1
|
Gu Y, Chen G, Ning X. Homeobox Protein BarH-like 1 Promotes Gastric Cancer Progression by Activating Coiled-Coil Domain-Containing Protein 178. Dig Dis Sci 2024; 69:1182-1199. [PMID: 38358459 DOI: 10.1007/s10620-024-08312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Coiled-coil domain-containing protein 178 (CCDC178) has been revealed to exert metastasis-promoting properties in hepatocellular carcinoma, whereas its function in gastric cancer (GC) has not been fully understood. AIMS We evaluated its role in GC and the molecular mechanism. METHODS The differentially expressed genes in datasets related to GC metastasis were intersected with survival-related genes in GC, followed by prognostic significance prediction. Loss- and gain-of-function assays were conducted to examine the involvement of CCDC178, Homeobox protein BarH-like 1 (BARX1), and the extracellular signal-regulated kinase (ERK) pathway in GC cell malignant phenotype and the polarization of tumor-associated macrophages (TAM). The corresponding functions were verified in the in vivo animal experiment. RESULTS High CCDC178 expression predicted a poor prognosis for GC patients, and CCDC178 correlated significantly with macrophage infiltration in GC tissues. CCDC178 activated the ERK pathway in GC. Silencing of CCDC178 reduced the colony formation, migratory and invasive potential of GC cells, and the M2-like polarization of TAM, which was reversed by TBHQ (an ERK activator). BARX1 bound to the promoter region of CCDC178, thus inducing its transcriptional level. Silencing of BARX1 suppressed the M2-type polarization of TAM in vitro and in vivo, and CCDC178 mitigated the repressing role of BARX1 knockdown. CONCLUSIONS BARX1 activates the transcription of CCDC178 to induce the ERK pathway, thereby supporting macrophage recruitment and M2-like polarization in GC.
Collapse
Affiliation(s)
- Yue Gu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001, Harbin, Heilongjiang, People's Republic of China.
| | - Gang Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001, Harbin, Heilongjiang, People's Republic of China
| | - Xinwei Ning
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
2
|
Luckett T, Abudula M, Ireland L, Glenn M, Bellomo G, Stafferton R, Halloran C, Ghaneh P, Jones R, Schmid MC, Mielgo A. Mesothelin Secretion by Pancreatic Cancer Cells Co-opts Macrophages and Promotes Metastasis. Cancer Res 2024; 84:527-544. [PMID: 38356443 DOI: 10.1158/0008-5472.can-23-1542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease, yet effective treatments to inhibit PDAC metastasis are lacking. The rich PDAC tumor microenvironment plays a major role in disease progression. Macrophages are the most abundant immune cell population in PDAC tumors and can acquire a range of functions that either hinder or promote tumor growth and metastasis. Here, we identified that mesothelin secretion by pancreatic cancer cells co-opts macrophages to support tumor growth and metastasis of cancer cells to the lungs, liver, and lymph nodes. Mechanistically, secretion of high levels of mesothelin by metastatic cancer cells induced the expression of VEGF alpha (VEGFA) and S100A9 in macrophages. Macrophage-derived VEGFA fed back to cancer cells to support tumor growth, and S100A9 increased neutrophil lung infiltration and formation of neutrophil extracellular traps. These results reveal a role for mesothelin in regulating macrophage functions and interaction with neutrophils to support PDAC metastasis. SIGNIFICANCE Mesothelin secretion by cancer cells supports pancreatic cancer metastasis by inducing macrophage secretion of VEGFA and S100A9 to support cancer cell proliferation and survival, recruit neutrophils, and stimulate neutrophil extracellular trap formation. See related commentary by Alewine, p. 513.
Collapse
Affiliation(s)
- Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rob Jones
- Department of Hepatobiliary Surgery, Liverpool University Teaching Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, Lin L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol 2024; 8:31. [PMID: 38341519 DOI: 10.1038/s41698-024-00522-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tumor drug resistance emerges from the interaction of two critical factors: tumor cellular heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) constitute essential components of the TME. M2-like TAMs are essential in facilitating tumor metastasis as well as augmenting the drug resistance of tumors. This review encapsulates the mechanisms that M2-like TAMs use to promote tumor drug resistance. We also describe the emerging therapeutic strategies that are currently targeting M2-like TAMs in combination with other antitumor drugs, with some still undergoing clinical trial evaluation. Furthermore, we summarize and analyze various existing approaches for developing novel drugs that target M2-like TAMs to overcome tumor resistance, highlighting how targeting M2-like TAMs can effectively stop tumor growth, metastasis, and overcome tumor drug resistance.
