1
|
Kumar A, Aravind N, Gillani T, Kumar D. Artificial intelligence breakthrough in diagnosis, treatment, and prevention of colorectal cancer – A comprehensive review. Biomed Signal Process Control 2025; 101:107205. [DOI: 10.1016/j.bspc.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
|
2
|
Hiratsuka Y, Hisabe T, Ohtsu K, Yasaka T, Takeda K, Miyaoka M, Ono Y, Kanemitsu T, Imamura K, Takeda T, Nimura S, Yao K. Evaluation of Artificial Intelligence: Computer-aided Detection of Colorectal Polyps. J Anus Rectum Colon 2025; 9:79-87. [PMID: 39882222 PMCID: PMC11772790 DOI: 10.23922/jarc.2024-057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 01/31/2025] Open
Abstract
Objectives Colonoscopy is the gold standard for screening cancer and precancerous lesions in the large intestine. Recently, remarkable advances in artificial intelligence (AI) have led to the development of various computer-aided detection (CADe) systems for colonoscopy. This study aimed to evaluate the usefulness of AI for colonoscopy using CAD-EYEⓇ (Fujifilm, Tokyo, Japan) to calculate the adenoma miss rate (AMR). Methods This randomized, open-label, single-center, tandem study was conducted at Fukuoka University Chikushi Hospital from February 2022 to November 2022. Patients were randomly assigned to the CADe or non-CADe group. Immediately after the completion of the first endoscopy by an endoscopist, a new endoscopist was assigned to perform the second endoscopy. As a result, different endoscopists performed the examinations in a tandem fashion. A missed lesion was defined as a newly detected colorectal polyp by the second endoscopy. Finally, the AMR was compared between the two groups. Results The study population comprised 48 patients in the CADe group and 46 patients in the non-CADe group. The AMR was 17.4% in the CADe group and 30.3% in the non-CADe group. Therefore, the AMR in the CADe group was statistically significantly lower than that in the non-CADe group (P=0.009). Conclusions The application of CAD-EYEⓇ to colonoscopy reduced the AMR. Overall, CAD-EYEⓇ might be useful for reducing missed colorectal adenomas.
Collapse
Affiliation(s)
- Yuya Hiratsuka
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Takashi Hisabe
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kensei Ohtsu
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tatsuhisa Yasaka
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kazuhiro Takeda
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Masaki Miyaoka
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Yoichiro Ono
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Takao Kanemitsu
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kentaro Imamura
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Teruyuki Takeda
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Satoshi Nimura
- Department of Pathology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kenshi Yao
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| |
Collapse
|
3
|
Li S, Xu M, Meng Y, Sun H, Zhang T, Yang H, Li Y, Ma X. The application of the combination between artificial intelligence and endoscopy in gastrointestinal tumors. MEDCOMM – ONCOLOGY 2024; 3. [DOI: 10.1002/mog2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
AbstractGastrointestinal (GI) tumors have always been a major type of malignant tumor and a leading cause of tumor‐related deaths worldwide. The main principles of modern medicine for GI tumors are early prevention, early diagnosis, and early treatment, with early diagnosis being the most effective measure. Endoscopy, due to its ability to visualize lesions, has been one of the primary modalities for screening, diagnosing, and treating GI tumors. However, a qualified endoscopist often requires long training and extensive experience, which to some extent limits the wider use of endoscopy. With advances in data science, artificial intelligence (AI) has brought a new development direction for the endoscopy of GI tumors. AI can quickly process large quantities of data and images and improve diagnostic accuracy with some training, greatly reducing the workload of endoscopists and assisting them in early diagnosis. Therefore, this review focuses on the combined application of endoscopy and AI in GI tumors in recent years, describing the latest research progress on the main types of tumors and their performance in clinical trials, the application of multimodal AI in endoscopy, the development of endoscopy, and the potential applications of AI within it, with the aim of providing a reference for subsequent research.
