1
|
Zhang P, Zhu Y, Chen P, Zhou T, Han ZY, Xiao J, Ma JF, Ma W, Zang P, Chen Y. Effects of Bifidobacterium lactis BLa80 on fecal and mucosal flora and stem cell factor/c-kit signaling pathway in simulated microgravity rats. World J Gastroenterol 2025; 31:96199. [PMID: 39777246 PMCID: PMC11684185 DOI: 10.3748/wjg.v31.i1.96199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/05/2024] [Accepted: 10/12/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance. The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor (SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells. Moreover, intestinal flora can also affect the regulation of SCF/c-kit signaling pathway, thus affecting the expression of Cajal stromal cells. Cajal cells are the pacemakers of gastrointestinal motility. AIM To investigate the effects of Bifidobacterium lactis (B. lactis) BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway. METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment, and 30 rats were randomly divided into control group, tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days. The tail group was given B. lactis BLa80 by intragastric administration, and the other two groups were given water intragastric administration, the concentration of intragastric administration was 0.1 g/mL, and each rat was 1 mL/day. Hematoxylin & eosin staining was used to observe the histopathological changes in each segment of the intestine of each group, and the expression levels of SCF, c-kit, extracellular signal-regulated kinase (ERK) and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR. The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA. RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum, jejunum and ileum in rats, marked damage, increased space between villi, loose arrangement, shortened columnar epithelium of colon, less folds, narrower mucosal thickness, reduced goblet cell number and crypts, and significant improvement after probiotic intervention. Simulated microgravity reduced the expressions of SCF and c-kit, and increased the expressions of ERK and P-ERK in the gastric antrum of rats. However, after probiotic intervention, the expressions of SCF and c-kit were increased, while the expressions of ERK and P-ERK were decreased, with statistical significance (P < 0.05). In addition, simulated microgravity can reduce the operational taxonomic unit (OTU) of the overall intestinal flora of rats, B. lactis BLa80 can increase the OTU of rats, simulated microgravity can reduce the overall richness and diversity of stool flora of rats, increase the abundance of firmicutes in stool flora of rats, and reduce the abundance of Bacteroides in stool flora of rats, most of which are mainly beneficial bacteria. Simulated microgravity can increase the overall richness and diversity of mucosal flora, increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora, and decrease the abundance of firmicutes, most of which are proteobacteria. After probiotics intervention, the overall Bacteroidetes trend in simulated microgravity rats was increased. CONCLUSION B. lactis BLa80 can ameliorate intestinal mucosal injury, regulate intestinal flora, inhibit ERK expression, and activate the SCF/c-kit signaling pathway, which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.
Collapse
Affiliation(s)
- Ping Zhang
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Ying Zhu
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Pu Chen
- Key Laboratory of Aerospace Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Tong Zhou
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zhe-Yi Han
- Department of Gastroenterology, The Air Force Medical Center, Beijing 100142, China
| | - Jun Xiao
- Department of Blood Transfusion, Air Force Medical Center, Beijing 100142, China
| | - Jian-Feng Ma
- Department of Gastroenterology, The Air Force Medical Center, Beijing 100142, China
| | - Wen Ma
- Department of Gastroenterology, The Air Force Medical Center, Beijing 100142, China
| | - Peng Zang
- Key Laboratory of Aerospace Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Ying Chen
- Department of Gastroenterology, The Air Force Medical Center, Beijing 100142, China
| |
Collapse
|
2
|
Strunz PP, Vuille-Dit-Bille RN, R Fox M, Geier A, Maggiorini M, Gassmann M, Fruehauf H, Lutz TA, Goetze O. Effect of high altitude on human postprandial 13 C-octanoate metabolism, intermediary metabolites, gastrointestinal peptides, and visceral perception. Neurogastroenterol Motil 2022; 34:e14225. [PMID: 34342373 DOI: 10.1111/nmo.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE At high altitude (HA), acute mountain sickness (AMS) is accompanied by neurologic and upper gastrointestinal symptoms (UGS). The primary aim of this study was to test the hypothesis that delayed gastric emptying (GE), assessed by 13 C-octanoate breath testing (OBT), causes UGS in AMS. The secondary aim was to assess post-gastric mechanisms of OBT, which could confound results under these conditions, by determination of intermediary metabolites, gastrointestinal peptides, and basal metabolic rate. METHODS A prospective trial was performed in 25 healthy participants (15 male) at 4559 m (HA) and at 490 m (Zurich). GE was assessed by OBT (428 kcal solid meal) and UGS by visual analogue scales (VAS). Blood sampling of metabolites (glucose, free fatty acids (FFA), triglycerides (TG), beta-hydroxyl butyrate (BHB), L-lactate) and gastrointestinal peptides (insulin, amylin, PYY, etc.) was performed as well as blood gas analysis and spirometry. STATISTICAL ANALYSIS variance analyses, bivariate correlation, and multilinear regression analysis. RESULTS After 24 h under hypoxic conditions at HA, participants developed AMS (p < 0.001). 13 CO2 exhalation kinetics increased (p < 0.05) resulting in reduced estimates of gastric half-emptying times (p < 0.01). However, median resting respiratory quotients and plasma profiles of TG indicated that augmented beta-oxidation was the main predictor of accelerated 13 CO2 -generation under these conditions. CONCLUSION Quantification of 13 C-octanoate oxidation by a breath test is sensitive to variation in metabolic (liver) function under hypoxic conditions. 13 C-breath testing using short-chain fatty acids is not reliable for measurement of gastric function at HA and should be considered critically in other severe hypoxic conditions, like sepsis or chronic lung disease.
