1), and activated the AMP-activated protein kinase (AMPK). CONCLUSIONS These results suggested that GOS enhanced the gut function, reduced the ROS production and pro-apoptotic factors gene expression, and activated the AMPK signaling pathway in LPS-challenged piglets.
Collapse
Affiliation(s)
- Shiyi Tian
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jue Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Integrative computational approach identifies drug targets in CD4 + T-cell-mediated immune disorders. NPJ Syst Biol Appl 2021; 7:4. [PMID: 33483502 PMCID: PMC7822845 DOI: 10.1038/s41540-020-00165-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4+ T cells’ metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2, and Th17 CD4+ T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug response analysis of existing FDA-approved drugs and compounds. Integration of disease-specific differentially expressed genes with altered reactions in response to metabolic perturbations identified 68 drug targets for the three autoimmune diseases. In vitro experimental validation, together with literature-based evidence, showed that modulation of fifty percent of identified drug targets suppressed CD4+ T cells, further increasing their potential impact as therapeutic interventions. Our approach can be generalized in the context of other diseases, and the metabolic models can be further used to dissect CD4+ T-cell metabolism.
Collapse
|
5
|
A Medium-Throughput System for In Vitro Oxidative Stress Assessment in IPEC-J2 Cells. Int J Mol Sci 2020; 21:ijms21197263. [PMID: 33019601 PMCID: PMC7583761 DOI: 10.3390/ijms21197263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
The feed industry continuously seeks new molecules with antioxidant capacity since oxidative stress plays a key role in intestinal health. To improve screening of new antioxidants, this study aims to set up an assay to assess oxidative stress in the porcine small intestinal epithelial cell line IPEC-J2 using plate-reader-based analysis of fluorescence. Two oxidants, H2O2 and menadione, were tested at 1, 2 and 3 mM and 100, 200 and 300 µM, respectively. Trolox (2 mM) was used as the reference antioxidant and the probe CM-H2DCFDA was used to indicate intracellular oxidative stress. Cell culture, reactive oxygen species (ROS) production and assessment conditions were optimized to detect a significant ROS accumulation that could be counteracted by pre-incubation with trolox. Menadione (200 µM) reproducibly increased ROS levels, H2O2 failed to do so. Trolox significantly decreased intracellular ROS levels in menadione (200 µM)-exposed cells in a consistent way. The system was further used to screen different concentrations of the commercially available antioxidant ELIFE®. Concentrations between 100 and 200 ppm protected best against intracellular ROS accumulation. In conclusion, the combination of CM-H2DCFDA fluorescence analysis by a plate-reader, trolox as a reference antioxidant and 200 µM of menadione as a stressor agent, provides a replicable and reliable medium-throughput setup for the evaluation of intracellular oxidative stress in IPEC-J2 cells.
Collapse
|
6
|
Yang J, Zhu C, Ye J, Lv Y, Wang L, Chen Z, Jiang Z. Protection of Porcine Intestinal-Epithelial Cells from Deoxynivalenol-Induced Damage by Resveratrol via the Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1726-1735. [PMID: 30449092 DOI: 10.1021/acs.jafc.8b03662] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deoxynivalenol (DON), a common mycotoxin, usually induces oxidative stress and affects the intestinal health of humans and animals. This study investigated the protective effect of resveratrol (RES), a natural antioxidant, on alleviating the cytotoxicity induced by DON in the porcine intestinal-epithelial cell line (IPEC-J2). Cells were incubated with RES for 24 h and then exposed to DON for another 24 h. Cell viability, proliferation, apoptosis, and oxidative-stress indicators were determined. In comparison with DON-only-treated cells, pretreatment with RES (15 μM) increased the cell viability (79.74 ± 2.02 vs 90.98 ± 2.66%, P < 0.01), improved proliferation (EdU-positive cells, 26.42 ± 1.12 vs 32.05 ± 0.78%, P < 0.01), decreased accumulation of intracellular reactive oxygen species (ROS, 1.68 ± 0.05 vs 1.29 ± 0.06, P < 0.01), stabilized mitochondrial-membrane potential (MMP, 8.98 ± 1.40 vs 2.29 ± 0.76, P < 0.001), and prevented apoptosis induced by DON (13.91 ± 1.20 vs 6.83 ± 0.52%, P < 0.01). RES activated the Nrf2 signaling pathway, and transfection with Nrf2 siRNA abrogated the protection of RES against DON-induced cytotoxicity, accumulation of intracellular ROS, and mitochondria-dependent apoptosis. Collectively, RES protects IPEC-J2 cells against DON-induced damage at least partly via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jun Yang
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , PR China
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Cui Zhu