Collapse
Affiliation(s)
- Shen Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research, Sichuan University Chengdu Sichuan China
| | - Yuanling Meng
- West China School of Stomatology Sichuan University Chengdu Sichuan China
| | - Haozhen Sun
- College of Life Sciences Sichuan University Chengdu Sichuan China
| | - Tao Zhang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Hanle Yang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| |
Collapse
|
4
|
Sato K, Kuramochi M, Tsuchiya A, Yamaguchi A, Hosoda Y, Yamaguchi N, Nakamura N, Itoi Y, Hashimoto Y, Kasuga K, Tanaka H, Kuribayashi S, Takeuchi Y, Uraoka T. Multicentre study to assess the performance of an artificial intelligence instrument to support qualitative diagnosis of colorectal polyps. BMJ Open Gastroenterol 2024; 11:e001553. [PMID: 39438054 PMCID: PMC11499753 DOI: 10.1136/bmjgast-2024-001553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Computer-aided diagnosis (CAD) using artificial intelligence (AI) is expected to support the characterisation of colorectal lesions, which is clinically relevant for efficient colorectal cancer prevention. We conducted this study to assess the diagnostic performance of commercially available CAD systems. METHODS This was a multicentre, prospective performance evaluation study. The endoscopist diagnosed polyps using white light imaging, followed by non-magnified blue light imaging (non-mBLI) and mBLI. AI subsequently assessed the lesions using non-mBLI (non-mAI), followed by mBLI (mAI). Eventually, endoscopists made the final diagnosis by integrating the AI diagnosis (AI+endoscopist). The primary endpoint was the accuracy of the AI diagnosis of neoplastic lesions. The diagnostic performance of each modality (sensitivity, specificity and accuracy) and confidence levels were also assessed. RESULTS Overall, 380 lesions from 139 patients were included in the analysis. The accuracy of non-mAI was 83%, 95% CI (79% to 87%), which was inferior to that of mBLI (89%, 95% CI (85% to 92%)) and mAI (89%, 95% CI (85% to 92%)). The accuracy (95% CI) of diagnosis by expert endoscopists using mAI (91%, 95% CI (87% to 94%)) was comparable to that of expert endoscopists using mBLI (91%, 95% CI (87% to 94%)) but better than that of non-expert endoscopists using mAI (83%, 95% CI (75% to 90%)). The level of confidence in making a correct diagnosis was increased when using magnification and AI. CONCLUSIONS The diagnostic performance of mAI for differentiating colonic lesions is comparable to that of endoscopists, regardless of their experience. However, it can be affected by the use of magnification as well as the endoscopists' level of experience.
Collapse
Affiliation(s)
- Keigo Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Mizuki Kuramochi
- Department of Gastroenterology, National Hospital Organization Saitama Hospital, Wako, Saitama, Japan
| | | | - Akihiro Yamaguchi
- Department of Gastroenterology, National Hospital Organization Saitama Hospital, Wako, Saitama, Japan
| | - Yasuo Hosoda
- Department of Gastroenterology, National Hospital Organization Saitama Hospital, Wako, Saitama, Japan
| | | | | | - Yuki Itoi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Yu Hashimoto
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Kengo Kasuga
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Hirohito Tanaka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Shiko Kuribayashi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Yoji Takeuchi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
5
|
Liu C, Wu L, Xu R, Jiang Z, Xiao X, Song N, Jin Q, Dai Z. Development and internal validation of an artificial intelligence-assisted bowel sounds auscultation system to predict early enteral nutrition-associated diarrhoea in acute pancreatitis: a prospective observational study. Br J Hosp Med (Lond) 2024; 85:1-15. [PMID: 39212577 DOI: 10.12968/hmed.2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims/Background An artificial intelligence-assisted prediction model for enteral nutrition-associated diarrhoea (ENAD) in acute pancreatitis (AP) was developed utilising data obtained from bowel sounds auscultation. This model underwent validation through a single-centre, prospective observational study. The primary objective of the model was to enhance clinical decision-making by providing a more precise assessment of ENAD risk. Methods The study enrolled patients with AP who underwent early enteral nutrition (EN). Real-time collection and analysis of bowel sounds were conducted using an artificial intelligence bowel sounds auscultation system. Univariate analysis, multicollinearity analysis, and logistic regression analysis were employed to identify risk factors associated with ENAD. The random forest algorithm was utilised to establish the prediction model, and partial dependence plots were generated to analyse the impact of risk factors on ENAD risk. Validation of the model was performed using the optimal model Bootstrap resampling method. Predictive performance was assessed using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and an area under the receiver operating characteristic (ROC) curve. Results Among the 133 patients included in the study, the incidence of ENAD was 44.4%. Six risk factors were identified, and the model's accuracy was validated through Bootstrap iterations. The prediction accuracy of the model was 81.10%, with a sensitivity of 84.30% and a specificity of 77.80%. The positive predictive value was 82.60%, and the negative predictive value was 80.10%. The area under the ROC curve was 0.904 (95% confidence interval: 0.817-0.997). Conclusion The artificial intelligence bowel sounds auscultation system enhances the assessment of gastrointestinal function in AP patients undergoing EN and facilitates the construction of an ENAD predictive model. The model demonstrates good predictive efficacy, offering an objective basis for precise intervention timing in ENAD management.
