1
|
Ouyang C, Zhang J, Lei X, Xie Z, Liu X, Li Y, Huang S, Wang Z, Tang G. Advances in antitumor research of HIF-1α inhibitor YC-1 and its derivatives. Bioorg Chem 2023; 133:106400. [PMID: 36739684 DOI: 10.1016/j.bioorg.2023.106400] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Generally, hypoxia-inducible factor-1α (HIF-1α) is highly expressed in solid tumors, it plays a key role in the occurrence and development of tumors, hindering cancer treatment in various ways. The antitumor activity and pharmacological mechanism of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1‑benzyl indazole], an HIF-1α inhibitor, and the design and synthesis of its derivatives have attracted tremendous attention in the field of antitumor research. YC-1 is a potential drug candidate and a lead compound for tumor therapy. Hence, the multifaceted mechanism of action of YC-1 and the structure activity relationship (SAR) of its derivatives are important factors to be considered for the development of HIF-1α inhibitors. Therefore, this review aimed to provide a comprehensive overview of the various antitumor mechanisms of YC-1 in antitumor research and an in-depth summary of the SAR for the development of its derivatives. A full understanding and discussion of these aspects are expected to provide potential ideas for developing novel HIF-1α inhibitors and antitumor drugs belonging to the YC-1 class. The review also highlighted the application prospects of the YC-1 class of potential antitumor candidates, and provided some unique insights about these antitumor agents.
Collapse
Affiliation(s)
- Chenglin Ouyang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medicial School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medicial School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medicial School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medicial School, University of South China, Hengyang, Hunan 421001, China
| | - Xingyun Liu
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yong Li
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medicial School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Hung CC, Chen CY, Wu YC, Huang CF, Huang YC, Chen YC, Chang CS. Synthesis and biological evaluation of thiophenylbenzofuran derivatives as potential P-glycoprotein inhibitors. Eur J Med Chem 2020; 201:112422. [DOI: 10.1016/j.ejmech.2020.112422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
|
3
|
Huang P, Li F, Li L, You Y, Luo S, Dong Z, Gao Q, Wu S, Brünner N, Stenvang J. lncRNA profile study reveals the mRNAs and lncRNAs associated with docetaxel resistance in breast cancer cells. Sci Rep 2018; 8:17970. [PMID: 30568280 PMCID: PMC6299474 DOI: 10.1038/s41598-018-36231-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Resistance to adjuvant systemic treatment, including taxanes (docetaxel and paclitaxel) is a major clinical problem for breast cancer patients. lncRNAs (long non-coding RNAs) are non-coding transcripts, which have recently emerged as important players in a variety of biological processes, including cancer development and chemotherapy resistance. However, the contribution of lncRNAs to docetaxel resistance in breast cancer and the relationship between lncRNAs and taxane-resistance genes are still unclear. Here, we performed comprehensive RNA sequencing and analyses on two docetaxel-resistant breast cancer cell lines (MCF7-RES and MDA-RES) and their docetaxel-sensitive parental cell lines. We identified protein coding genes and pathways that may contribute to docetaxel resistance. More importantly, we identified lncRNAs that were consistently up-regulated or down-regulated in both the MCF7-RES and MDA-RES cells. The co-expression network and location analyses pinpointed four overexpressed lncRNAs located within or near the ABCB1 (ATP-binding cassette subfamily B member 1) locus, which might up-regulate the expression of ABCB1. We also identified the lncRNA EPB41L4A-AS2 (EPB41L4A Antisense RNA 2) as a potential biomarker for docetaxel sensitivity. These findings have improved our understanding of the mechanisms underlying docetaxel resistance in breast cancer and have provided potential biomarkers to predict the response to docetaxel in breast cancer patients.
