1
|
Kawashima R, Tamaki S, Hara Y, Maekawa T, Kawakami F, Ichikawa T. Interleukin-13 Mediates Non-Steroidal Anti-Inflammatory-Drug-Induced Small Intestinal Mucosal Injury with Ulceration. Int J Mol Sci 2023; 24:14971. [PMID: 37834420 PMCID: PMC10573871 DOI: 10.3390/ijms241914971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), which are antipyretics and analgesics, cause gastrointestinal disorders, such as inflammation and ulcers. To prescribe NSAIDs more safely, it is important to clarify the mechanism of NSAID-induced gastrointestinal mucosal injury. However, there is a paucity of studies on small intestinal mucosal damage by NSAIDs, and it is currently unknown whether inflammation and ulceration also occur in the small intestine, and whether mediators are involved in the mechanism of injury. Therefore, in this study, we created an animal model in which small intestinal mucosal injury was induced using NSAIDs (indomethacin; IDM). Focusing on the dynamics of immune regulatory factors related to the injury, we aimed to elucidate the pathophysiological mechanism involved. We analyzed the pathological changes in the small intestine, the expression of immunoregulatory factors (cytokines), and identified cytokine secretion and expression cells from isolated lamina propria mononuclear cells (LPMCs). Ulcers were formed in the small intestine by administering IDM. Although the mRNA expression levels of IL-1β, IL-6, and TNFα were decreased on day 7 after IDM administration, IL-13 mRNA levels increased from day 3 after IDM administration and remained high even on day 7. The IL-13 mRNA expression and the secretion of IL-13 were increased in small intestinal LPMCs isolated from the IDM-treated group. In addition, we confirmed that IL-13 was expressed in CD4-positive T cells. These results provided new evidence that IL-13 production from CD4-positive T cells in the lamina propria of the small intestine contributes to NSAID-induced mucosal injury.
Collapse
Affiliation(s)
- Rei Kawashima
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Shun Tamaki
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Yusuke Hara
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
- Department of Gastroenterology, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan
| | - Tatsunori Maekawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Department of Health Science, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| |
Collapse
|
2
|
Chao G, Ye F, Shen W, Gong W, Zhang S. Study on the characteristic of intestinal flora in patients with dual antiplatelet therapy. J Drug Target 2019; 28:500-507. [PMID: 31613141 DOI: 10.1080/1061186x.2019.1681433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: The objective of the study was to explore the intestinal flora in patients with dual antiplatelet therapy.Method: We collected fresh stool specimens from 10 patients receiving dual antiplatelet therapy and 10 healthy people as control group. Then, we extracted faecal DNA, amplified 16 s rNDA V3-V4 area, and applied Illumina Miseq to analyse the structure of intestinal flora.Result: At class level, DAPT group show higher abundance of class Bacilli and lower abundance of class Erysipelotrichia. At order level, the abundance of order Lactobacillales in DAPT group is higher (p < .05), while the abundance of order Erysipelotrichales is lower in DAPT group (p < .05). At family level, the abundance of family Streptococcaceae and family Lactobacillaceae in DAPT group is higher (p < .05), while the abundance of family Acidaminococcaceae and family Erysipelotrichaceae is lower in DAPT group (p < .05). At genus level, the abundance of genus Streptococcus and genus Klebsiella in DAPT group is higher (p < .05), while the abundance of genus Blautia, genus Phascolarctobacterium and genus Megamonas is lower in DAPT group (p < .05).Conclusion: Taking aspirin and clopidogrel will not cause a change in the biodiversity of intestinal flora. There are significant differences in the intestinal flora of DAPT group compared with the control group at class, order, family and genus level.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Fangxu Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Wei Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Wenqian Gong
- Department of Integrated Traditional Chinese and Western Medicine on Oncology, Ningbo Yinzhou People Hospital, Zhejiang, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
3
|
Akiba Y, Maruta K, Narimatsu K, Said H, Kaji I, Kuri A, Iwamoto KI, Kuwahara A, Kaunitz JD. FFA2 activation combined with ulcerogenic COX inhibition induces duodenal mucosal injury via the 5-HT pathway in rats. Am J Physiol Gastrointest Liver Physiol 2017; 313:G117-G128. [PMID: 28526687 PMCID: PMC5582879 DOI: 10.1152/ajpgi.00041.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