Collapse
Affiliation(s)
- Chengcheng Liu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Wu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rui Xu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhiwei Jiang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoping Xiao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Nian Song
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qianhong Jin
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhengxiang Dai
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Sugino S, Yoshida N, Guo Z, Zhang R, Inoue K, Hirose R, Dohi O, Itoh Y, Nemoto D, Togashi K, Yamamoto H, Zhu X. Non-polypoid Colorectal Lesions Detection and False Positive Detection by Artificial Intelligence under Blue Laser Imaging and Linked Color Imaging. J Anus Rectum Colon 2024; 8:212-220. [PMID: 39086882 PMCID: PMC11286363 DOI: 10.23922/jarc.2023-070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 08/02/2024] Open
Abstract
Objectives Artificial intelligence (AI) with white light imaging (WLI) is not enough for detecting non-polypoid colorectal polyps and it still has high false positive rate (FPR). We developed AIs using blue laser imaging (BLI) and linked color imaging (LCI) to detect them with specific learning sets (LS). Methods The contents of LS were as follows, LS (WLI): 1991 WLI images of lesion of 2-10 mm, LS (IEE): 5920 WLI, BLI, and LCI images of non-polypoid and small lesions of 2-20 mm. LS (IEE) was extracted from videos and included both in-focus and out-of-focus images. We designed three AIs as follows: AI (WLI) finetuned by LS (WLI), AI (IEE) finetuned by LS (WLI)+LS (IEE), and AI (HQ) finetuned by LS (WLI)+LS (IEE) only with images in focus. Polyp detection using a test set of WLI, BLI, and LCI videos of 100 non-polypoid or non-reddish lesions of 2-20 mm and FPR using movies of 15 total colonoscopy were analyzed, compared to 2 experts and 2 trainees. Results The sensitivity for LCI in AI (IEE) (83%) was compared to that for WLI in AI (IEE) (76%: p=0.02), WLI in AI (WLI) (57%: p<0.01), BLI in AI (IEE) (78%: p=0.14), and LCI in trainees (74%: p<0.01). The sensitivity for LCI in AI (IEE) (83%) was significantly higher than that in AI (HQ) (78%: p<0.01). The FPR for LCI (6.5%) in AI (IEE) were significantly lower than that in AI (HQ) (17.3%: p<0.01). Conclusions AI finetuned by appropriate LS detected non-reddish and non-polypoid polyps under LCI.
Collapse
Affiliation(s)
- Satoshi Sugino
- Department of Gastroenterology, Asahi University Hospital, Gifu, Japan
| | - Naohisa Yoshida
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Zhe Guo
- Biomedical Information Engineering Lab, The University of Aizu, Fukushima, Japan
| | - Ruiyao Zhang
- Biomedical Information Engineering Lab, The University of Aizu, Fukushima, Japan
| | - Ken Inoue
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryohei Hirose
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Nemoto
- Department of Coloproctology, Aizu Medical Center, Fukushima Medical University, Fukushima, Japan
| | - Kazutomo Togashi
- Department of Coloproctology, Aizu Medical Center, Fukushima Medical University, Fukushima, Japan
| | - Hironori Yamamoto
- Department of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Xin Zhu
- Biomedical Information Engineering Lab, The University of Aizu, Fukushima, Japan
| |
Collapse
|
7
|
Miyaguchi K, Tsuzuki Y, Hirooka N, Matsumoto H, Ohgo H, Nakamoto H, Imaeda H. Linked-color imaging with or without artificial intelligence for adenoma detection: a randomized trial. Endoscopy 2024; 56:376-383. [PMID: 38191000 PMCID: PMC11038826 DOI: 10.1055/a-2239-8145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND Adenoma detection rate (ADR) is an important indicator of colonoscopy quality and colorectal cancer incidence. Both linked-color imaging (LCI) with artificial intelligence (LCA) and LCI alone increase adenoma detection during colonoscopy, although it remains unclear whether one modality is superior. This study compared ADR between LCA and LCI alone, including according to endoscopists' experience (experts and trainees) and polyp size. METHODS Patients undergoing colonoscopy for positive fecal immunochemical tests, follow-up of colon polyps, and abdominal symptoms at a single institution were randomly assigned to the LCA or LCI group. ADR, adenoma per colonoscopy (APC), cecal intubation time, withdrawal time, number of adenomas per location, and adenoma size were compared. RESULTS The LCA (n=400) and LCI (n=400) groups showed comparable cecal intubation and withdrawal times. The LCA group showed a significantly higher ADR (58.8% vs. 43.5%; P<0.001) and mean (95%CI) APC (1.31 [1.15 to 1.47] vs. 0.94 [0.80 to 1.07]; P<0.001), particularly in the ascending colon (0.30 [0.24 to 0.36] vs. 0.20 [0.15 to 0.25]; P=0.02). Total number of nonpolypoid-type adenomas was also significantly higher in the LCA group (0.15 [0.09 to 0.20] vs. 0.08 [0.05 to 0.10]; P=0.02). Small polyps (≤5, 6-9mm) were detected significantly more frequently in the LCA group (0.75 [0.64 to 0.86] vs. 0.48 [0.40 to 0.57], P<0.001 and 0.34 [0.26 to 0.41] vs. 0.24 [0.18 to 0.29], P=0.04, respectively). In both groups, ADR was not significantly different between experts and trainees. CONCLUSIONS LCA was significantly superior to LCI alone in terms of ADR.