Collapse
Affiliation(s)
- Peide Huang
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fengyu Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lin Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuling You
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shizhi Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China.
| | - Nils Brünner
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Jan Stenvang
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
4
|
Abstract
Hypoxia-inducible factors (HIFs), a family of transcription factors activated by hypoxia, consist of three α-subunits (HIF1α, HIF2α and HIF3α) and one β-subunit (HIF1β), which serves as a heterodimerization partner of the HIFα subunits. HIFα subunits are stabilized from constitutive degradation by hypoxia largely through lowering the activity of the oxygen-dependent prolyl hydroxylases that hydroxylate HIFα, leading to their proteolysis. HIF1α and HIF2α are expressed in different tissues and regulate target genes involved in angiogenesis, cell proliferation and inflammation, and their expression is associated with different disease states. HIFs have been widely studied because of their involvement in cancer, and HIF2α-specific inhibitors are being investigated in clinical trials for the treatment of kidney cancer. Although cancer has been the major focus of research on HIF, evidence has emerged that this pathway has a major role in the control of metabolism and influences metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease. Notably increased HIF1α and HIF2α signalling in adipose tissue and small intestine, respectively, promotes metabolic diseases in diet-induced disease models. Inhibition of HIF1α and HIF2α decreases the adverse diet-induced metabolic phenotypes, suggesting that they could be drug targets for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
5
|
Lee MR, Lin C, Lu CC, Kuo SC, Tsao JW, Juan YN, Chiu HY, Lee FY, Yang JS, Tsai FJ. YC-1 induces G 0/G 1 phase arrest and mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer CAR cells. Biomedicine (Taipei) 2017; 7:12. [PMID: 28612710 PMCID: PMC5479426 DOI: 10.1051/bmdcn/2017070205] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022] Open
Abstract
Oral cancer is a serious and fatal disease. Cisplatin is the first line of chemotherapeutic agent for oral cancer therapy. However, the development of drug resistance and severe side effects cause tremendous problems clinically. In this study, we investigated the pharmacologic mechanisms of YC-1 on cisplatin-resistant human oral cancer cell line, CAR. Our results indicated that YC-1 induced a concentration-dependent and time-dependent decrease in viability of CAR cells analyzed by MTT assay. Real-time image analysis of CAR cells by IncuCyte™ Kinetic Live Cell Imaging System demonstrated that YC-1 inhibited cell proliferation and reduced cell confluence in a time-dependent manner. Results from flow cytometric analysis revealed that YC-1 promoted G0/G1 phase arrest and provoked apoptosis in CAR cells. The effects of cell cycle arrest by YC-1 were further supported by up-regulation of p21 and down-regulation of cyclin A, D, E and CDK2 protein levels. TUNEL staining showed that YC-1 caused DNA fragmentation, a late stage feature of apoptosis. In addition, YC-1 increased the activities of caspase-9 and caspase-3, disrupted the mitochondrial membrane potential (AYm) and stimulated ROS production in CAR cells. The protein levels of cytochrome c, Bax and Bak were elevated while Bcl-2 protein expression was attenuated in YC-1-treated CAR cells. In summary, YC-1 suppressed the viability of cisplatin-resistant CAR cells through inhibiting cell proliferation, arresting cell cycle at G0/G1 phase and triggering mitochondria-mediated apoptosis. Our results provide evidences to support the potentially therapeutic application of YC-1 on fighting against drug resistant oral cancer in the future.