Serotonin (5-HT), predominantly synthesized and released by enterochromaffin cells, is implicated in gastrointestinal symptoms such as emesis, abdominal pain, and diarrhea. Because luminal short-chain fatty acids (SCFAs) release 5-HT from enterochromaffin cells, which express the SCFA receptor free fatty acid receptor 2 (FFA2) in rat duodenum, we examined the effects of the selective FFA2 agonist phenylacetamide-1 (PA1) on duodenal 5-HT release with consequent bicarbonate secretion [duodenal bicarbonate secretion (DBS)] and on indomethacin (IND)-induced enteropathy. Intestinal injury was induced by IND (10 mg/kg sc) with or without PA1. We measured DBS in vivo in a duodenal loop perfused with PA1 while measuring 5-HT released in the portal vein. Duodenal blood flow was measured by laser-Doppler flowmetry. IND induced small intestinal ulcers with duodenal sparing. PA1 given with IND (IND + PA1) dose dependently induced duodenal erosions. IND + PA1-induced duodenal lesions were inhibited by the FFA2 antagonist GLPG-0974, ondansetron, or omeprazole but not by RS-23597 or atropine. Luminal perfusion of PA1 augmented DBS accompanied by increased portal blood 5-HT concentrations with approximately eight times more release at 0.1 mM than at 1 µM, with the effects inhibited by coperfusion of GLPG-0974. Luminal PA1 at 1 µM increased, but at 0.1 mM diminished, duodenal blood flow. Cosuperfusion of PA1 (0.1 mM) decreased acid-induced hyperemia, further reduced by IND pretreatment but restored by ondansetron. These results suggest that, although FFA2 activation enhances duodenal mucosal defenses, FFA2 overactivation during ulcerogenic cyclooxygenase inhibition may increase the vulnerability of the duodenal mucosa to gastric acid via excessive 5-HT release and 5-HT3 receptor activation, implicated in foregut-related symptoms such as emesis and epigastralgia.NEW & NOTEWORTHY Luminal free fatty acid receptor 2 agonists stimulate enterochromaffin cells and release serotonin, which enhances mucosal defenses in rat duodenum. However, overdriving serotonin release with high luminal concentrations of free fatty acid 2 ligands such as short-chain fatty acids injures the mucosa by decreasing mucosal blood flow. These results are likely implicated in serotonin-related dyspeptic symptom generation because of small intestinal bacterial overgrowth, which is hypothesized to generate excess SCFAs in the foregut, overdriving serotonin release from enterochromaffin cells.
Collapse
Affiliation(s)
- Yasutada Akiba
- 1Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California; ,2Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California; ,4Brentwood Biomedical Research Institute, Los Angeles, California; and
| | - Koji Maruta
- 2Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California;
| | - Kazuyuki Narimatsu
- 2Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California;
| | - Hyder Said
- 2Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California;
| | - Izumi Kaji
- 1Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California; ,2Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California; ,4Brentwood Biomedical Research Institute, Los Angeles, California; and
| | - Ayaka Kuri
- 5University of Shizuoka Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Shizuoka, Japan
| | - Ken-ichi Iwamoto
- 5University of Shizuoka Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Shizuoka, Japan
| | - Atsukazu Kuwahara
- 5University of Shizuoka Graduate School of Integrated Pharmaceutical and Nutritional Sciences, Shizuoka, Japan
| | - Jonathan D. Kaunitz
- 1Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California; ,2Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California; ,3Department of Surgery, School of Medicine, University of California Los Angeles, Los Angeles, California; ,4Brentwood Biomedical Research Institute, Los Angeles, California; and
| |
Collapse
|
4
|
Said H, Akiba Y, Narimatsu K, Maruta K, Kuri A, Iwamoto KI, Kuwahara A, Kaunitz JD. FFA3 Activation Stimulates Duodenal Bicarbonate Secretion and Prevents NSAID-Induced Enteropathy via the GLP-2 Pathway in Rats. Dig Dis Sci 2017; 62:1944-1952. [PMID: 28523577 PMCID: PMC5511769 DOI: 10.1007/s10620-017-4600-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/29/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Therapy with nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with enteropathy in humans and experimental animals, a cause of considerable morbidity. Unlike foregut NSAID-associated mucosal lesions, most treatments for this condition are of little efficacy. We propose that the endogenously released intestinotrophic hormone glucagon-like peptide-2 (GLP-2) prevents the development of NSAID-induced enteropathy. Since the short-chain fatty acid receptor FFA3 is