Collapse
Affiliation(s)
- Kazuya Miyaguchi
- Department of Gastroenterology, Saitama Medical University, Saitama, Japan
| | - Yoshikazu Tsuzuki
- Department of Gastroenterology, Saitama Medical University, Saitama, Japan
| | - Nobutaka Hirooka
- Department of General Internal Medicine, Saitama Medical University, Saitama, Japan
| | - Hisashi Matsumoto
- Department of General Internal Medicine, Saitama Medical University, Saitama, Japan
| | - Hideki Ohgo
- Department of Gastroenterology, Saitama Medical University, Saitama, Japan
| | - Hidetomo Nakamoto
- Department of General Internal Medicine, Saitama Medical University, Saitama, Japan
| | - Hiroyuki Imaeda
- Department of Gastroenterology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
8
|
Kobayashi R, Yoshida N, Tomita Y, Hashimoto H, Inoue K, Hirose R, Dohi O, Inada Y, Murakami T, Morimoto Y, Zhu X, Itoh Y. Detailed Superiority of the CAD EYE Artificial Intelligence System over Endoscopists for Lesion Detection and Characterization Using Unique Movie Sets. J Anus Rectum Colon 2024; 8:61-69. [PMID: 38689788 PMCID: PMC11056537 DOI: 10.23922/jarc.2023-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/22/2023] [Indexed: 05/02/2024] Open
Abstract
Objectives Detailed superiority of CAD EYE (Fujifilm, Tokyo, Japan), an artificial intelligence for polyp detection/diagnosis, compared to endoscopists is not well examined. We examined endoscopist's ability using movie sets of colorectal lesions which were detected and diagnosed by CAD EYE accurately. Methods Consecutive lesions of ≤10 mm were examined live by CAD EYE from March-June 2022 in our institution. Short unique movie sets of each lesion with and without CAD EYE were recorded simultaneously using two recorders for detection under white light imaging (WLI) and linked color imaging (LCI) and diagnosis under blue laser/light imaging (BLI). Excluding inappropriate movies, 100 lesions detected and diagnosed with CAD EYE accurately were evaluated. Movies without CAD EYE were evaluated first by three trainees and three experts. Subsequently, movies with CAD EYE were examined. The rates of accurate detection and diagnosis were evaluated for both movie sets. Results Among 100 lesions (mean size: 4.7±2.6 mm; 67 neoplastic/33 hyperplastic), mean accurate detection rates of movies without or with CAD EYE were 78.7%/96.7% under WLI (p<0.01) and 91.3%/97.3% under LCI (p<0.01) for trainees and 85.3%/99.0% under WLI (p<0.01) and 92.6%/99.3% under LCI (p<0.01) for experts. Mean accurate diagnosis rates of movies without or with CAD EYE for BLI were 85.3%/100% for trainees (p<0.01) and 92.3%/100% for experts (p<0.01), respectively. The significant risk factors of not-detected lesions for trainees were right-sided, hyperplastic, not-reddish, in the corner, halation, and inadequate bowel preparation. Conclusions Unique movie sets with and without CAD EYE could suggest it's efficacy for lesion detection/diagnosis.
Collapse
Affiliation(s)
- Reo Kobayashi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuri Tomita
- Department of Gastroenterology, Kosekai Takeda Hosptal, Kyoto, Japan
| | - Hikaru Hashimoto
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Inada
- Department of Gastroenterology, Kyoto First Red Cross Hospital, Kyoto, Japan
| | - Takaaki Murakami
- Department of Gastroenterology, Aiseikai Yamashina Hospital, Kyoto, Japan
| | - Yasutaka Morimoto
- Department of Gastroenterology, Kyoto Saiseikai Hospital, Kyoto, Japan
| | - Xin Zhu
- Graduate School of Computer Science and Engineering, The University of Aizu, Fukushima, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Chino A, Ide D, Abe S, Yoshinaga S, Ichimasa K, Kudo T, Ninomiya Y, Oka S, Tanaka S, Igarashi M. Performance evaluation of a computer-aided polyp detection system with artificial intelligence for colonoscopy. Dig Endosc 2024; 36:185-194. [PMID: 37099623 DOI: 10.1111/den.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
OBJECTIVES A computer-aided detection (CAD) system was developed to support the detection of colorectal lesions by deep learning using video images of lesions and normal mucosa recorded during colonoscopy. The study's purpose was to evaluate the stand-alone performance of this device under blinded conditions. METHODS This multicenter prospective observational study was conducted at four Japanese institutions. We used 326 videos of colonoscopies recorded with patient consent at institutions in which the Ethics Committees approved the study. The sensitivity of successful detection of the CAD system was calculated using the target lesions, which were detected by adjudicators from two facilities for each lesion appearance frame; inconsistencies were settled by consensus. Successful detection was defined as display of the detection flag on the lesion for more than 0.5 s within 3 s of appearance. RESULTS Of the 556 target lesions from 185 cases, detection success sensitivity was 97.5% (95% confidence interval [CI] 95.8-98.5%). The "successful detection sensitivity per colonoscopy" was 93% (95% CI 88.3-95.8%). For the frame-based sensitivity, specificity, positive predictive value, and negative predictive value were 86.6% (95% CI 84.8-88.4%), 84.7% (95% CI 83.8-85.6%), 34.9% (95% CI 32.3-37.4%), and 98.2% (95% CI 97.8-98.5%), respectively. TRIAL REGISTRATION University Hospital Medical Information Network (UMIN000044622).
