1
|
Liu ZZ, Ji FH, Piao Y. Non-coding RNAs participate in interactions between senescence and gastrointestinal cancers. Front Genet 2025; 15:1461404. [PMID: 39831201 PMCID: PMC11739115 DOI: 10.3389/fgene.2024.1461404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Relationships between cellular senescence and gastrointestinal cancers have gained prominence in recent years. The currently accepted theory suggests that cellular senescence and cancer occurrence exhibit "double-edged sword" effects. Cellular senescence is related to cancer via four "meta-hallmarks" i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis, along with two "antagonistic hallmarks" i.e., telomere attrition and stem cell exhaustion. These relationships are characterized by both agonistic and antagonistic elements, but the existence of an intricate dynamic balance remains unknown. Non-coding RNAs (ncRNAs) have vital roles in post-transcriptional regulation, but how they participate in agonistic and antagonistic relationships between cellular senescence and gastrointestinal cancers remains to be fully investigated. In this article, we systematically review how ncRNAs (including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circularRNAs (circRNAs)) participate in interactions between cellular senescence and gastrointestinal cancers. Our aim is to elucidate a triangular relationship between "ncRNAs-senescence-gastrointestinal cancers" which considered these three elements as an equal important standing. We are keen to identify prognostic or therapeutic targets for gastrointestinal cancers from, i.e., aging-related ncRNAs, or discover novel strategies to treat and manage in the elderly. We seek to clarify complex relationships where ncRNAs participate in "senescence-gastrointestinal cancers" interactions.
Collapse
Affiliation(s)
| | | | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
2
|
Liu Y, Lan S, Duan Z. circ-TTC17 Promotes Esophagus Squamous Cell Carcinoma Cell Growth, Metastasis, and Inhibits Autophagy-Mediated Radiosensitivity Through miR-145-5p/SIRT1 Axis. Thorac Cancer 2025; 16:e15494. [PMID: 39621506 PMCID: PMC11729993 DOI: 10.1111/1759-7714.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Circular RNA (circRNA) plays a significant role in esophagus squamous cell carcinoma (ESCC) progression. Nevertheless, circ-TTC17 roles in ESCC have not fully understood. METHODS The levels of circ-TTC17, miR-145-5p and sirtuin 1 (SIRT1) were determined using qRT-PCR. ESCC cell functions were examined by CCK8 assay, flow cytometry, transwell assay and colony formation assay. The relative protein levels of autophagy marker and SIRT1 were determined by western blot (WB). The interactions among circ-TTC17, miR-145-5p, and SIRT1 were verified by dual-luciferase reporter assay and RIP assay. RESULTS circ-TTC17 was overexpressed and miR-145-5p was underexpressed in ESCC. circ-TTC17 knockdown restrained ESCC cell proliferation and metastasis, while enhance apoptosis and autophagy-mediated radiosensitivity. Circ-TTC17 could sponge miR-145-5p, and its inhibitor reversed the inhibitory effect of circ-TTC17 knockdown on ESCC cell progression. Additionally, SIRT1 was targeted by miR-145-5p, and SIRT1 overexpression abolished miR-145-5p-mediated the suppressive effect on ESCC cell progression. Also, circ-TTC17 interference reduced ESCC tumor growth via miR-145-5p/SIRT1 axis. CONCLUSION circ-TTC17 promoted ESCC cell growth, metastasis and inhibited autophagy-mediated radiosensitivity by miR-145-5p/SIRT1 axis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Head and Neck Radiotherapy CombinedShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Shengmin Lan
- Department of Head and Neck Radiotherapy CombinedShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Zhihui Duan
- Department of Thoracic SurgeryShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
3
|
Farazi MM, Jafarinejad-Farsangi S, Miri Karam Z, Gholizadeh M, Hadadi M, Yari A. Circular RNAs: Epigenetic regulators of PTEN expression and function in cancer. Gene 2024; 916:148442. [PMID: 38582262 DOI: 10.1016/j.gene.2024.148442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Epigenetic regulation of gene expression, without altering the DNA sequence, is involved in many normal cellular growth and division events, as well as diseases such as cancer. Epigenetics is no longer limited to DNA methylation, and histone modification, but regulatory non-coding RNAs (ncRNAs) also play an important role in epigenetics. Circular RNAs (circRNAs), single-stranded RNAs without 3' and 5' ends, have recently emerged as a class of ncRNAs that regulate gene expression. CircRNAs regulate phosphatase and tensin homolog (PTEN) expression at various levels of transcription, post-transcription, translation, and post-translation under their own regulation. Given the importance of PTEN as a tumor suppressor in cancer that inhibits one of the most important cancer pathways PI3K/AKT involved in tumor cell proliferation and survival, significant studies have been conducted on the regulatory role of circRNAs in relation to PTEN. These studies will be reviewed in this paper to better understand the function of this protein in cancer and explore new therapeutic approaches.