expressed on enteroendocrine L cells and on enteric nerves in the gastrointestinal tract, we further hypothesized that activation of FFA3 on L cells protects the mucosa from injury via GLP-2 release with enhanced duodenal HCO3- secretion. We thus investigated the effects of synthetic selective FFA3 agonists with consequent GLP-2 release on NSAID-induced enteropathy. METHODS We measured duodenal HCO3- secretion in isoflurane-anesthetized rats in a duodenal loop perfused with the selective FFA3 agonists MQC or AR420626 (AR) while measuring released GLP-2 in the portal vein (PV). Intestinal injury was produced by indomethacin (IND, 10 mg/kg, sc) with or without MQC (1-10 mg/kg, ig) or AR (0.01-0.1 mg/kg, ig or ip) treatment. RESULTS Luminal perfusion with MQC or AR (0.1-10 µM) dose-dependently augmented duodenal HCO3- secretion accompanied by increased GLP-2 concentrations in the PV. The effect of FFA3 agonists was inhibited by co-perfusion of the selective FFA3 antagonist CF3-MQC (30 µM). AR-induced augmented HCO3- secretion was reduced by iv injection of the GLP-2 receptor antagonist GLP-2(3-33) (3 nmol/kg), or by pretreatment with the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172 (1 mg/kg, ip). IND-induced small intestinal ulcers were dose-dependently inhibited by intragastric administration of MQC or AR. GLP-2(3-33) (1 mg/kg, ip) or CF3-MQC (1 mg/kg, ig) reversed AR-associated reduction in IND-induced enteropathy. In contrast, ip injection of AR had no effect on enteropathy. CONCLUSION These results suggest that luminal FFA3 activation enhances mucosal defenses and prevents NSAID-induced enteropathy via the GLP-2 pathway. The selective FFA3 agonist may be a potential therapeutic candidate for NSAID-induced enteropathy.
Collapse
Affiliation(s)
- Hyder Said
- College of Arts and Sciences, University of California, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, 11301 Wilshire Boulevard, Bldg 115, Suite 217, Los Angeles, CA, 90073, USA
- Department of Medicine, University of California Los Angeles, School of Medicine, Los Angeles, CA, USA
- Brentwood Biomedical Research Institute, Los Angeles, CA, USA
| | - Kazuyuki Narimatsu
- Department of Medicine, University of California Los Angeles, School of Medicine, Los Angeles, CA, USA
| | - Koji Maruta
- Department of Medicine, University of California Los Angeles, School of Medicine, Los Angeles, CA, USA
| | - Ayaka Kuri
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ken-Ichi Iwamoto
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Atsukazu Kuwahara
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, 11301 Wilshire Boulevard, Bldg 115, Suite 217, Los Angeles, CA, 90073, USA.
- Department of Medicine, University of California Los Angeles, School of Medicine, Los Angeles, CA, USA.
- Brentwood Biomedical Research Institute, Los Angeles, CA, USA.
- Department of Surgery, University of California Los Angeles, School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Kurata S, Nakashima T, Osaki T, Uematsu N, Shibamori M, Sakurai K, Kamiya S. Rebamipide protects small intestinal mucosal injuries caused by indomethacin by modulating intestinal microbiota and the gene expression in intestinal mucosa in a rat model. J Clin Biochem Nutr 2014; 56:20-7. [PMID: 25834302 PMCID: PMC4306663 DOI: 10.3164/jcbn.14-67] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 12/29/2022] Open
Abstract
The effect of rebamipide, a mucosal protective drug, on small intestinal mucosal injury caused by indomethacin was examined using a rat model. Indomethacin administration (10 mg/kg, p.o.) induced intestinal mucosal injury was accompanied by an increase in the numbers of intestinal bacteria particularly Enterobacteriaceae in the jejunum and ileum. Rebamipide (30 and 100 mg/kg, p.o., given 5 times) was shown to inhibit the indomethacin-induced small intestinal mucosal injury and decreased the number of Enterococcaceae and Enterobacteriaceae in the jejunal mucosa to normal levels. It was also shown that the detection rate of segmented filamentous bacteria was increased by rebamipide. PCR array analysis of genes related to inflammation, oxidative stress and wound healing showed that indomethacin induced upregulation and downregulation of 14 and 3 genes, respectively in the rat jejunal mucosa by more than 5-fold compared to that of normal rats. Rebamipide suppressed the upregulated gene expression of TNFα and Duox2 in a dose-dependent manner. In conclusion, our study confirmed that disturbance of intestinal microbiota plays a crucial role in indomethacin-induced small intestinal mucosal injury, and suggests that rebamipide could be used as prophylaxis against non-steroidal anti-inflammatory drugs -induced gastrointestinal mucosal injury, by modulating microbiota and suppressing mucosal inflammation in the small intestine.
