1
|
Patel JJ, Barash M. The Gut in Critical Illness. Curr Gastroenterol Rep 2025; 27:11. [PMID: 39792234 DOI: 10.1007/s11894-024-00954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness. RECENT FINDINGS Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure. Strategies to ameliorate gut dysfunction have focused on maintaining gut barrier function and promoting gut microbiota commensalism. The trajectory of critical illness may be closely related to gut epithelial barrier function, the gut microbiome and interventions that may contribute towards a deleterious pathobiome with immune dysregulation.
Collapse
Affiliation(s)
- Jayshil J Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.
| | - Mark Barash
- Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA
| |
Collapse
|
2
|
Green CH, Busch RA, Patel JJ. Fiber in the ICU: Should it Be a Regular Part of Feeding? Curr Gastroenterol Rep 2021; 23:14. [PMID: 34338900 DOI: 10.1007/s11894-021-00814-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To highlight the controversy of fiber use in the current critical care nutrition guidelines; review the effect of fiber on the gut microbiota in the critically ill; and examine the data on fiber and outcomes in the intensive care setting. RECENT FINDINGS Fiber is increasingly recognized as a necessary component of colonic health and nutrition support. In critical illness there is a shift toward gut dysbiosis and immune dysregulation. Through fermentation and the generation of short-chain fatty acids, fiber has a role in maintaining intestinal homeostasis, immune function, and supporting commensal bacteria. In contrast to fermentable fiber, recent animal models suggest that non-fermentable fiber can also favorably alter intestinal homeostasis in a mechanism distinct from short chain fatty acids. In the critically ill, RCTs and meta-analyses suggest that soluble and mixed fiber supplemented enteral nutrition can reduce diarrhea and is well tolerated. Based on limited data, there may be benefits in reducing length of hospital stay, certain infections, and glucose metabolism. Nonetheless, the role of fiber enriched nutrition in critically ill patients is controversial as evident in the conflicting guidelines. Despite shortcomings in the literature, soluble and mixed fiber supplemented enteral nutrition is safe and beneficial in most hemodynamically stable intensive care patients. More research is necessary to determine optimal fiber composition.
Collapse
Affiliation(s)
- Caitlin H Green
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Rebecca A Busch
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jayshil J Patel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Kastl AJ, Terry NA, Wu GD, Albenberg LG. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. Cell Mol Gastroenterol Hepatol 2019; 9:33-45. [PMID: 31344510 PMCID: PMC6881639 DOI: 10.1016/j.jcmgh.2019.07.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Despite growing literature characterizing the fecal microbiome and its association with health and disease, few studies have analyzed the microbiome of the small intestine. Here, we examine what is known about the human small intestinal microbiota in terms of community structure and functional properties. We examine temporal dynamics of select bacterial populations in the small intestine, and the effects of dietary carbohydrates and fats on shaping these populations. We then evaluate dysbiosis in the small intestine in several human disease models, including small intestinal bacterial overgrowth, short-bowel syndrome, pouchitis, environmental enteric dysfunction, and irritable bowel syndrome. What is clear is that the bacterial biology, and mechanisms of bacteria-induced pathophysiology, are enormously broad and elegant in the small intestine. Studying the small intestinal microbiota is challenged by rapidly fluctuating environmental conditions in these intestinal segments, as well as the complexity of sample collection and bioinformatic analysis. Because the functionality of the digestive tract is determined primarily by the small intestine, efforts must be made to better characterize this unique and important microbial ecosystem.
Collapse
Affiliation(s)
- Arthur J. Kastl
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Correspondence Address correspondence to: Arthur J. Kastl Jr, MD, Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, 7NW, Philadelphia, Pennsylvania 19104. fax: (215) 590-3606.
| | - Natalie A. Terry
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gary D Wu
- Division of Gastroenterology, Hepatology, and Nutrition, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lindsey G. Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Schörghuber M, Fruhwald S. Effects of enteral nutrition on gastrointestinal function in patients who are critically ill. Lancet Gastroenterol Hepatol 2018. [DOI: 10.1016/s2468-1253(18)30036-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Jennek S, Mittag S, Reiche J, Westphal JK, Seelk S, Dörfel MJ, Pfirrmann T, Friedrich K, Schütz A, Heinemann U, Huber O. Tricellulin is a target of the ubiquitin ligase Itch. Ann N Y Acad Sci 2017; 1397:157-168. [DOI: 10.1111/nyas.13349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Susanne Jennek
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Sonnhild Mittag
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Juliane Reiche
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Julie K. Westphal
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Stefanie Seelk
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Max J. Dörfel
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, University Hospital Halle; Martin Luther University Halle-Wittenberg; Halle/Saale Germany
| | - Karlheinz Friedrich
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Anja Schütz
- Helmholtz Protein Sample Production Facility; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| | - Udo Heinemann
- Helmholtz Protein Sample Production Facility; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
- Crystallography; Max Delbrück Center for Molecular Medicine; Berlin Germany
- Chemistry and Biochemistry Institute; Freie Universität Berlin; Berlin Germany
| | - Otmar Huber
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| |
Collapse
|
6
|
Hegan PS, Chandhoke SK, Barone C, Egan M, Bähler M, Mooseker MS. Mice lacking myosin IXb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum. Cytoskeleton (Hoboken) 2016; 73:163-79. [PMID: 26972322 DOI: 10.1002/cm.21292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/16/2022]
Abstract
Genetic studies have implicated MYO9B, which encodes myosin IXb (Myo9b), a motor protein with a Rho GTPase activating domain (RhoGAP), as a susceptibility gene for inflammatory bowel disease (IBD). Moreover, we have recently shown that knockdown of Myo9b in an intestinal epithelial cell line impairs wound healing and barrier function. Here, we investigated whether mice lacking Myo9b have impaired intestinal barrier function and features of IBD. Myo9b knock out (KO) mice exhibit impaired weight gain and fecal occult blood (indicator of gastrointestinal bleeding), and increased intestinal epithelial cell apoptosis could be detected along the entire intestinal axis. Histologic analysis revealed intestinal mucosal damage, most consistently observed in the ileum, which included superficial ulceration and neutrophil infiltration. Focal lesions contained neutrophils and ultrastructural examination confirmed epithelial discontinuity and the deposition of extracellular matrix. We also observed impaired mucosal barrier function in KO mice. Transepithelial electrical resistance of KO ileum is >3 fold less than WT ileum. The intestinal mucosa is also permeable to high molecular weight dextran, presumably due to the presence of mucosal surface ulcerations. There is loss of tight junction-associated ZO-1, decreased lateral membrane associated E-cadherin, and loss of terminal web associated cytokeratin filaments. Consistent with increased Rho activity in the KO, there is increased subapical expression of activated myosin II (Myo2) based on localization of phosphorylated Myo2 regulatory light chain. Except for a delay in disease onset in the KO, no difference in dextran sulfate sodium-induced colitis and lethality was observed between wild-type and Myo9b KO mice.
Collapse
Affiliation(s)
- Peter S Hegan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Surjit K Chandhoke
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Christina Barone
- Department of Respiratory Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Marie Egan
- Department of Respiratory Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany
| | - Mark S Mooseker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut.,Departments of Cell Biology and Pathology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|