Collapse
Affiliation(s)
- Shujing Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiamin Luo
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Zhao T, Yu Z. Modified Gexia-Zhuyu Tang inhibits gastric cancer progression by restoring gut microbiota and regulating pyroptosis. Cancer Cell Int 2024; 24:21. [PMID: 38195483 PMCID: PMC10775600 DOI: 10.1186/s12935-024-03215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Gexia-Zhuyu Tang (GZT), a traditional Chinese medicine formula, is used to treat a variety of diseases. However, its roles in gastric cancer (GC) remain unclear. OBJECTIVE The aim of this study was to explore the roles and underlying molecular mechanisms of modified GZT in GC. METHODS The effects of modified GZT on GC were investigated by constructing mouse xenograft models with MFC cell line. The fecal samples from low-dose, high-dose, and without modified GZT treatment groups were collected for the 16S rRNA gene sequencing and fecal microbiota transplantation (FMT). Histopathological alterations of mice were evaluated using the hematoxylin-eosin (HE). Immunohistochemical (IHC) analysis with Ki67 and GSDMD was performed to measure tissue cell proliferation and pyroptosis, respectively. Proteins associated with pyroptosis, invasion, and metastasis were detected by Western blotting. Enzyme-linked immunosorbent assay (ELISA) was used to assess inflammation-related factors levels. RESULTS Modified GZT inhibited GC tumor growth and reduced metastasis and invasion-related proteins expression levels, including CD147, VEGF, and MMP-9. Furthermore, it notably promoted caspase-1-dependent pyroptosis, as evidenced by a dose-dependent increase in TNF-α, IL-1β, IL-18, and LDH levels, along with elevated protein expression of NLRP3, ASC, and caspase-1. Additionally, modified GZT increased species abundance and diversity of the intestinal flora. FMT assay identified that modified GZT inhibited GC tumor progression through regulation of intestinal flora. CONCLUSIONS Modified GZT treatment may promote pyroptosis by modulating gut microbiota in GC. This study identifies a new potential approach for the GC clinical treatment.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai City, 200240, China
| | - Zhijian Yu
- School of Traditional Chinese Medicine, Southern Medical University,Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, No. 1023-1063, Shatai South Road, Guangzhou City, 510515, Guangdong Province, China.
| |
Collapse
|
5
|
Yan J, Feng G, Yang Y, Zhao X, Ma L, Guo H, Chen X, Wang H, Chen Z, Jin Q. Nintedanib ameliorates osteoarthritis in mice by inhibiting synovial inflammation and fibrosis caused by M1 polarization of synovial macrophages via the MAPK/PI3K-AKT pathway. FASEB J 2023; 37:e23177. [PMID: 37688589 DOI: 10.1096/fj.202300944rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Synovial inflammation and fibrosis are important pathological changes associated with osteoarthritis (OA). Herein, we investigated if nintedanib, a drug specific for pulmonary fibrosis, plays a positive role in osteoarthritic synovial inflammation and fibrosis. We assessed the effect of nintedanib on osteoarthritic synovial inflammation and fibrosis in a mouse model of OA created by destabilization of the medial meniscus and a macrophage M1 polarization model created by stimulating RAW264.7 cells with lipopolysaccharide. Histological staining showed that daily gavage administration of nintedanib significantly alleviated articular cartilage degeneration, reduced the OARSI score, upregulated matrix metalloproteinase-13 and downregulated collagen II expression, and significantly reduced the synovial score and synovial fibrosis in a mouse OA model. In addition, immunofluorescence staining showed that nintedanib significantly decreased the number of M1 macrophages in the synovium of a mouse model of OA. In vitro results showed that nintedanib downregulated the phosphorylation levels of ERK, JNK, p38, PI3K, and AKT while inhibiting the expression of macrophage M1 polarization marker proteins (CD86, CD80, and iNOS). In conclusion, this study suggests that nintedanib is a potential candidate for OA treatment. The mechanisms of action of nintedanib include the inhibition of M1 polarization in OA synovial macrophages via the MAPK/PI3K-AKT pathway, inhibition of synovial inflammation and fibrosis, and reduction of articular cartilage degeneration.