Collapse
Affiliation(s)
- Satoshi Kurata
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Takako Nakashima
- Third Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd., 463-10, Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Naoya Uematsu
- Third Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd., 463-10, Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masafumi Shibamori
- Third Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd., 463-10, Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Kazushi Sakurai
- Third Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd., 463-10, Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
6
|
Inoue T, Higashiyama M, Kaji I, Rudenkyy S, Higuchi K, Guth PH, Engel E, Kaunitz JD, Akiba Y. Dipeptidyl peptidase IV inhibition prevents the formation and promotes the healing of indomethacin-induced intestinal ulcers in rats. Dig Dis Sci 2014; 59:1286-95. [PMID: 24379150 PMCID: PMC4196264 DOI: 10.1007/s10620-013-3001-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/11/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS AND AIMS We studied the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) as a possible therapy for non-steroidal anti-inflammatory drug (NSAID)-induced intestinal ulcers. Luminal nutrients release endogenous GLP-2 from enteroendocrine L cells. Since GLP-2 is degraded by dipeptidyl peptidase IV (DPPIV), we hypothesized that DPPIV inhibition combined with luminal administration of nutrients potentiates the effects of endogenous GLP-2 on intestinal injury. METHODS Intestinal injury was induced by indomethacin (10 mg/kg, sc) in fed rats. The long-acting DPPIV inhibitor K579 was given intragastrically (ig) or intraperitoneally (ip) before or after indomethacin treatment. L-Alanine (L-Ala) and inosine 5'-monophosphate (IMP) were co-administered ig after the treatment. RESULTS Indomethacin treatment induced intestinal ulcers that gradually healed after treatment. Pretreatment with ig or ip K579 given at 1 mg/kg reduced total ulcer length, whereas K579 at 3 mg/kg had no effect. Exogenous GLP-2 also reduced intestinal ulcers. The preventive effect of K579 was dose-dependently inhibited by a GLP-2 receptor antagonist. Daily treatment with K579 (1 mg/kg), GLP-2, or L-Ala + IMP after indomethacin treatment reduced total ulcer length. Co-administration (ig) of K579 and L-Ala + IMP further accelerated intestinal ulcer healing. CONCLUSION DPPIV inhibition and exogenous GLP-2 prevented the formation and promoted the healing of indomethacin-induced intestinal ulcers, although high-dose DPPIV inhibition reversed the preventive effect. Umami receptor agonists also enhanced the healing effects of the DPPIV inhibitor. The combination of DPPIV inhibition and luminal nutrient-induced GLP-2 release may be a useful therapeutic tool for the treatment of NSAIDs-induced intestinal ulcers.
Collapse
Affiliation(s)
- Takuya Inoue
- Department of Medicine, School of Medicine, University of California, Los Angeles
- The Second Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Masaaki Higashiyama
- Department of Medicine, School of Medicine, University of California, Los Angeles
| | - Izumi Kaji
- Department of Medicine, School of Medicine, University of California, Los Angeles
| | - Sergiy Rudenkyy
- Greater Los Angles Veterans Affairs Healthcare System, University of California, Los Angeles
| | - Kazuhide Higuchi
- The Second Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Paul H. Guth
- Greater Los Angles Veterans Affairs Healthcare System, University of California, Los Angeles
| | - Eli Engel
- Department of Biomathematics, University of California, Los Angeles
| | - Jonathan D Kaunitz
- Greater Los Angles Veterans Affairs Healthcare System, University of California, Los Angeles
- Department of Medicine, School of Medicine, University of California, Los Angeles
- Brentwood Biomedical Research Institute, Los Angeles, CA 90073, USA
| | - Yasutada Akiba
- Greater Los Angles Veterans Affairs Healthcare System, University of California, Los Angeles
- Department of Medicine, School of Medicine, University of California, Los Angeles
- Brentwood Biomedical Research Institute, Los Angeles, CA 90073, USA
| |
Collapse
|
7
|
Yamamoto A, Itoh T, Nasu R, Nishida R. Sodium alginate ameliorates indomethacin-induced gastrointestinal mucosal injury via inhibiting translocation in rats. World J Gastroenterol 2014; 20:2641-2652. [PMID: 24627600 PMCID: PMC3949273 DOI: 10.3748/wjg.v20.i10.2641] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/20/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats.
METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured.
RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine.
CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation.
Collapse
|