Collapse
Affiliation(s)
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Miri Karam
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran
| | - Maryam Gholizadeh
- Institute of Bioinformatics, University of Medicine Greifswald, Greifwald, Germany
| | - Maryam Hadadi
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Zhang L, Wang Y, Gao J, Zhou X, Huang M, Wang X, He Z. Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncol Lett 2024; 27:255. [PMID: 38646493 PMCID: PMC11027111 DOI: 10.3892/ol.2024.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Esophageal cancer (EC) is a common form of malignant tumor in the digestive system that is classified into two types: Esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinoma. ESCC is known for its early onset of symptoms, which can be difficult to identify, as well as its rapid progression and tendency to develop drug resistance to chemotherapy and radiotherapy. These factors contribute to the high incidence of disease and low cure rate. Therefore, a diagnostic biomarker and therapeutic target need to be identified for ESCC. Non-coding RNAs (ncRNAs) are a class of molecules that are transcribed from DNA but do not encode proteins. Initially, ncRNAs were considered to be non-functional segments generated during transcription. However, with advancements in high-throughput sequencing technologies in recent years, ncRNAs have been associated with poor prognosis, drug resistance and progression of ESCC. The present study provides a comprehensive overview of the biogenesis, characteristics and functions of ncRNAs, particularly focusing on microRNA, long ncRNAs and circular RNAs. Furthermore, the ncRNAs that could potentially be used as diagnostic biomarkers and therapeutic targets for ESCC are summarized to highlight their application value and prospects in ESCC.
Collapse
Affiliation(s)
- Longze Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanyang Wang
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xue Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
5
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
6
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
7
|
Li P, Huang D, Gu X. Exploring the dual role of circRNA and PI3K/AKT pathway in tumors of the digestive system. Biomed Pharmacother 2023; 168:115694. [PMID: 37832407 DOI: 10.1016/j.biopha.2023.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
The interactions among circRNAs, the PI3K/AKT pathway, and their downstream effectors are intricately linked to their functional roles in tumorigenesis. Furthermore, the circRNAs/PI3K/AKT axis has been significantly implicated in the context of digestive system tumors. This axis is frequently abnormally activated in digestive cancers, including gastric cancer, colorectal cancer, pancreatic cancer, and others. Moreover, the overactivation of the circRNAs/PI3K/AKT axis promotes tumor cell proliferation, suppresses apoptosis, enhances invasive and metastatic capabilities, and contributes to drug resistance. In this regard, gaining crucial insights into the complex interaction between circRNAs and the PI3K/AKT pathway holds great potential for elucidating disease mechanisms, identifying diagnostic biomarkers, and designing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Penghui Li
- Department of General Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
8
|
Coleman JC, Hallett SR, Grigoriadis AE, Conte MR. LARP4A and LARP4B in cancer: The new kids on the block. Int J Biochem Cell Biol 2023; 161:106441. [PMID: 37356415 DOI: 10.1016/j.biocel.2023.106441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Recent developments have mounted a stunning body of evidence underlying the importance of RNA binding proteins (RBPs) in cancer research. In this minireview we focus on LARP4A and LARP4B, two paralogs belonging to the superfamily of La-related proteins, and provide a critical overview of current research, including their roles in cancer pathogenesis and cell proliferation, migration, cell cycle and apoptosis. We highlight current controversies surrounding LARP4A and LARP4B and conclude that their complex roles in tumorigenesis are cell-, tissue- and context-dependent, warning that caution must be exercised before categorising either protein as an oncoprotein or tumour-suppressor. We also reveal that LARP4A and LARP4B have often been confused with one another, adding uncertainty in delineating their functions. We suggest that further functional and mechanistic studies of LARP4 proteins present significant challenges for future investigations to recognise the vital contributions of these RBPs in cancer research.
Collapse
Affiliation(s)
- Jennifer C Coleman
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Sadie R Hallett
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
9
|
Wu C, Huang X, Li M, Wang Z, Zhang Y, Tian B. Crosstalk between circRNAs and the PI3K/AKT and/or MEK/ERK signaling pathways in digestive tract malignancy progression. Future Oncol 2023; 18:4525-4538. [PMID: 36891896 DOI: 10.2217/fon-2022-0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Evidence indicates that circular RNAs (circRNAs) may play an important role in regulating gene expression by binding to miRNAs through miRNA response elements. circRNAs are formed by back-splicing and have a covalently closed structure. The biogenesis of circRNAs also appears to be regulated by certain cell-specific and/or gene-specific mechanisms, and thus some circRNAs are tissue specific and tumor-expression specific. Furthermore, the high stability and tissue specificity of circRNAs may be of value for early diagnosis, survival prediction and precision medicine. This review summarizes current knowledge regarding the classification and functions of circRNAs and the role of circRNAs in regulating the PI3K/AKT and/or MEK/ERK signaling pathways in digestive tract malignancy tumors.