Collapse
Affiliation(s)
- Jiangbo Yan
- Clinical College, Ningxia Medical University, Yinchuan, China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Gangning Feng
- Clinical College, Ningxia Medical University, Yinchuan, China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Yong Yang
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Xin Zhao
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Haohui Guo
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Xiaolei Chen
- Clinical College, Ningxia Medical University, Yinchuan, China
| | - Hui Wang
- Clinical College, Ningxia Medical University, Yinchuan, China
| | - Zhirong Chen
- Clinical College, Ningxia Medical University, Yinchuan, China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
| | - Qunhua Jin
- Clinical College, Ningxia Medical University, Yinchuan, China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Li J, Han T. Comprehensive analysis of the oncogenic roles of vascular endothelial growth factors and their receptors in stomach adenocarcinoma. Heliyon 2023; 9:e17687. [PMID: 37449140 PMCID: PMC10336736 DOI: 10.1016/j.heliyon.2023.e17687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Background Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) play complicated oncogenic roles in multiple tumors by initiating and promoting tumor angiogenesis and lymphangiogenesis. The main goal of our study was to comprehensively investigate the oncogenic roles of VEGFs and VEGFRs in stomach adenocarcinoma (STAD). Methods The present study applied multiple bioinformatic tools to comprehensively explore the expression levels, prognostic values, genetic alterations and immune infiltrations of VEGFs and VEGFRs in STAD patients. Results We found that VEGFA, VEGFC, placenta growth factor, FLT1, KDR, FLT4, and Neuropilin 1 were overexpressed in STAD, while the expression of VEGFB and VEGFD were decreased. Survival analysis revealed that higher transcription levels of VEGF/VEGFRs were obviously correlated with worse clinical outcome in STAD patients. Additionally, high alteration frequencies of VEGFs and VEGFRs (27%) were observed in STAD patients, and alterations of VEGFs and VEGFRs improved their prognosis. The expression of VEGFs and VEGFRs was remarkably associated with immune cell infiltration and immune checkpoint expression in STAD patients. Conclusion Our study systematically explored the transcriptome profiles and distinct prognostic values of VEGFs and their receptors in STAD and contributed to a better understanding of the oncogenic roles of VEGF/VEGFR members in STAD.
Collapse
Affiliation(s)
| | - Ting Han
- Corresponding author. Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
7
|
Segawa R, Kyoda T, Yagisawa M, Muramatsu T, Hiratsuka M, Hirasawa N. Hypoxia-inducible factor prolyl hydroxylase inhibitors suppressed thymic stromal lymphopoietin production and allergic responses in a mouse air-pouch-type ovalbumin sensitization model. Int Immunopharmacol 2023; 118:110127. [PMID: 37030118 DOI: 10.1016/j.intimp.2023.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Atopic dermatitis (AD) is an allergic skin disease, triggered by excessive type 2 immune reactions. Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine that induces type 2 immune response through dendritic cell activation. Therefore, TSLP inhibitors may serve as novel antiallergic drugs. Hypoxia-inducible factor (HIF) activation in the epithelia contributes to several homeostatic phenomena, such as re-epithelialization. However, the effects of HIF activation on TSLP production and immune activation in the skin remain unclear. In this study, we found that selective HIF prolyl hydroxylase inhibitors (PHD inhibitors), which induce HIF activation, suppressed TSLP production in a mouse ovalbumin (OVA) sensitization model. PHD inhibitors also suppressed the production of tumor necrosis factor-alpha (TNF-α), which is a major inducer of TSLP production, in this mouse model and in a macrophage cell line. Consistent with these findings, PHD inhibitors suppressed OVA-specific IgE levels in the serum and OVA-induced allergic responses. Furthermore, we found a direct suppressive effect on TSLP expression in a human keratinocyte cell line mediated by HIF activation. Taken together, our findings suggest that PHD inhibitors exert antiallergic effects by suppressing TSLP production. Controlling the HIF activation system has therapeutic potential in AD.
Collapse
|
8
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
9
|
Kim J, Park JH, Park SK, Hoe HS. Sorafenib Modulates the LPS- and Aβ-Induced Neuroinflammatory Response in Cells, Wild-Type Mice, and 5xFAD Mice. Front Immunol 2021; 12:684344. [PMID: 34122447 PMCID: PMC8190398 DOI: 10.3389/fimmu.2021.684344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Sorafenib is FDA-approved for the treatment of primary kidney or liver cancer, but its ability to inhibit many types of kinases suggests it may have potential for treating other diseases. Here, the effects of sorafenib on neuroinflammatory responses in vitro and in vivo and the underlying mechanisms were assessed. Sorafenib reduced the induction of mRNA levels of the proinflammatory cytokines COX-2 and IL-1β by LPS in BV2 microglial cells, but in primary astrocytes, only COX-2 mRNA levels were altered by sorafenib. Interestingly, sorafenib altered the LPS-mediated neuroinflammatory response in BV2 microglial cells by modulating AKT/P38-linked STAT3/NF-kB signaling pathways. In LPS-stimulated wild-type mice, sorafenib administration suppressed microglial/astroglial kinetics and morphological changes and COX-2 mRNA levels by decreasing AKT phosphorylation in the brain. In 5xFAD mice (an Alzheimer’s disease model), sorafenib treatment daily for 3 days significantly reduced astrogliosis but not microgliosis. Thus, sorafenib may have therapeutic potential for suppressing neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|