Collapse
Affiliation(s)
- Akiko Chino
- Department of Gastroenterology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Ide
- Department of Gastroenterology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | | | - Katsuro Ichimasa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Toyoki Kudo
- Tokyo Endoscopic Clinic, Tokyo, Japan
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuki Ninomiya
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Shiro Oka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Masahiro Igarashi
- Department of Gastroenterology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
10
|
Yamaguchi D, Shimoda R, Miyahara K, Yukimoto T, Sakata Y, Takamori A, Mizuta Y, Fujimura Y, Inoue S, Tomonaga M, Ogino Y, Eguchi K, Ikeda K, Tanaka Y, Takedomi H, Hidaka H, Akutagawa T, Tsuruoka N, Noda T, Tsunada S, Esaki M. Impact of an artificial intelligence-aided endoscopic diagnosis system on improving endoscopy quality for trainees in colonoscopy: Prospective, randomized, multicenter study. Dig Endosc 2024; 36:40-48. [PMID: 37079002 DOI: 10.1111/den.14573] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE This study was performed to evaluate whether the use of CAD EYE (Fujifilm, Tokyo, Japan) for colonoscopy improves colonoscopy quality in gastroenterology trainees. METHODS The patients in this multicenter randomized controlled trial were divided into Group A (observation using CAD EYE) and Group B (standard observation). Six trainees performed colonoscopies using a back-to-back method in pairs with gastroenterology experts. The primary end-point was the trainees' adenoma detection rate (ADR), and the secondary end-points were the trainees' adenoma miss rate (AMR) and Assessment of Competency in Endoscopy (ACE) tool scores. Each trainee's learning curve was evaluated using a cumulative sum (CUSUM) control chart. RESULTS We analyzed data for 231 patients (Group A, n = 113; Group B, n = 118). The ADR was not significantly different between the two groups. Group A had a significantly lower AMR (25.6% vs. 38.6%, P = 0.033) and number of missed adenomas per patient (0.5 vs. 0.9, P = 0.004) than Group B. Group A also had significantly higher ACE tool scores for pathology identification (2.26 vs. 2.07, P = 0.030) and interpretation and identification of pathology location (2.18 vs. 2.00, P = 0.038). For the CUSUM learning curve, Group A showed a trend toward a lower number of cases of missed multiple adenomas by the six trainees. CONCLUSION CAD EYE did not improve ADR but decreased the AMR and improved the ability to accurately locate and identify colorectal adenomas. CAD EYE can be assumed to be beneficial for improving colonoscopy quality in gastroenterology trainees. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trials Registry (UMIN000044031).
Collapse
Affiliation(s)
- Daisuke Yamaguchi
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ryo Shimoda
- Department of Endoscopic Diagnostics and Therapeutics, Saga University Hospital, Saga, Japan
| | - Koichi Miyahara
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Takahiro Yukimoto
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuhisa Sakata
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ayako Takamori
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Yumi Mizuta
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
| | - Yutaro Fujimura
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Suma Inoue
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Michito Tomonaga
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuya Ogino
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Kohei Eguchi
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Kei Ikeda
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
| | - Yuichiro Tanaka
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
| | - Hironobu Takedomi
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidenori Hidaka
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Takashi Akutagawa
- Department of Endoscopic Diagnostics and Therapeutics, Saga University Hospital, Saga, Japan
| | - Nanae Tsuruoka
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Takahiro Noda
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Seiji Tsunada
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
| | - Motohiro Esaki
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
11
|
Vulpoi RA, Luca M, Ciobanu A, Olteanu A, Bărboi O, Iov DE, Nichita L, Ciortescu I, Cijevschi Prelipcean C, Ștefănescu G, Mihai C, Drug VL. The Potential Use of Artificial Intelligence in Irritable Bowel Syndrome Management. Diagnostics (Basel) 2023; 13:3336. [PMID: 37958232 PMCID: PMC10648815 DOI: 10.3390/diagnostics13213336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Irritable bowel syndrome (IBS) has a global prevalence of around 4.1% and is associated with a low quality of life and increased healthcare costs. Current guidelines recommend that IBS is diagnosed using the symptom-based Rome IV criteria. Despite this, when patients seek medical attention, they are usually over-investigated. This issue might be resolved by novel technologies in medicine, such as the use of Artificial Intelligence (AI). In this context, this paper aims to review AI applications in IBS. AI in colonoscopy proved to be useful in organic lesion detection and diagnosis and in objectively assessing the quality of the procedure. Only a recently published study talked about the potential of AI-colonoscopy in IBS. AI was also used to study biofilm characteristics in the large bowel and establish a potential relationship with IBS. Moreover, an AI algorithm was developed in order to correlate specific bowel sounds with IBS. In addition to that, AI-based smartphone applications have been developed to facilitate the monitoring of IBS symptoms. From a therapeutic standpoint, an AI system was created to recommend specific diets based on an individual's microbiota. In conclusion, future IBS diagnosis and treatment may benefit from AI.
Collapse
Affiliation(s)
- Radu Alexandru Vulpoi
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Mihaela Luca
- Institute of Computer Science, Romanian Academy-Iasi Branch, 700481 Iasi, Romania; (M.L.); (A.C.)
| | - Adrian Ciobanu
- Institute of Computer Science, Romanian Academy-Iasi Branch, 700481 Iasi, Romania; (M.L.); (A.C.)
| | - Andrei Olteanu
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Oana Bărboi
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Diana-Elena Iov
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Loredana Nichita
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Irina Ciortescu
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Cristina Cijevschi Prelipcean
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Gabriela Ștefănescu
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Cătălina Mihai
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Vasile Liviu Drug
- Faculty of Medicine, Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (R.A.V.); (A.O.); (D.-E.I.); (L.N.); (I.C.); (C.C.P.); (G.Ș.); (C.M.); (V.L.D.)