Collapse
Affiliation(s)
- Chao Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Mao Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Zihe Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Yi Zhang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| |
Collapse
|
10
|
Ju C, He J, Wang C, Sheng J, Jia J, Du D, Li H, Zhou M, He F. Current advances and future perspectives on the functional roles and clinical implications of circular RNAs in esophageal squamous cell carcinoma: more influential than expected. Biomark Res 2022; 10:41. [PMID: 35672804 PMCID: PMC9171998 DOI: 10.1186/s40364-022-00388-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/29/2022] [Indexed: 11/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive gastrointestinal cancers with high incidence and mortality. Therefore, it is necessary to identify novel sensitive and specific biomarkers for ESCC detection and treatment. Circular RNAs (circRNAs) are a type of noncoding RNAs featured by their covalently closed circular structure. This special structure makes circRNAs more stable in mammalian cells, coupled with their great abundance and tissue specificity, suggesting circRNAs may present enormous potential to be explored as valuable prognostic and diagnostic biomarkers for tumor. Mounting studies verified the critical roles of circRNAs in regulating ESCC cells malignant behaviors. Here, we summarized the current progresses in a handful of aberrantly expressed circRNAs, and elucidated their biological function and clinical significance in ESCC, and introduced a series of databases for circRNA research. With the improved advancement in high-throughput sequencing and bioinformatics technique, new frontiers of circRNAs will pave the path for the development of precision treatment in ESCC.
Collapse
Affiliation(s)
- Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Tang Y, Gao Z, Liu R. Identification and function of circular RNA hsa_circ_0071106: A novel biomarker for differentiation degree of esophageal squamous cell carcinoma. Pathol Res Pract 2022; 233:153875. [DOI: 10.1016/j.prp.2022.153875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
|
12
|
Zhang L, Li Z, Mao L, Wang H. Circular RNA in Acute Central Nervous System Injuries: A New Target for Therapeutic Intervention. Front Mol Neurosci 2022; 15:816182. [PMID: 35392276 PMCID: PMC8981151 DOI: 10.3389/fnmol.2022.816182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Acute central nervous system (CNS) injuries, including ischemic stroke, traumatic brain injury (TBI), spinal cord injury (SCI) and subarachnoid hemorrhage (SAH), are the most common cause of death and disability around the world. As a kind of non-coding ribonucleic acids (RNAs) with endogenous and conserve, circular RNAs (circRNAs) have recently attracted great attentions due to their functions in diagnosis and treatment of many diseases. A large number of studies have suggested that circRNAs played an important role in brain development and involved in many neurological disorders, particularly in acute CNS injuries. It has been proposed that regulation of circRNAs could improve cognition function, promote angiogenesis, inhibit apoptosis, suppress inflammation, regulate autophagy and protect blood brain barrier (BBB) in acute CNS injuries via different molecules and pathways including microRNA (miRNA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ph1osphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), Notch1 and ten-eleven translocation (TET). Therefore, circRNAs showed great promise as potential targets in acute CNS injuries. In this article, we present a review highlighting the roles of circRNAs in acute CNS injuries. Hence, on the basis of these properties and effects, circRNAs may be developed as therapeutic agents for acute CNS injury patients.
Collapse
|
13
|
Qiu R, Wang W, Li J, Wang Y. Roles of PTEN inactivation and PD-1/PD-L1 activation in esophageal squamous cell carcinoma. Mol Biol Rep 2022; 49:6633-6645. [PMID: 35301651 DOI: 10.1007/s11033-022-07246-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer in China and developing countries. The purpose of this review is to summarize the roles of inactivation of the tumor suppressor gene, phosphatase and tensin homolog (PTEN), and activation of the programmed cell death protein 1 (PD-1) upon binding to its ligand (PD-L1) in the promotion of ESCC. Studies of ESCC performed in vitro and in vivo indicated that PTEN and PD-L1 function in the regulation of cell proliferation, invasion, and migration; the epithelial-mesenchymal transition; resistance to chemotherapy and radiotherapy; and the PI3K/AKT signaling pathway. Certain genetic variants of PTEN are related to susceptibility to ESCC, and PTEN and PD-L1 also function in ESCC progression and affect the prognosis of patients with ESCC. There is also evidence that the expression of PD-L1 and PTEN are associated with the progression of certain other cancers. Future studies should further examine the relationship of PD-L1 and PTEN and their possible interactions in ESCC.
Collapse
Affiliation(s)
- Rong Qiu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China
| | - Wenxi Wang
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China
| | - Juan Li
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China
| | - Yuxiang Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China.