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Jinling Ye
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Yantao Lv
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Li Wang
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Zhuang Chen
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Zongyong Jiang
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| |
Collapse
|
7
|
Omonijo FA, Liu S, Hui Q, Zhang H, Lahaye L, Bodin JC, Gong J, Nyachoti M, Yang C. Thymol Improves Barrier Function and Attenuates Inflammatory Responses in Porcine Intestinal Epithelial Cells during Lipopolysaccharide (LPS)-Induced Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:615-624. [PMID: 30567427 DOI: 10.1021/acs.jafc.8b05480] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is well-known that essential oil thymol exhibits antibacterial activity. The protective effects of thymol on pig intestine during inflammation is yet to be investigated. In this study, an in vitro lipopolysaccharide (LPS)-induced inflammation model using IPEC-J2 cells was established. Cells were pretreated with thymol for 1 h and then exposed to LPS for various assays. Interleukin 8 (IL-8) secretion, the mRNA abundance of cytokines, reactive oxygen species (ROS), nutrient transporters, and tight junction proteins was measured. The results showed that LPS stimulation increased IL-8 secretion, ROS production, and tumor necrosis factor alpha (TNF-α) mRNA abundance ( P < 0.05), but the mRNA abundance of sodium-dependent glucose transporter 1 (SGLT1), excitatory amino acid transporter 1 (EAAC1), and H+/peptide cotransporter 1 (PepT1) were decreased ( P < 0.05). Thymol blocked ROS production ( P < 0.05) and tended to decrease the production of LPS-induced IL-8 secretion ( P = 0.0766). The mRNA abundance of IL-8 and TNF-α was reduced by thymol pretreatment ( P < 0.05), but thymol did not improve the gene expression of nutrient transporters ( P > 0.05). The transepithelial electrical resistance (TEER) was reduced and cell permeability increased by LPS treatment ( P < 0.05), but these effects were attenuated by thymol ( P < 0.05). Moreover, thymol increased zonula occludens-1 (ZO-1) and actin staining in the cells. However, the mRNA abundance of ZO-1 and occludin-3 was not affected by either LPS or thymol treatments. These results indicated that thymol enhances barrier function and reduce ROS production and pro-inflammatory cytokine gene expression in the epithelial cells during inflammation. The regulation of barrier function by thymol and LPS may be at post-transcriptional or post-translational levels.
Collapse
Affiliation(s)
- Faith A Omonijo
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Shangxi Liu
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Qianru Hui
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ludovic Lahaye
- Jefo Nutrition Inc. , Saint-Hyacinthe , Quebec J2S 7B6 , Canada
| | | | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Martin Nyachoti
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Chengbo Yang
- Department of Animal Science , University of Manitoba , 12 Dafoe Road , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
8
|
Mitochondrial pathway is involved in the protective effects of alpha-ketoglutarate on hydrogen peroxide induced damage to intestinal cells. Oncotarget 2017; 8:74820-74835. [PMID: 29088826 PMCID: PMC5650381 DOI: 10.18632/oncotarget.20426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha-ketoglutarate, a key intermediate in the Krebs cycle, has been reported to benefit intestinal health. We tested whether alpha-ketoglutarate can protect intestinal cells against hydrogen peroxide induced damage and aimed to reveal the underlying mechanism. Intestinal porcine epithelial cell line J2 were cultured in Dulbecco’s Modified Eagle Medium-High glucose with or without alpha-ketoglutarate and hydrogen peroxide. Cell viability, proliferation, mitochondrial respiration, mitochondrial membrane potential, antioxidant function, apoptosis and mitochondrial-dependent apoptotic pathways were determined. Our experiments demonstrated that, first, exposure to 100μM hydrogen peroxide decreased cell viability, DNA synthesis, mitochondrial respiration and antioxidant function, and increased apoptosis. Second, 2mM alpha-ketoglutarate addition attenuated hydrogen peroxide-induced cell cycle arrest, and improved cell viability, DNA synthesis, mitochondrial respiration and antioxidant function. Third, alpha-ketoglutarate enhanced tricarboxylic acid cycle activity, mitochondrial respiration, and decrease the intracellular content of reactive oxygen species. Finally, alpha-ketoglutarate stabilized the mitochondrial membrane potential, increased the ratio of Bcl-2/Bax, decreased the release of cytochrome c and activation of caspase-3, thereby prevented cell apoptosis. Altogether, we proposed that alpha-ketoglutarate protects intestinal cells against hydrogen peroxide-induced damage partly via mitochondria dependent pathway.