- Emergency Clinical Hospital “Saint Spiridon”, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| |
Collapse
|
12
|
Baumer S, Streicher K, Alqahtani SA, Brookman-Amissah D, Brunner M, Federle C, Muehlenberg K, Pfeifer L, Salzberger A, Schorr W, Zustin J, Pech O. Accuracy of polyp characterization by artificial intelligence and endoscopists: a prospective, non-randomized study in a tertiary endoscopy center. Endosc Int Open 2023; 11:E818-E828. [PMID: 37727511 PMCID: PMC10506867 DOI: 10.1055/a-2096-2960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 09/21/2023] Open
Abstract
Background and study aims Artificial intelligence (AI) in gastrointestinal endoscopy is developing very fast. Computer-aided detection of polyps and computer-aided diagnosis (CADx) for polyp characterization are available now. This study was performed to evaluate the diagnostic performance of a new commercially available CADx system in clinical practice. Patients and methods This prospective, non-randomized study was performed at a tertiary academic endoscopy center from March to August 2022. We included patients receiving a colonoscopy. Polypectomy had to be performed in all polyps. Every patient was examined concurrently by an endoscopist and AI using two opposing screens. The AI system, overseen by a second observer, was not visible to the endoscopist. The primary outcome was accuracy of the AI classifying the polyps into "neoplastic" and "non-neoplastic." The secondary outcome was accuracy of the classification by the endoscopists. Sessile serrated lesions were classified as neoplastic. Results We included 156 patients (mean age 65; 57 women) with 262 polyps ≤10 mm. Eighty-four were hyperplastic polyps (32.1%), 158 adenomas (60.3%), seven sessile serrated lesions (2.7%) and 13 other entities (normal/inflammatory colonmucosa, lymphoidic polyp) (4.9%) on histological diagnosis. Sensitivity, specificity and accuracy of AI were 89.70% (95% confidence interval [CI]: 84.02%-93.88%), 75.26% (95% CI: 65.46%-83.46%) and 84.35% (95% CI:79.38%-88.53%), respectively. Sensitivity, specificity and accuracy for less experienced endoscopists (2-5 years of endoscopy) were 95.56% (95% CI: 84.85%-99.46%), 61.54% (95% CI: 40.57%-79.77%) and 83.10% (95% CI: 72.34%-90.95%) and for experienced endoscopists 90.83% (95% CI: 84.19%-95.33%), 71.83% (95% CI: 59.90%-81.87%) and 83.77% (95% CI: 77.76%-88.70%), respectively. Conclusion Accuracy for polyp characterization by a new commercially available AI system is high, but does not fulfill the criteria for a "resect-and-discard" strategy.
Collapse
Affiliation(s)
- Sebastian Baumer
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Kilian Streicher
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Saleh A. Alqahtani
- Department of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, United States
- Liver Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dominic Brookman-Amissah
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Monika Brunner
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Christoph Federle
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Klaus Muehlenberg
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Lukas Pfeifer
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Andrea Salzberger
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Wolfgang Schorr
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Jozef Zustin
- Private Practice, Histopathology Service Private Practice, Regensburg, Germany
- Gerhard-Domagk-Institute of Pathology, Universitätsklinikum Münster, Munster, Germany
| | - Oliver Pech
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Misumi Y, Nonaka K, Takeuchi M, Kamitani Y, Uechi Y, Watanabe M, Kishino M, Omori T, Yonezawa M, Isomoto H, Tokushige K. Comparison of the Ability of Artificial-Intelligence-Based Computer-Aided Detection (CAD) Systems and Endoscopists to Detect Colorectal Neoplastic Lesions on Endoscopy Video. J Clin Med 2023; 12:4840. [PMID: 37510955 PMCID: PMC10381252 DOI: 10.3390/jcm12144840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Artificial-intelligence-based computer-aided diagnosis (CAD) systems have developed remarkably in recent years. These systems can help increase the adenoma detection rate (ADR), an important quality indicator in colonoscopies. While there have been many still-image-based studies on the usefulness of CAD, few have reported on its usefulness using actual clinical videos. However, no studies have compared the CAD group and control groups using the exact same case videos. This study aimed to determine whether CAD or endoscopists were superior in identifying colorectal neoplastic lesions in videos. In this study, we examined 34 lesions from 21 cases. CAD performed better than four of the six endoscopists (three experts and three beginners), including all the beginners. The time to lesion detection with beginners and experts was 2.147 ± 1.118 s and 1.394 ± 0.805 s, respectively, with significant differences between beginners and experts (p < 0.001) and between beginners and CAD (both p < 0.001). The time to lesion detection was significantly shorter for experts and CAD than for beginners. No significant difference was found between experts and CAD (p = 1.000). CAD could be useful as a diagnostic support tool for beginners to bridge the experience gap with experts.