- , No.12, Jiankang Road, 050011, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
14
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther 2021; 6:400. [PMID: 34815385 PMCID: PMC8611092 DOI: 10.1038/s41392-021-00788-w] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
16
|
Fang X, Shrestha SM, Ren L, Shi R. Biological and clinical implications of metastasis-associated circular RNAs in oesophageal squamous cell carcinoma. FEBS Open Bio 2021; 11:2870-2887. [PMID: 34510785 PMCID: PMC8564336 DOI: 10.1002/2211-5463.13297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Oesophageal squamous cell carcinoma (OSCC) is a prevalent malignancy with high morbidity and mortality as a result of early metastasis and poor prognosis. Metastasis is a multistep process, involving various signalling pathways. Circular RNAs (circRNAs) are a class of covalently closed noncoding RNAs, the aberrant expression of which is reported to be involved in several biological events, including cell transformation, proliferation, migration, invasion, apoptosis and metastasis. Several studies have reported interactions between circRNAs and metastasis-associated signalling pathways. The abundance, stability and highly specific expression of candidate circRNAs make them potential biomarkers and therapeutic targets in OSCC. In this review article, we comprehensively describe metastasis-related circRNAs and their interactions with epithelial-mesenchymal transition-associated molecules. We also describe the molecular mechanisms and clinical relevance of circRNAs in OSCC progression and metastasis.
Collapse
Affiliation(s)
- Xin Fang
- Medical CollegeSoutheast UniversityNanjingChina
| | | | - Li‐Hua Ren
- Medical CollegeSoutheast UniversityNanjingChina
- Department of GastroenterologyZhongda HospitalAffiliated Hospital of Southeast UniversityNanjingChina
| | - Rui‐hua Shi
- Medical CollegeSoutheast UniversityNanjingChina
- Department of GastroenterologyZhongda HospitalAffiliated Hospital of Southeast UniversityNanjingChina
| |
Collapse
|
17
|
Circ-SFMBT2 drives the malignant phenotypes of esophageal cancer by the miR-107-dependent regulation of SLC1A5. Cancer Cell Int 2021; 21:495. [PMID: 34530825 PMCID: PMC8447765 DOI: 10.1186/s12935-021-02156-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Increasing studies focused on the regulatory roles of circular RNAs (circRNAs) in diverse cancers. This study was to evaluate the function and mechanism of circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) in esophageal cancer (EC). Methods The circ-SFMBT2, microRNA-107 (miR-107) and solute-linked carrier family A1 member 5 (SLC1A5) levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was evaluated by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay, colony formation assay and EdU assay. Cell apoptosis and invasion were detected by flow cytometry and transwell assay. Glutamine metabolism was assessed by the corresponding kits for glutamine consumption, α-ketoglutarate production and glutamate production. Western blot was used for protein quantification. The binding analysis was performed using dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assays. The functional research of circ-SFMBT2 in vivo was performed by xenograft tumor assay. Exosomes were identified by morphological observation and protein detection. Results Circ-SFMBT2 was overexpressed in EC samples and cells. Circ-SFMBT2 downregulation inhibited EC cell proliferation, invasion and glutamine metabolism. Circ-SFMBT2 targeted miR-107 and the regulation of circ-SFMBT2 was achieved by sponging miR-107. SLC1A5 was a target of miR-107, and it worked as an oncogene in EC cells. MiR-107 retarded the EC progression by downregulating SLC1A5. Circ-SFMBT2 could affect the SLC1A5 expression by targeting miR-107. Circ-SFMBT2 regulated EC progression in vivo by miR-107/SLC1A5 axis. Circ-SFMBT2 was transferred by exosomes in EC cells. Conclusion These results suggested that circ-SFMBT2 upregulated the SLC1A5 expression to promote the malignant development of EC by serving as a miR-107 sponge. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02156-8.