Collapse
Affiliation(s)
- Miau-Rong Lee
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan
| | - Chingju Lin
- Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan - Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Sheng-Chu Kuo
- Chinese Medicinal Research and Development Center, China Medical University Hospital, China Medical University, Taichung 404, Taiwan - School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Je-Wei Tsao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Fang-Yu Lee
- Yung-Shin Pharmaceutical Industry Co., Ltd., Tachia, Taichung 437, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Fuu-Jen Tsai
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan - School of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
6
|
Structure−activity relationship study of novel 2-aminobenzofuran derivatives as P-glycoprotein inhibitors. Eur J Med Chem 2017; 125:1023-1035. [DOI: 10.1016/j.ejmech.2016.08.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/15/2022]
|
7
|
Chen CY, Liu NY, Lin HC, Lee CY, Hung CC, Chang CS. Synthesis and bioevaluation of novel benzodipyranone derivatives as P-glycoprotein inhibitors for multidrug resistance reversal agents. Eur J Med Chem 2016; 118:219-29. [DOI: 10.1016/j.ejmech.2016.03.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 11/27/2022]
|
8
|
Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett 2015; 370:153-64. [PMID: 26499806 DOI: 10.1016/j.canlet.2015.10.010] [Citation(s) in RCA: 559] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Multidrug resistance (MDR) is a serious phenomenon employed by cancer cells which hampers the success of cancer pharmacotherapy. One of the common mechanisms of MDR is the overexpression of ATP-binding cassette (ABC) efflux transporters in cancer cells such as P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) that limits the prolonged and effective use of chemotherapeutic drugs. Researchers have found that developing inhibitors of ABC efflux transporters as chemosensitizers could overcome MDR. But the clinical trials have shown that most of these chemosensitizers are merely toxic and only show limited or no benefits to cancer patients, thus new inhibitors are being explored. Recent findings also suggest that efflux pumps of the ABC transporter family are subject to epigenetic gene regulation. In this review, we summarize recent findings of the role of ABC efflux transporters in MDR.
Collapse
|
9
|
Wang B, Zou Q, Sun M, Chen J, Wang T, Bai Y, Chen Z, Chen B, Zhou M. Reversion of trichostatin A resistance via inhibition of the Wnt signaling pathway in human pancreatic cancer cells. Oncol Rep 2014; 32:2015-22. [PMID: 25224651 DOI: 10.3892/or.2014.3476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/22/2014] [Indexed: 11/05/2022] Open
Abstract
Drug resistance is a major impediment to successful chemotherapy in pancreatic cancer (PC) patients. We investigated the effect of Wnt/β-catenin signaling inhibition by wnt-c59 on chemoresistance in a trichostatin A-resistant Panc-1 cell line (Panc-1/TSA). Panc-1/TSA cells were treated with the Wnt/β‑catenin signaling inhibitor wnt-c59 (10 µmol · l-1) and/or trichostatin A (TSA; 10 µmol · l-1) for 24 h. CCK-8 assay was utilized to analyze the interactive effect of TSA and wnt-c59 on induction of apoptosis of the Panc-1/TSA cells. Cell apoptosis was measured by flow cytometry. Real-time PCR and western blotting were used to assess Wnt/β-catenin signaling, epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). Real-time cell analysis (RTCA) was used to detect the cell migration ability. After wnt-c59 treatment for 24 h, relative genes and transcriptional targets of Wnt/β-catenin signaling were downregulated (P<0.05). CCK-8 assay indicated that the combination of TSA and wnt-c59 had a synergistic effect on induction of Panc-1/TSA cell apoptosis. As detected by FACS, cell apoptosis rates increased significantly (P<0.05). The results of RTCA showed that the cell indices of the control group, wnt-c59 group, TSA group and TSA+wnt-c59 combination group were 1.2842±0.0257, 1.2155±0.0282, 1.2533±0.0194 and 0.8541±0.0250, respectively. In accordance, MMP-9 protein in the wnt-c59 treatment groups was decreased compared to the non-wnt-c59 treatment groups. Meanwhile, E-cadherin protein was upregulated and vimentin protein was downregulated, both of which are characteristic markers of EMT. Chemoresistant gene MDR1 and P-glycoprotein (P-gp) in the wnt-c59 treatment groups had a reduced expression compared to the non-wnt-c59 treatment groups. This study revealed that TSA sensitivity, migration ability, and the EMT phenotype in Panc-1/TSA cells were reversed following Wnt/β-catenin signaling inhibition.