Collapse
Affiliation(s)
- Yoshitsugu Misumi
- Department of Digestive Endoscopy, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Kouichi Nonaka
- Department of Digestive Endoscopy, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Miharu Takeuchi
- Department of Digestive Endoscopy, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Yu Kamitani
- Department of Digestive Endoscopy, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Yasuhiro Uechi
- Department of Digestive Endoscopy, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Mai Watanabe
- Department of Digestive Endoscopy, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Maiko Kishino
- Department of Digestive Endoscopy, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Teppei Omori
- Institute of Gastroenterology, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Maria Yonezawa
- Institute of Gastroenterology, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, 36-1, Nishi-Chou, Yonago 683-8504, Japan
| | - Katsutoshi Tokushige
- Institute of Gastroenterology, Tokyo Women's Medical University Hospital, 8-1, Kawada-Chou, Shinjuku-Ku, Tokyo 162-8666, Japan
| |
Collapse
|
14
|
Dos Santos CEO, Malaman D, Arciniegas Sanmartin ID, Leão ABS, Leão GS, Pereira-Lima JC. Performance of artificial intelligence in the characterization of colorectal lesions. Saudi J Gastroenterol 2023; 29:219-224. [PMID: 37203122 PMCID: PMC10445495 DOI: 10.4103/sjg.sjg_316_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Background Image-enhanced endoscopy (IEE) has been used in the differentiation between neoplastic and non-neoplastic colorectal lesions through microvasculature analysis. This study aimed to evaluate the computer-aided diagnosis (CADx) mode of the CAD EYE system for the optical diagnosis of colorectal lesions and compare it with the performance of an expert, in addition to evaluating the computer-aided detection (CADe) mode in terms of polyp detection rate (PDR) and adenoma detection rate (ADR). Methods A prospective study was conducted to evaluate the performance of CAD EYE using blue light imaging (BLI), dichotomizing lesions into hyperplastic and neoplastic, and of an expert based on the Japan Narrow-Band Imaging Expert Team (JNET) classification for the characterization of lesions. After white light imaging (WLI) diagnosis, magnification was used on all lesions, which were removed and examined histologically. Diagnostic criteria were evaluated, and PDR and ADR were calculated. Results A total of 110 lesions (80 (72.7%) dysplastic lesions and 30 (27.3%) nondysplastic lesions) were evaluated in 52 patients, with a mean lesion size of 4.3 mm. Artificial intelligence (AI) analysis showed 81.8% accuracy, 76.3% sensitivity, 96.7% specificity, 98.5% positive predictive value (PPV), and 60.4% negative predictive value (NPV). The kappa value was 0.61, and the area under the receiver operating characteristic curve (AUC) was 0.87. Expert analysis showed 93.6% accuracy, 92.5% sensitivity, 96.7% specificity, 98.7% PPV, and 82.9% NPV. The kappa value was 0.85, and the AUC was 0.95. Overall, PDR was 67.6% and ADR was 45.9%. Conclusions The CADx mode showed good accuracy in characterizing colorectal lesions, but the expert assessment was superior in almost all diagnostic criteria. PDR and ADR were high.
Collapse
Affiliation(s)
- Carlos E. O. Dos Santos
- Department of Endoscopy, Santa Casa de Caridade Hospital, Bagé, RS, Brazil
- Department of Endoscopy, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniele Malaman
- Department of Endoscopy, Santa Casa de Caridade Hospital, Bagé, RS, Brazil
| | | | - Ari B. S. Leão
- Department of Endoscopy, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel S. Leão
- Department of Endoscopy, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlio C. Pereira-Lima
- Department of Gastroenterology and Endoscopy, Santa Casa Hospital, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Galati JS, Lin K, Gross SA. Recent advances in devices and technologies that might prove revolutionary for colonoscopy procedures. Expert Rev Med Devices 2023; 20:1087-1103. [PMID: 37934873 DOI: 10.1080/17434440.2023.2280773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common malignancy and second leading cause of cancer-related mortality in the world. Adenoma detection rate (ADR), a quality indicator for colonoscopy, has gained prominence as it is inversely related to CRC incidence and mortality. As such, recent efforts have focused on developing novel colonoscopy devices and technologies to improve ADR. AREAS COVERED The main objective of this paper is to provide an overview of advancements in the fields of colonoscopy mechanical attachments, artificial intelligence-assisted colonoscopy, and colonoscopy optical enhancements with respect to ADR. We accomplished this by performing a comprehensive search of multiple electronic databases from inception to September 2023. This review is intended to be an introduction to colonoscopy devices and technologies. EXPERT OPINION Numerous mechanical attachments and optical enhancements have been developed that have the potential to improve ADR and AI has gone from being an inaccessible concept to a feasible means for improving ADR. While these advances are exciting and portend a change in what will be considered standard colonoscopy, they continue to require refinement. Future studies should focus on combining modalities to further improve ADR and exploring the use of these technologies in other facets of colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Internal Medicine, NYU Langone Health, New York, NY, USA
| | - Kevin Lin
- Department of Internal Medicine, NYU Langone Health, New York, NY, USA
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
16
|
Young EJ, Rajandran A, Philpott HL, Sathananthan D, Hoile SF, Singh R. Mucosal imaging in colon polyps: New advances and what the future may hold. World J Gastroenterol 2022; 28:6632-6661. [PMID: 36620337 PMCID: PMC9813932 DOI: 10.3748/wjg.v28.i47.6632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 12/19/2022] Open
Abstract
An expanding range of advanced mucosal imaging technologies have been developed with the goal of improving the detection and characterization of lesions in the gastrointestinal tract. Many technologies have targeted colorectal neoplasia given the potential for intervention prior to the development of invasive cancer in the setting of widespread surveillance programs. Improvement in adenoma detection reduces miss rates and prevents interval cancer development. Advanced imaging technologies aim to enhance detection without significantly increasing procedural time. Accurate polyp characterisation guides resection techniques for larger polyps, as well as providing the platform for the "resect and discard" and "do not resect" strategies for small and diminutive polyps. This review aims to collate and summarise the evidence regarding these technologies to guide colonoscopic practice in both interventional and non-interventional endoscopists.