Collapse
|
18
|
Zhang H, Ju L, Hu P, Ye J, Yang C, Huang J. Circular RNA 0014715 Facilitates Cell Proliferation and Inhibits Apoptosis in Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:4735-4749. [PMID: 34163248 PMCID: PMC8214545 DOI: 10.2147/cmar.s314882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) have recently been verified to have multiple biological functions and participate in diverse biological processes in different malignant tumors, including esophageal squamous cell carcinoma (ESCC). Nonetheless, the function of circular RNA 0014715 (hsa_circ_0014715, circ_0014715) in ESCC has not been described. Materials and Methods We investigated clinical data from sixty-seven patients undergoing surgery for esophageal cancer. The clinical data were collected. And we analyzed the correlation between the clinical characteristics of these patients and the expression of circ_0014715. Besides, we explored the expression of circ_0014715 in ESCC cell lines. We used cell counting kit-8, colony formation, transwell assay, and flow cytometry to detect changes in cell proliferation, migration, apoptosis, and cell cycle progression. Results We found that circ_0014715 was highly expressed in esophageal squamous cell carcinoma tissues and cell lines. The correlation analysis of clinicopathological features and gene expression revealed that high expression of circ_0014715 was related to nerve invasion, vascular invasion, more advanced tumor-node-metastasis (TNM) stage and poor differentiation grade. Receiver operating characteristic (ROC) curves revealed that circ_0014715 might have diagnostic value for ESCC. Experiments with cultured cells showed that knockdown of circ_0014715 significantly restrained cell proliferation, migration, invasion, wound healing and accelerated cell apoptosis. And cell cycle arrest at G2 phase was observed via flow cytometry. Overexpression of circ_0014715 caused the opposite effects. Collectively, these studies show that circ_0014715 is closely connected with the pathogenesis and development of ESCC. The excess expression of circ_0014715 may have promoting effects on the progression of esophageal cell carcinoma. Conclusion Our finding revealed that circ_0014715 promoted tumor growth and cell proliferation. All of these suggest that targeting circ_0014715 has potential therapeutic value in the treatment of ESCC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Linling Ju
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Peipei Hu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, People's Republic of China
| | - Jun Ye
- Institute of Clinical Medicine, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Canlin Yang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Fang J, Ji WH, Wang FZ, Xie TM, Wang L, Fu ZF, Wang Z, Yan FQ, Shen QL, Ye ZM. Circular RNA hsa_circ_0000700 promotes cell proliferation and migration in Esophageal Squamous Cell Carcinoma by sponging miR-1229. J Cancer 2021; 12:2610-2623. [PMID: 33854621 PMCID: PMC8040728 DOI: 10.7150/jca.47112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has demonstrated that circular RNAs (circRNAs) are involved in the pathogenesis of cancer, including that of esophageal squamous cell carcinoma (ESCC). The current study aimed to investigate the role of hsa_circ_0000700 in ESCC. hsa_circ_0000700, miR-1229, and related functional gene expression was measured by RT-qPCR. To characterize the functions of hsa_circ_0000700 and miR-1229, ESCC cells were infected with hsa_circ_0000700-specific siRNA, miR-1229 mimics, and an inhibitor alone or in combination. Cell Counting Kit-8 (CCK8), colony formation, EdU, flow cytometry, and Transwell assays were employed to evaluate cell proliferation, apoptosis, and migration. Luciferase reporter and RNA immunoprecipitation assays were used to confirm the targeting relationship between hsa_circ_0000700 and miR-1229. Finally, a competing endogenous RNAs (ceRNA) network was built for hsa_circ_0000700, and miR-1229 targets were analyzed by bioinformatics. circ_0000700 expression was significantly upregulated in ESCC cell lines. Actinomycin D and RNase R treatment confirmed that circ_0000700 was more stable than its linear CDH9 mRNA form. Moreover, a cytoplasmic and nuclear fractionation assay suggested that circ_0000700 was mainly distributed in the cytoplasm of ECA-109 and TE-1 cells. In vitro, the proliferative and migratory capacities of ECA-109 and TE-1 cells were inhibited by knocking down circ_0000700 expression. Additionally, miR-1229 silencing reversed the circ_0000700-specific siRNA-induced attenuation of malignant phenotypes. Mechanistically, circ_0000700 was identified as a sponge of miR-1229 and could activate PRRG4, REEP5, and PSMB5 indirectly to promote ESCC progression. In summary, our results suggest that hsa_circ_0000700 functions as an oncogenic factor by sponging miR-1229 in ESCC.
Collapse
Affiliation(s)
- Jun Fang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Wen Hao Ji
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fang Zheng Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Tie Ming Xie
- Department of Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Lei Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Zhen Fu Fu
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Zhun Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Feng Qin Yan
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Qi Liang Shen
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhi Min Ye
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
20
|
Ghafouri-Fard S, Abak A, Shoorei H, Mohaqiq M, Majidpoor J, Sayad A, Taheri M. Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother 2020; 133:110986. [PMID: 33166764 DOI: 10.1016/j.biopha.2020.110986] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) gene encodes a tumor suppressor protein which is altered in several malignancies. This protein is a negative regulator of the PI3K/AKT signaling. Several transcription factors regulate the expression of PTEN in positive or negative directions. Moreover, numerous microRNAs (miRNAs) have functional interactions with PTEN and inhibit its expression. Suppression of PTEN can attenuate the response of cancer cells to chemotherapeutic agents. Based on the critical role of this tumor suppressor gene, the identification of negative regulators of its expression has practical significance particularly in the prevention and management of cancer. Meanwhile, the interaction between miRNAs and PTEN has functional consequences in non-malignant disorders including myocardial infarction, osteoporosis, cerebral ischemic stroke, and recurrent abortion. In the present review, we describe the role of miRNAs in the regulation of expression and activity of PTEN.