Collapse
|
9
|
Trolox and ascorbic acid reduce direct and indirect oxidative stress in the IPEC-J2 cells, an in vitro model for the porcine gastrointestinal tract. PLoS One 2015; 10:e0120485. [PMID: 25745867 PMCID: PMC4351986 DOI: 10.1371/journal.pone.0120485] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/23/2015] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H2DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay). Trolox (2 mM) and 1 mM ascorbic acid pre-treatment significantly reduced intracellular oxidative stress, increased wound healing capacity and reduced FD-4 permeability in oxidatively stressed IPEC-J2 cell monolayers. All antioxidant pre-treatments increased transepithelial electrical resistance and viability only in diethyl maleate-treated cells. Glutathione monoethyl ester (10 mM) pre-treatment significantly decreased intracellular oxidative stress and monolayer permeability only in diethyl maleate-treated cells. These data demonstrate that the IPEC-J2 oxidative stress model is a valuable tool to screen antioxidants before validation in piglets.
Collapse
|
10
|
Buccigrossi V, Laudiero G, Nicastro E, Miele E, Esposito F, Guarino A. The HIV-1 transactivator factor (Tat) induces enterocyte apoptosis through a redox-mediated mechanism. PLoS One 2011; 6:e29436. [PMID: 22216281 PMCID: PMC3246489 DOI: 10.1371/journal.pone.0029436] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/28/2011] [Indexed: 12/23/2022] Open
Abstract
The intestinal mucosa is an important target of human immunodeficiency virus (HIV) infection. HIV virus induces CD4+ T cell loss and epithelial damage which results in increased intestinal permeability. The mechanisms involved in nutrient malabsorption and alterations of intestinal mucosal architecture are unknown. We previously demonstrated that HIV-1 transactivator factor (Tat) induces an enterotoxic effect on intestinal epithelial cells that could be responsible for HIV-associated diarrhea. Since oxidative stress is implicated in the pathogenesis and morbidity of HIV infection, we evaluated whether Tat induces apoptosis of human enterocytes through oxidative stress, and whether the antioxidant N-acetylcysteine (NAC) could prevent it. Caco-2 and HT29 cells or human intestinal mucosa specimens were exposed to Tat alone or combined with NAC. In an in-vitro cell model, Tat increased the generation of reactive oxygen species and decreased antioxidant defenses as judged by a reduction in catalase activity and a reduced (GSH)/oxidized (GSSG) glutathione ratio. Tat also induced cytochrome c release from mitochondria to cytosol, and caspase-3 activation. Rectal dialysis samples from HIV-infected patients were positive for the oxidative stress marker 8-hydroxy-2'-deoxyguanosine. GSH/GSSG imbalance and apoptosis occurred in jejunal specimens from HIV-positive patients at baseline and from HIV-negative specimens exposed to Tat. Experiments with neutralizing anti-Tat antibodies showed that these effects were direct and specific. Pre-treatment with NAC prevented Tat-induced apoptosis and restored the glutathione balance in both the in-vitro and the ex-vivo model. These findings indicate that oxidative stress is one of the mechanism involved in HIV-intestinal disease.
Collapse
Affiliation(s)
| | - Gabriella Laudiero
- Department of Paediatrics, University of Naples “Federico II,” Naples, Italy
| | - Emanuele Nicastro
- Department of Paediatrics, University of Naples “Federico II,” Naples, Italy
| | - Erasmo Miele
- Department of Paediatrics, University of Naples “Federico II,” Naples, Italy
| | - Franca Esposito
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II,” Naples, Italy
| | - Alfredo Guarino
- Department of Paediatrics, University of Naples “Federico II,” Naples, Italy
| |
Collapse
|
11
|
Kippner LE, Finn NA, Shukla S, Kemp ML. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase. BMC SYSTEMS BIOLOGY 2011; 5:164. [PMID: 21995976 PMCID: PMC3199260 DOI: 10.1186/1752-0509-5-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cellular clearance of reactive oxygen species is dependent on a network of tightly coupled redox enzymes; this network rapidly adapts to oxidative conditions such as aging, viral entry, or inflammation. Current widespread use of shRNA as a means to perturb specific redox couples may be misinterpreted if the targeted effects are not monitored in the context of potential global remodeling of the redox enzyme network. RESULTS Stable cell lines containing shRNA targets for glutaredoxin 1, thioredoxin 1, or glucose-6-phosphate dehydrogenase were generated in order to examine the changes in expression associated with altering cytosolic redox couples. A qRT PCR array revealed systemic off-target effects of altered antioxidant capacity and reactive oxygen species formation. Empty lentiviral particles generated numerous enzyme expression changes in comparison to uninfected cells, indicating an alteration in antioxidant capacity irrespective of a shRNA target. Of the three redox couples perturbed, glutaredoxin 1, attenuation produced the most numerous off-target effects with 10/28 genes assayed showing statistically significant changes. A multivariate analysis extracted strong co-variance between glutaredoxin 1 and peroxiredoxin 2 which was subsequently experimentally verified. Computational modeling of the peroxide clearance dynamics associated with the remodeling of the redox network indicated that the compromised antioxidant capacity compared across the knockdown cell lines was unequally affected by the changes in expression of off-target proteins. CONCLUSIONS Our results suggest that targeted reduction of redox enzyme expression leads to widespread changes in off-target protein expression, changes that are well-insulated between sub-cellular compartments, but compensatory in both the production of and protection against intracellular reactive oxygen species. Our observations suggest that the use of lentivirus can in itself have off-target effects on dynamic responses to oxidative stress due to the changes in species concentrations.