10
|
Herrero A, Benedicto A, Romayor I, Olaso E, Arteta B. Inhibition of COX-2 Impairs Colon Cancer Liver Metastasis through Reduced Stromal Cell Reaction. Biomol Ther (Seoul) 2021; 29:342-351. [PMID: 33455946 PMCID: PMC8094073 DOI: 10.4062/biomolther.2020.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Liver colonization is initiated through the interplay between tumor cells and adhesion molecules present in liver sinusoidal endothelial cells (LSECs). This crosstalk stimulates tumor COX-2 upregulation and PGE2 secretion. To elucidate the role of the LSEC intercellular adhesion molecule-1 (ICAM-1) in the prometastatic response exerted by tumor and stromal COX-2, we utilized celecoxib (CLX) as a COX-2 inhibitory agent. We analyzed the in vitro proliferative and secretory responses of murine C26 colorectal cancer (CRC) cells to soluble ICAM-1 (sICAM-1), cultured alone or with LSECs, and their effect on LSEC and hepatic stellate cell (HSC) migration and in vivo liver metastasis. CLX reduced sICAM-1-stimulated COX-2 activation and PGE2 secretion in C26 cells cultured alone or cocultured with LSECs. Moreover, CLX abrogated sICAM-1-induced C26 cell proliferation and C26 secretion of promigratory factors for LSECs and HSCs. Interestingly, CLX reduced the protumoral response of HSC, reducing their migratory potential when stimulated with C26 secretomes and impairing their secretion of chemotactic factors for LSECs and C26 cells and proliferative factors for C26 cells. In vivo, CLX abrogated the prometastatic ability of sICAM-1-activated C26 cells while reducing liver metastasis. COX-2 inhibition blocked the creation of a favorable tumor microenvironment (TME) by hindering the intratumoral recruitment of activated HSCs and macrophages in addition to the accumulation of fibrillar collagen. These results point to COX-2 being a key modulator of processes initiated by host ICAM-1 during tumor cell/LSEC/HSC crosstalk, leading to the creation of a prometastatic TME in the liver.
Collapse
Affiliation(s)
- Alba Herrero
- Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing, Leioa 48940, Bizkaia, Spain
| | - Aitor Benedicto
- Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing, Leioa 48940, Bizkaia, Spain
| | - Irene Romayor
- Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing, Leioa 48940, Bizkaia, Spain
| | - Elvira Olaso
- Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing, Leioa 48940, Bizkaia, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, University of the Basque Country, School of Medicine and Nursing, Leioa 48940, Bizkaia, Spain
| |
Collapse
|
11
|
Mao Z, Guan Y, Li T, Zhang L, Liu M, Xing B, Yao M, Chen M. Up regulation of miR-96-5p is responsible for TiO 2 NPs induced invasion dysfunction of human trophoblastic cells via disturbing Ezrin mediated cytoskeletons arrangement. Biomed Pharmacother 2019; 117:109125. [PMID: 31226636 DOI: 10.1016/j.biopha.2019.109125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are used extensively in our daily lives, and their toxic effects on the placenta have been reported. Animal studies indicated that placental development is impaired after maternal exposure of TiO2 NPs, but the underlying mechanisms remain largely unknown. In the present study, we used a human trophoblast-derived cell, HTR8-SVneo, to determine how TiO2 NPs affected placental functions, and found out potential reversal targets. TEM was employed for TiO2 NPs morphology observation and uptake assessment. RT-PCR was used to detect the expression of both mRNA and miRNA, and western blotting was used for protein examination. Cell invasion ability was evaluated by Transwell assay, and cytoskeletons were observed by immunofluorescence combined with confocal microscope examination. We found that TiO2 NPs disrupted cytoskeletons and impaired cell invasion ability. Further investigations showed that TiO2 NPs increased the expression of a microRNA (miR-96-5p), which targeted and down-regulated the translation of EZR mRNA, a gene that encodes ezrin protein, and affected the cell cytoskeletons and ultimately cell invasion ability. When the expression of miR-96-5p was down-regulated, the expression level of ezrin protein was also reversed, and cell invasion ability was partially restored. Collectively, we determined how miR-96-5p mediates TiO2 NP-induced placental dysfunction, and provided a potential rescue target for future therapy.
Collapse
Affiliation(s)
- Zhilei Mao
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211100, China; Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100, China.
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211100, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China; Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
| | - Ting Li
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China
| | - Lina Zhang
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China
| | - Menglu Liu
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China
| | - Baoling Xing
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, Jiangsu, China; Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China
| | - Mengmeng Yao
- Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211100, China; Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
| | - Minjian Chen
- Changzhou Center for Disease Control and Prevention, Changzhou, 213022, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211100, China; Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|