Collapse
Affiliation(s)
- Benquan Wang
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qian Zou
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Sun
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingfeng Chen
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tianyang Wang
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yongheng Bai
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zongjing Chen
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bicheng Chen
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengtao Zhou
- Department of Surgery The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
10
|
The functional influences of common ABCB1 genetic variants on the inhibition of P-glycoprotein by Antrodia cinnamomea extracts. PLoS One 2014; 9:e89622. [PMID: 24586917 PMCID: PMC3934917 DOI: 10.1371/journal.pone.0089622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Abstract
Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC) can affect the efflux function of P-glycoprotein (P-gp) and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51 ± 0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56 ± 0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications.
Collapse
|
11
|
Vilas-Boas V, Silva R, Palmeira A, Sousa E, Ferreira LM, Branco PS, Carvalho F, Bastos MDL, Remião F. Development of novel rifampicin-derived P-glycoprotein activators/inducers. synthesis, in silico analysis and application in the RBE4 cell model, using paraquat as substrate. PLoS One 2013; 8:e74425. [PMID: 23991219 PMCID: PMC3753303 DOI: 10.1371/journal.pone.0074425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (P-gp) is a 170 kDa transmembrane protein involved in the outward transport of many structurally unrelated substrates. P-gp activation/induction may function as an antidotal pathway to prevent the cytotoxicity of these substrates. In the present study we aimed at testing rifampicin (Rif) and three newly synthesized Rif derivatives (a mono-methoxylated derivative, MeORif, a peracetylated derivative, PerAcRif, and a reduced derivative, RedRif) to establish their ability to modulate P-gp expression and activity in a cellular model of the rat's blood-brain barrier, the RBE4 cell line P-gp expression was assessed by western blot using C219 anti-P-gp antibody. P-gp function was evaluated by flow cytometry measuring the accumulation of rhodamine123. Whenever P-gp activation/induction ability was detected in a tested compound, its antidotal effect was further tested using paraquat as cytotoxicity model. Interactions between Rif or its derivatives and P-gp were also investigated by computational analysis. Rif led to a significant increase in P-gp expression at 72 h and RedRif significantly increased both P-gp expression and activity. No significant differences were observed for the other derivatives. Pre- or simultaneous treatment with RedRif protected cells against paraquat-induced cytotoxicity, an effect reverted by GF120918, a P-gp inhibitor, corroborating the observed P-gp activation ability. Interaction of RedRif with P-gp drug-binding pocket was consistent with an activation mechanism of action, which was confirmed with docking studies. Therefore, RedRif protection against paraquat-induced cytotoxicity in RBE4 cells, through P-gp activation/induction, suggests that it may be useful as an antidote for cytotoxic substrates of P-gp.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Renata Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Andreia Palmeira
- Departamento de Química, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Porto, Portugal
| | - Emília Sousa
- Departamento de Química, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Porto, Portugal
| | - Luísa Maria Ferreira
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Sério Branco
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Félix Carvalho
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Hung CC, Chiou MH, Teng YN, Hsieh YW, Huang CL, Lane HY. Functional impact of ABCB1 variants on interactions between P-glycoprotein and methadone. PLoS One 2013; 8:e59419. [PMID: 23527191 PMCID: PMC3602015 DOI: 10.1371/journal.pone.0059419] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/14/2013] [Indexed: 12/20/2022] Open
Abstract
Methadone is a widely used substitution therapy for opioid addiction. Large inter-individual variability has been observed in methadone maintenance dosages and P-glycoprotein (P-gp) was considered to be one of the major contributors. To investigate the mechanism of P-gp's interaction with methadone, as well as the effect of genetic variants on the interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established in the present study. The RNA and protein expression levels of human P-gp were confirmed by real-time quantitative RT-PCR and western blot, respectively. Utilizing rhodamine 123 efflux assay and calcein-AM uptake study, methadone was demonstrated to be an inhibitor of wild-type human P-gp via non-competitive kinetic (IC50 = 2.17±0.10 µM), while the variant-type human P-gp, P-gp with 1236T-2677T-3435T genotype and P-gp with 1236T-2677A-3435T genotype, showed less inhibition potency (IC50 = 2.97±0.09 µM and 4.43±1.10 µM, respectively) via uncompetitive kinetics. Methadone also stimulated P-gp ATPase and inhibited verapamil-stimulated P-gp ATPase activity under therapeutic concentrations. These results may provide a possible explanation for higher methadone dosage requirements in patients carrying variant-type of P-gp and revealed the possible drug-drug interactions in patients who receive concomitant drugs which are also P-gp substrates.