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Zhao X, Wang Y, Yu Q, Yu P, Zheng Q, Yang X, Gao D. Circular RNAs in gastrointestinal cancer: Current knowledge, biomarkers and targeted therapy (Review). Int J Mol Med 2020; 46:1611-1632. [PMID: 33000182 PMCID: PMC7521476 DOI: 10.3892/ijmm.2020.4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous non‑coding RNAs that are connected at the 3' and 5' ends by exon or intron cyclization, which forms a covalently closed loop. They are stable, well conserved, exhibit specific expression in mammalian cells and can function as microRNA (miRNA or miR) sponges to regulate the target genes of miRNAs, which influences biological processes. Such as tumor proliferation, invasion, metastasis, apoptosis and tumor stage. circRNAs represent promising candidates for clinical diagnosis and treatment. In the present review, the biogenesis, classification and functions of circRNAs in tumors are briefly summarized and discussed. In addition, the participation of circRNAs in signal transduction pathways regulating gastrointestinal cancer cellular functions is highlighted.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Wang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Yu
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiaoyu Zheng
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Haig D, Mainieri A. The Evolution of Imprinted microRNAs and Their RNA Targets. Genes (Basel) 2020; 11:genes11091038. [PMID: 32899179 PMCID: PMC7564603 DOI: 10.3390/genes11091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes contain many imprinted microRNAs. When an imprinted miRNA targets an unimprinted mRNA their interaction may have different fitness consequences for the loci encoding the miRNA and mRNA. In one possible outcome, the mRNA sequence evolves to evade regulation by the miRNA by a simple change of target sequence. Such a response is unavailable if the targeted sequence is strongly constrained by other functions. In these cases, the mRNA evolves to accommodate regulation by the imprinted miRNA. These evolutionary dynamics are illustrated using the examples of the imprinted C19MC cluster of miRNAs in primates and C2MC cluster in mice that are paternally expressed in placentas. The 3′ UTR of PTEN, a gene with growth-related and metabolic functions, appears to be an important target of miRNAs from both clusters.
Collapse
|
23
|
Construction of circRNA-Associated ceRNA Network Reveals Novel Biomarkers for Esophageal Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:7958362. [PMID: 32908582 PMCID: PMC7474783 DOI: 10.1155/2020/7958362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Objective Esophageal cancer (ESCC) is reported to be the eighth most common malignant tumors worldwide with high mortality. However, the functions of majority circRNAs in ESCC requires to be further explored. Methods This study identified differently expressed circRNAs in 3 paired ESCC using RNA-sequencing method. The interactions among circRNAs, miRNAs, and mRNAs were predicted using bioinformatics analysis. Results In this study, using RNA-sequencing method and integrated bioinformatics analysis, 418 overexpressed circRNAs and 637 reduced circRNAs in ESCC sample were identified. Based on the mechanism that circRNAs could play as ceRNAs to modulate targets expression, circRNA-miRNA and circRNA-miRNA-mRNA networks were constructed in this study. Based on the network analysis, 7 circRNAs, including circ_0002255, circ_0000530, circ_0001904, circ_0001005, circ_0000513, circ_0000075, and circ_0001121, were identified as key circRNAs in ESCC. We found that circ_0002255 was related to the regulation of substrate adhesion-dependent cell spreading. circ_0001121 was involved in regulating nucleocytoplasmic transport. circ_0000513 played a key role in regulating Adherens junction, B cell receptor signaling pathway. Meanwhile, we observed circ_0000075 was involved in regulating zinc II ion transport, transition metal ion homeostasis, and angiogenesis. Conclusion We thought this study could provide novel biomarkers for the prognosis of ESCC.
Collapse
|
24
|
Ma S, Kong S, Wang F, Ju S. CircRNAs: biogenesis, functions, and role in drug-resistant Tumours. Mol Cancer 2020; 19:119. [PMID: 32758239 PMCID: PMC7409473 DOI: 10.1186/s12943-020-01231-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Targeted treatment, which can specifically kill tumour cells without affecting normal cells, is a new approach for tumour therapy. However, tumour cells tend to acquire resistance to targeted drugs during treatment. Circular RNAs (circRNAs) are single-stranded RNA molecules with unique structures and important functions. With the development of RNA sequencing technology, circRNAs have been found to be widespread in tumour-resistant cells and to play important regulatory roles. In this review, we present the latest advances in circRNA research and summarize the various mechanisms underlying their regulation. Moreover, we review the role of circRNAs in the chemotherapeutic resistance of tumours and explore the clinical value of circRNA regulation in treating tumour resistance.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, NO. 9, Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
25
|
Abstract
As a new kind of RNA, circular RNA (circRNA) is a endogenous non-coding RNA with circular structure, which has the characteristics of universality, stability, conservatism and specificity. CircRNA can specifically bind to microRNAs (miRNAs) in the form of competitive endogenous RNA, thus directly or indirectly regulating the expression of related genes. In addition to the role of sponge, circRNA also regulates parental gene expression, transcriptional translation and protein modification; and it can be used as a biomarker to develop potential diagnosis and treatment methods and evaluate prognosis. Due to changes in dietary habits and genetic factors, the morbidity and mortality of esophageal cancer (EC) in the world are still high, and are prone to early metastasis. Although the diagnosis and treatment techniques have been improved in recent years, the early diagnosis of EC is not common, and the 5-year survival rate of patients is still very low. This article reviews the function and significance of circRNA and discusses the research progress of circRNA as biomarkers in EC.