Collapse
Affiliation(s)
- Edward John Young
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Arvinf Rajandran
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
| | - Hamish Lachlan Philpott
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Dharshan Sathananthan
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Sophie Fenella Hoile
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Rajvinder Singh
- Department of Gastroenterology, Lyell McEwin Hospital, Northern Adelaide Local Health Network, Elizabeth Vale 5031, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia
| |
Collapse
|
17
|
Saito Y, Yamada M, Mori Y. Although depth prediction of colorectal cancer with artificial intelligence is clinically relevant, standardization of histopathologic diagnosis should also be taken care of. Gastrointest Endosc 2022; 95:1195-1197. [PMID: 35365318 DOI: 10.1016/j.gie.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan; Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Current Status and Future Perspectives of Artificial Intelligence in Colonoscopy. J Clin Med 2022; 11:jcm11102923. [PMID: 35629049 PMCID: PMC9143862 DOI: 10.3390/jcm11102923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
The early endoscopic identification, resection, and treatment of precancerous adenoma and early-stage cancer has been shown to reduce not only the prevalence of colorectal cancer but also its mortality rate. Recent advances in endoscopic devices and imaging technology have dramatically improved our ability to detect colorectal lesions and predict their pathological diagnosis. In addition to this, rapid advances in artificial intelligence (AI) technology mean that AI-related research and development is now progressing in the diagnostic imaging field, particularly colonoscopy, and AIs (i.e., devices that mimic cognitive abilities, such as learning and problem-solving) already approved as medical devices are now being introduced into everyday clinical practice. Today, there is an increasing expectation that sophisticated AIs will be able to provide high-level diagnostic performance irrespective of the level of skill of the endoscopist. In this paper, we review colonoscopy-related AI research and the AIs that have already been approved and discuss the future prospects of this technology.
Collapse
|
19
|
Vulpoi RA, Luca M, Ciobanu A, Olteanu A, Barboi OB, Drug VL. Artificial Intelligence in Digestive Endoscopy—Where Are We and Where Are We Going? Diagnostics (Basel) 2022; 12:diagnostics12040927. [PMID: 35453975 PMCID: PMC9029251 DOI: 10.3390/diagnostics12040927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Artificial intelligence, a computer-based concept that tries to mimic human thinking, is slowly becoming part of the endoscopy lab. It has developed considerably since the first attempt at developing an automated medical diagnostic tool, today being adopted in almost all medical fields, digestive endoscopy included. The detection rate of preneoplastic lesions (i.e., polyps) during colonoscopy may be increased with artificial intelligence assistance. It has also proven useful in detecting signs of ulcerative colitis activity. In upper digestive endoscopy, deep learning models may prove to be useful in the diagnosis and management of upper digestive tract diseases, such as gastroesophageal reflux disease, Barrett’s esophagus, and gastric cancer. As is the case with all new medical devices, there are challenges in the implementation in daily medical practice. The regulatory, economic, organizational culture, and language barriers between humans and machines are a few of them. Even so, many devices have been approved for use by their respective regulators. Future studies are currently striving to develop deep learning models that can replicate a growing amount of human brain activity. In conclusion, artificial intelligence may become an indispensable tool in digestive endoscopy.
Collapse
Affiliation(s)
- Radu-Alexandru Vulpoi
- Institute of Gastroenterology and Hepatology, Saint Spiridon Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania; (R.-A.V.); (A.O.); (V.L.D.)
| | - Mihaela Luca
- Institute of Computer Science, Romanian Academy—Iași Branch, 700481 Iași, Romania; (M.L.); (A.C.)
| | - Adrian Ciobanu
- Institute of Computer Science, Romanian Academy—Iași Branch, 700481 Iași, Romania; (M.L.); (A.C.)
| | - Andrei Olteanu
- Institute of Gastroenterology and Hepatology, Saint Spiridon Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania; (R.-A.V.); (A.O.); (V.L.D.)
| | - Oana-Bogdana Barboi
- Institute of Gastroenterology and Hepatology, Saint Spiridon Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania; (R.-A.V.); (A.O.); (V.L.D.)
- Correspondence: ; Tel.: +40-74-345-5012
| | - Vasile Liviu Drug
- Institute of Gastroenterology and Hepatology, Saint Spiridon Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania; (R.-A.V.); (A.O.); (V.L.D.)
| |
Collapse
|