Collapse
Affiliation(s)
- Patrick-Pascal Strunz
- Division of Rheumatology and Immunology, Department of Medicine II, University Hospital Wurzburg, Germany
| | | | - Mark R Fox
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Digestive Function: Basel, Laboratory and Clinic for Motility Disorders and Functional Digestive Diseases, Klinik Arlesheim, Arlesheim, Switzerland
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Wurzburg, Germany
| | - Marco Maggiorini
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Heiko Fruehauf
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zentrum für Gastroenterologie und Hepatologie, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Oliver Goetze
- Division of Hepatology, Department of Medicine II, University Hospital Wurzburg, Germany
| |
Collapse
|
3
|
Yang JQ, Jiang N, Li ZP, Guo S, Chen ZY, Li BB, Chai SB, Lu SY, Yan HF, Sun PM, Zhang T, Sun HW, Yang JW, Zhou JL, Yang HM, Cui Y. The effects of microgravity on the digestive system and the new insights it brings to the life sciences. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:74-82. [PMID: 34756233 DOI: 10.1016/j.lssr.2020.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/04/2020] [Accepted: 07/28/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND Weightlessness is a component of the complex space environment. It exerts adverse effects on the human body, and may pose unknown challenges to the implementation of space missions. The regular function of the digestive system is an important checkpoint for astronauts to conduct missions. Simulated microgravity can recreate the changes experienced by the human body in a weightless environment in space to a certain extent, providing technical support for the exploration of its mechanism and a practical method for other scientific research. METHODS AND MATERIALS In the present study, we reviewed and discussed the latest research on the effects of weightlessness or simulated microgravity on the digestive system, as well as the current challenges and future expectations for progress in medical science and further space exploration. RESULTS A series of studies have investigated the effects of weightlessness on the human digestive system. On one hand, weightlessness and the changing space environment may exert certain adverse effects on the human body. Studies based on cells or animals have demonstrated the complex effects on the human digestive system in response to weightlessness. On the other hand, a microgravity environment also facilitates the ideation of novel concepts for research in the domain of life science. CONCLUSION The effects of weightlessness on the digestive system are considerably complicated. The emergence of methods that help simulate a weightless environment provides a more convenient alternative for assessing the impact and the mechanism underlying the effect of weightlessness on the human body. In addition, the simulated microgravity environment facilitates the ideation of novel concepts for application in regenerative medicine and other fields of life science.
Collapse
Affiliation(s)
- Jia-Qi Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Nan Jiang
- The Center for Hepatopancreatobiliary Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Zheng-Peng Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Zheng-Yang Chen
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Bin-Bin Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Sheng-Yu Lu
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, the Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| | - He-Ming Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| |
Collapse
|
4
|
Rui Q, Dong S, Jiang W, Wang D. Response of canonical Wnt/β-catenin signaling pathway in the intestine to microgravity stress in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109782. [PMID: 31614302 DOI: 10.1016/j.ecoenv.2019.109782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Considering the short life-cycle property, Caenorhabditis elegans is a suitable animal model to evaluate the long-term effects of microgravity stress on organisms. Canonical Wnt/β-catenin signaling is evolutionarily conserved in various organisms. We here investigated the response of canonical Wnt/β-catenin signaling pathway to microgravity stress in nematodes. We observed the noticeable response of canonical Wnt/β-catenin signaling to microgravity stress. In contrast, we did not detect the obvious response of non-canonical Wnt/β-catenin signaling to microgravity stress. The canonical β-catenin BAR-1 acted in the intestine to regulate the response to simulated microgravity. Moreover, in the intestine, we identified a signaling cascade of canonical Wnt/β-catenin signaling pathway in response to simulated microgravity, and this signaling cascade contained Frizzled receptor MIG-1, Disheveled protein DSH-2, GSK3A/GSK-3, and β-catenin transcriptional factor BAR-1. Our data suggests an important protective response of canonical Wnt/β-catenin signaling to simulated microgravity in nematodes.