Collapse
|
26
|
Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, Jafaripour L, Bejandi AK, Hushmandi K, Saleki H, Zarrabi A, Kumar AP. PTEN, a Barrier for Proliferation and Metastasis of Gastric Cancer Cells: From Molecular Pathways to Targeting and Regulation. Biomedicines 2020; 8:E264. [PMID: 32756305 PMCID: PMC7460532 DOI: 10.3390/biomedicines8080264] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the life-threatening disorders that, in spite of excellent advances in medicine and technology, there is no effective cure for. Surgery, chemotherapy, and radiotherapy are extensively applied in cancer therapy, but their efficacy in eradication of cancer cells, suppressing metastasis, and improving overall survival of patients is low. This is due to uncontrolled proliferation of cancer cells and their high migratory ability. Finding molecular pathways involved in malignant behavior of cancer cells can pave the road to effective cancer therapy. In the present review, we focus on phosphatase and tensin homolog (PTEN) signaling as a tumor-suppressor molecular pathway in gastric cancer (GC). PTEN inhibits the PI3K/Akt pathway from interfering with the migration and growth of GC cells. Its activation leads to better survival of patients with GC. Different upstream mediators of PTEN in GC have been identified that can regulate PTEN in suppressing growth and invasion of GC cells, such as microRNAs, long non-coding RNAs, and circular RNAs. It seems that antitumor agents enhance the expression of PTEN in overcoming GC. This review focuses on aforementioned topics to provide a new insight into involvement of PTEN and its downstream and upstream mediators in GC. This will direct further studies for evaluation of novel signaling networks and their targeting for suppressing GC progression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 6461665145, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful 3419759811, Iran;
| | - Atefe Kazemzade Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| |
Collapse
|
27
|
Lv X, Li P, Wang J, Gao H, Hei Y, Zhang J, Li S. hsa_circ_0000520 influences herceptin resistance in gastric cancer cells through PI3K-Akt signaling pathway. J Clin Lab Anal 2020; 34:e23449. [PMID: 32701211 PMCID: PMC7595902 DOI: 10.1002/jcla.23449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background To investigate whether hsa_circ_0000520 affects Herceptin resistance in gastric cancer by regulating the PI3K‐AKT signaling. Methods The expression of hsa_circ_0000520 was detected by qRT‐PCR in gastric cancer tissues and cell lines. A Herceptin‐resistant gastric cancer cell was established. PcDNA and pcDNA‐hsa_circ_0000520 were transfected into NCI‐N87R cells and treated with Herceptin at a concentration of 10 μg/mL for 24 hours. MTT tested cell proliferation, and apoptosis was measured by flow cytometry. IGF‐1 treatment was used to activate PI3K‐Akt signaling. The expression levels of related proteins were detected. Results The expression of hsa_circ_0000520 was reduced in gastric cancer tissues and cell lines, and hsa_circ_0000520 in NCI‐N87R cells was significantly lower than that of NCI‐N87 cells. Compared with the CON group, the cell viability of the Herceptin group was significantly reduced, the apoptosis rate was significantly increased, the level of Bax protein was significantly increased, and the levels of Bcl‐2, p‐PI3K, and p‐Akt protein were significantly reduced. Compared with the Herceptin + pcDNA group, the cell viability of the Herceptin + hsa_circ_0000520 group was significantly reduced, the apoptosis rate was significantly increased, the level of Bax protein was significantly increased, and the levels of p‐PI3K and p‐Akt proteins were significantly reduced. After IGF‐1 treatment, the cell viability was significantly increased, the apoptosis rate was significantly reduced, the level of Bax protein was significantly reduced, and the level of Bcl‐2 protein was significantly increased. Conclusion Hsa_circ_0000520 overexpression may reverse the Herceptin resistance of gastric cancer cells by inhibiting the PI3K‐Akt signaling pathway.