Collapse
Affiliation(s)
- Linda E Kippner
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
12
|
Sun Y, Huang L, Mackenzie GG, Rigas B. Oxidative stress mediates through apoptosis the anticancer effect of phospho-nonsteroidal anti-inflammatory drugs: implications for the role of oxidative stress in the action of anticancer agents. J Pharmacol Exp Ther 2011; 338:775-83. [PMID: 21646387 PMCID: PMC3164348 DOI: 10.1124/jpet.111.183533] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/03/2011] [Indexed: 12/14/2022] Open
Abstract
We assessed the relationship between oxidative stress, cytokinetic parameters, and tumor growth in response to novel phospho-nonsteroidal anti-inflammatory drugs (NSAIDs), agents with significant anticancer effects in preclinical models. Compared with controls, in SW480 colon and MCF-7 breast cancer cells, phospho-sulindac, phospho-aspirin, phospho-flurbiprofen, and phospho-ibuprofen (P-I) increased the levels of reactive oxygen and nitrogen species (RONS) and decreased GSH levels and thioredoxin reductase activity, whereas the conventional chemotherapeutic drugs (CCDs), 5-fluorouracil (5-FU), irinotecan, oxaliplatin, chlorambucil, paclitaxel, and vincristine, did not. In both cell lines, phospho-NSAIDs induced apoptosis and inhibited cell proliferation much more potently than CCDs. We then treated nude mice bearing SW480 xenografts with P-I or 5-FU that had an opposite effect on RONS in vitro. Compared with controls, P-I markedly suppressed xenograft growth, induced apoptosis in the xenografts (8.9 ± 2.7 versus 19.5 ± 3.0), inhibited cell proliferation (52.6 ± 5.58 versus 25.8 ± 7.71), and increased urinary F2-isoprostane levels (10.7 ± 3.3 versus 17.9 ± 2.2 ng/mg creatinine, a marker of oxidative stress); all differences were statistically significant. 5-FU's effects on tumor growth, apoptosis, proliferation, and F2-isoprostane were not statistically significant. F2-isoprostane levels correlated with the induction of apoptosis and the inhibition of cell growth. P-I induced oxidative stress only in the tumors, and its apoptotic effect was restricted to xenografts. Our data show that phospho-NSAIDs act against cancer through a mechanism distinct from that of various CCDs, underscore the critical role of oxidative stress in their effect, and indicate that pathways leading to oxidative stress may be useful targets for anticancer strategies.
Collapse
Affiliation(s)
- Yu Sun
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | | | | |
Collapse
|
13
|
Briedé JJ, van Delft JMH, de Kok TMCM, van Herwijnen MHM, Maas LM, Gottschalk RWH, Kleinjans JCS. Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci 2009; 114:193-203. [PMID: 20044591 DOI: 10.1093/toxsci/kfp309] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Reactive oxygen species-induced oxidative stress in the colon is involved in inflammatory bowel diseases and suggested to be associated with colorectal cancer risk. However, our insight in molecular responses to different oxygen radicals is still fragmentary. Therefore, we studied global gene expression by an extensive time series (0.08, 0.25, 0.5, 1, 2, 4, 8, 16, or 24 h) analyses in human colon cancer (caco-2) cells after exposure to H(2)O(2) or the superoxide anion donor menadione. Differences in gene expression were investigated by hybridization on two-color microarrays against nonexposed time-matched control cells. Next to gene expression, correlations with related phenotypic markers (8-oxodG levels and cell cycle arrest) were investigated. Gene expression analysis resulted in 1404 differentially expressed genes upon H(2)O(2) challenge and 979 genes after menadione treatment. Further analysis of gene expression data revealed how these oxidant responses can be discriminated. Time-dependent coregulated genes immediately showed a pulse-like response to H(2)O(2), while the menadione-induced expression is not restored over 24 h. Pathway analyses demonstrated that H(2)O(2) immediately influences pathways involved in the immune function, while menadione constantly regulated cell cycle-related pathways Altogether, this study offers a novel and detailed insight in the similarities and differences of the time-dependent oxidative stress responses induced by the oxidants H(2)O(2) and menadione and show that these can be discriminated regarding their modulation of particular colon carcinogenesis-related mechanisms.
Collapse
Affiliation(s)
- Jacob J Briedé
- Netherlands Toxicogenomics Centre, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|