Collapse
Affiliation(s)
- Qi Rui
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuangshuang Dong
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkang Jiang
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Liu H, Guo D, Kong Y, Rui Q, Wang D. Damage on functional state of intestinal barrier by microgravity stress in nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109554. [PMID: 31434019 DOI: 10.1016/j.ecoenv.2019.109554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/22/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Due to short life cycle, nematode Caenorhabditis elegans is a suitable animal model for assessing the effect of long-term simulated microgravity treatment on organisms. We here investigated the effect of simulated microgravity treatment for 24-h on development and functional state of intestinal barrier in nematodes. Simulated microgravity treatment not only caused a broadened intestinal lumen, but also enhanced intestinal permeability. Intestinal overexpression of SOD-2, a mitochondrial Mn-SOD protein, prevented the damage on functional state of intestinal barrier by simulated microgravity and induced a resistance to toxicity of simulated microgravity, suggesting the crucial role of oxidative stress in inducing the damage on functional state of intestinal barrier in simulated microgravity treated nematodes. For the molecular basis of damage on functional state of intestinal barrier, we observed significant decrease in expressions of some genes (acs-22, erm-1, and hmp-2) required for maintenance of functional state of intestinal barrier in simulated microgravity treated nematodes. Our results highlight the potential of long-term simulated microgravity treatment in inducing intestinal damage in animals.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dongqin Guo
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Yan Kong
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Liu P, Li D, Li W, Wang D. Mitochondrial Unfolded Protein Response to Microgravity Stress in Nematode Caenorhabditis elegans. Sci Rep 2019; 9:16474. [PMID: 31712608 PMCID: PMC6848112 DOI: 10.1038/s41598-019-53004-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 11/29/2022] Open
Abstract
Caenorhabditis elegans is useful for assessing biological effects of spaceflight and simulated microgravity. The molecular response of organisms to simulated microgravity is still largely unclear. Mitochondrial unfolded protein response (mt UPR) mediates a protective response against toxicity from environmental exposure in nematodes. Using HSP-6 and HSP-60 as markers of mt UPR, we observed a significant activation of mt UPR in simulated microgravity exposed nematodes. The increase in HSP-6 and HSP-60 expression mediated a protective response against toxicity of simulated microgravity. In simulated microgravity treated nematodes, mitochondria-localized ATP-binding cassette protein HAF-1 and homeodomain-containing transcriptional factor DVE-1 regulated the mt UPR activation. In the intestine, a signaling cascade of HAF-1/DVE-1-HSP-6/60 was required for control of toxicity of simulated microgravity. Therefore, our data suggested the important role of mt UPR activation against the toxicity of simulated microgravity in organisms.
Collapse
Affiliation(s)
- Peidang Liu
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dan Li
- Medical School, Southeast University, Nanjing, 210009, China
| | - Wenjie Li
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Sun B, Zhang XY, Liu LZ, Chen ZH, Dai ZQ, Huang XS. Effects of Head-down Tilt on Nerve Conduction in Rhesus Monkeys. Chin Med J (Engl) 2017; 130:323-327. [PMID: 28139516 PMCID: PMC5308015 DOI: 10.4103/0366-6999.198925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Few studies have focused on peripheral nerve conduction during exposure to microgravity. The -6° head-down tilt (HDT) comprises an experimental model used to simulate the space flight environment. This study investigated nerve conduction characteristics of rhesus monkeys before and after prolonged exposure to HDT. METHODS Six rhesus monkeys (3-4 years old) were tilted backward 6° from the horizontal. Nerve conduction studies (NCSs) were performed on the median, ulnar, tibial, and fibular motor nerves. Analysis of variance with a randomized block design was conducted to compare the differences in the NCS before and 7, 21, and 42 days after the -6° HDT. RESULTS The proximal amplitude of the CMAP of the median nerve was significantly decreased at 21 and 42 days of HDT compared with the amplitude before HDT (4.38 ± 2.83 vs. 8.40 ± 2.66 mV, F = 4.85, P = 0.013 and 3.30 ± 2.70 vs. 8.40 ± 2.66 mV, F = 5.93, P = 0.004, respectively). The distal amplitude of the CMAP of the median nerve was significantly decreased at 7, 21, and 42 days of HDT compared with the amplitude before HDT (7.28 ± 1.27 vs. 10.25 ± 3.40 mV, F = 4.03, P = 0.039; 5.05 ± 2.01 vs. 10.25 ± 3.40 mV, F = 6.25, P = 0.04; and 3.95 ± 2.79 vs. 10.25 ± 3.40 mV, F = 7.35, P = 0.01; respectively). The proximal amplitude of the CMAP of the tibial nerve was significantly decreased at 42 days of HDT compared with the amplitude before HDT (6.14 ± 1.94 vs. 11.87 ± 3.19 mV, F = 5.02, P = 0.039). CONCLUSIONS This study demonstrates that the compound muscle action potential amplitudes of nerves are decreased under simulated microgravity in rhesus monkeys. Moreover, rhesus monkeys exposed to HDT might be served as an experimental model for the study of NCS under microgravity.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xiao-Yun Zhang
- Department of Neurology, 306 Hospital of People's Liberation Army, Beijing 100101, China
| | - Li-Zhi Liu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhao-Hui Chen
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhong-Quan Dai
- Department of Biomedical Engineering, China Astronaut Research and Training Center, Beijing 100101, China
| | - Xu-Sheng Huang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|