Collapse
Affiliation(s)
- Xukun Lv
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, China
| | - Peizhe Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, China
| | - Jinkai Wang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, China
| | - Hengling Gao
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, China
| | - Yingrui Hei
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, China
| | - Jianxian Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, China
| | - Shuliang Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Linqing, China
| |
Collapse
|
28
|
Yang Z, Xu X, Song C. Circular RNA La-Related Protein 4 Inhibits Nonsmall Cell Lung Cancer Cell Proliferation While Promotes Apoptosis Through Sponging microRNA-21-5p. Cancer Biother Radiopharm 2020; 37:111-118. [PMID: 32614609 DOI: 10.1089/cbr.2020.3707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: This study aimed to investigate the function of circular RNA La-related protein 4 (circ-LARP4) on nonsmall cell lung cancer (NSCLC) progression. Materials and Methods: Circ-LARP4 overexpression and circ-LARP4 short hairpin RNA (shRNA) plasmids were transfected into NCI-H1650 cells and NCI-H1299 cells respectively. In rescue experiment, microRNA (miR)-21-5p overexpression and miR-21-5p shRNA plasmids were transfected into circ-LARP4 overexpression-treated NCI-H1650 cells and circ-LARP4 knockdown-treated NCI-H1650 cells, respectively. Circ-LARP4 and miR-21-5p expression levels were detected by reverse transcription-quantitative polymerase chain reaction. Cell proliferation and apoptosis were investigated by cell counting kit-8 assay and annexin V/propidium iodide assay. The interaction between circ-LARP4 and miR-21-5p was further explored by luciferase reporter assay. Results: Circ-LARP4 expression was decreased in NSCLC cell lines (including NCI-H1299, NCI-H522, NCI-H23, NCI-H358, and NCI-H1650) compared with human normal lung epithelial cell line. Circ-LARP4 overexpression inhibited cell proliferation while promoted apoptosis in NCI-H1650 cells, whereas circ-LARP4 knockdown increased cell proliferation while decreased apoptosis in NCI-H1299 cells. Meanwhile, miR-21-5p was negatively regulated by circ-LARP4, whereas circ-LARP4 was not affected by miR-21-5p in NCI-H1650 and NCI-H1299 cells. In rescue experiment, miR-21-5p overexpression attenuated the effect of circ-LARP4 overexpression on decreasing cell proliferation and increasing apoptosis in NCI-H1650 cells, whereas miR-21-5p knockdown attenuated the effect of circ-LARP4 knockdown on promoting cell proliferation and suppressing apoptosis in NCI-H1299 cells. Further luciferase reporter assay revealed that circ-LARP4 could directly bind to miR-21-5p. Conclusions: Circ-LARP4 is decreased and suppresses cell proliferation while promoted apoptosis by sponging miR-21-5p in NSCLC.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoxiao Xu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cheng Song
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
29
|
Zhou SN. Role of non-coding RNAs in esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2020; 28:453-459. [DOI: 10.11569/wcjd.v28.i12.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the research on the role of non-coding RNAs (ncRNAs) in tumors has received more and more attention. Although research on the role of ncRNAs in the early diagnosis, disease monitoring, treatment guidance, and prognosis prediction of esophageal carcinoma has been gradually carried out, there are still many problems that need to be addressed. In the current paper, I review the progress in the research of ncRNAs in esophageal carcinoma, with an aim to help provide new strategies for the prevention and treatment of esophageal carcinoma.
Collapse
Affiliation(s)
- Su-Na Zhou
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| |
Collapse
|
30
|
Yao Y, Bi L, Zhang C. Circular RNA_0001742 has potential to predict advanced tumor stage and poor survival profiles in tongue squamous cell carcinoma management. J Clin Lab Anal 2020; 34:e23330. [PMID: 32463532 PMCID: PMC7439411 DOI: 10.1002/jcla.23330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background Circular RNA_0001742 (circ_0001742) has been reported to be upregulated in tongue squamous cell carcinoma (TSCC) tissues/cells and regulate TSCC cell proliferation, migration, and invasion. This study aimed to further investigate the clinical significance of circ_0001742 in TSCC management. Methods Totally, 146 TSCC patients underwent surgical treatment were reviewed. Their fresh‐frozen tumor tissue and adjacent tissue were acquired for detecting circ_0001742 expression via reverse transcription‐quantitative polymerase chain reaction. According to circ_0001742 expression in tumor tissue, all patients were classified as tumor circ_0001742 low (0%‐50% percentile) and high (50%‐100% percentile) patients, the latter were further divided into the tumor circ_0001742 high+ (50%‐75% percentile), high++ (75%‐90% percentile), and high+++ (90%‐100% percentile) patients, respectively. Results Circ_0001742 expression was increased in TSCC tumor tissue compared with adjacent tissue, and it presented good value in discriminating tumor tissue from adjacent tissue (area under the curve (AUC): 0.870, 95% CI: 0.831‐0.910). Tumor high circ_0001742 expression was associated with higher T stage, N stage, and TNM stage, but not age, gender, or pathological grade. Furthermore, OS was reduced in tumor circ_0001742 high patients compared with tumor circ_0001742 low patients; moreover, OS was the shortest in tumor circ_0001742 high+++ patients, followed by tumor circ_0001742 high++ patients and tumor circ_0001742 high+ patients, and the longest in tumor circ_0001742 low patients. In addition, multivariate Cox's regression analysis revealed that higher tumor circ_0001742 expression was an independent predictive factor for decreased OS. Conclusion Circ_0001742 serves as a potential biomarker for advanced tumor stage and poor survival in TSCC patients.
Collapse
Affiliation(s)
- Yuan Yao
- Stomatology Department, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Lei Bi
- Stomatology Department, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Chunguang Zhang
- Stomatology Department, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|