Collapse
Affiliation(s)
- Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Mu-Han Chiou
- Department of Pharmacy, Cathay General Hospital, Taipei, Taiwan
| | - Yu-Ning Teng
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yow-Wen Hsieh
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Liang Huang
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
- Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Sui H, Fan ZZ, Li Q. Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells. J Int Med Res 2012; 40:426-35. [PMID: 22613403 DOI: 10.1177/147323001204000204] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple drug resistance (MDR), defined as the ability of tumour cells to survive exposure to many chemotherapeutic agents, is a major cause of treatment failure in human cancers. The membrane transporter P-glycoprotein (Pgp, encoded by the ABCB1 [adenosine triphosphate-binding cassette, subfamily B, member 1] gene) is the main mechanism for decreased intracellular drug accumulation in human MDR cancer. ABCB1/Pgp-mediated MDR involves several signal transduction pathways and transcription factors. Activation of these signal transduction pathways influences the prognosis of MDR human cancer. Signalling pathways involved in ABCB1/Pgp-mediated MDR include the mitogen-activated protein kinase (MAPK), c-Jun NH(2)-terminal kinase (JNK), p38, cyclic adenosine monophosphate-dependent protein kinase, phosphatidylino sitol 3-kinase and protein kinase C signalling pathways. This review summarizes the biological characteristics, target points and signalling cascade mediators of these pathways. Drugs targeted against these pathways may provide new therapies for treatment of ABCB1/Pgp-mediated MDR.
Collapse
Affiliation(s)
- H Sui
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | |
Collapse
|
14
|
Chou CW, Wang CC, Wu CP, Lin YJ, Lee YC, Cheng YW, Hsieh CH. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neuro Oncol 2012; 14:1227-38. [PMID: 22946104 DOI: 10.1093/neuonc/nos195] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tumor cycling hypoxia is now a well-recognized phenomenon in animal and human solid tumors. However, how tumor cycling hypoxia impacts chemotherapy is unclear. In the present study, we explored the impact and the mechanism of cycling hypoxia on tumor microenvironment-mediated chemoresistance. Hoechst 33342 staining and hypoxia-inducible factor-1 (HIF-1) activation labeling together with immunofluorescence imaging and fluorescence-activated cell sorting were used to isolate hypoxic tumor subpopulations from human glioblastoma xenografts. ABCB1 expression, P-glycoprotein function, and chemosensitivity in tumor cells derived from human glioblastoma xenografts or in vitro cycling hypoxic stress-treated glioblastoma cells were determined using Western blot analysis, drug accumulation and efflux assays, and MTT assay, respectively. ABCB1 expression and P-glycoprotein function were upregulated under cycling hypoxia in glioblastoma cells concomitant with decreased responses to doxorubicin and BCNU. However, ABCB1 knockdown inhibited these effects. Moreover, immunofluorescence imaging and flow cytometric analysis for ABCB1, HIF-1 activation, and Hoechst 3342 in glioblastoma revealed highly localized ABCB1 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion in the solid tumor microenvironment. The cycling hypoxic tumor cells derived from glioblastoma xenografts exhibited higher ABCB1 expression, P-glycoprotein function, and chemoresistance, compared with chronic hypoxic and normoxic cells. Tumor-bearing mice that received YC-1, an HIF-1α inhibitor, exhibited suppressed tumor microenvironment-induced ABCB1 induction and enhanced survival rate in BCNU chemotherapy. Cycling hypoxia plays a vital role in tumor microenvironment-mediated chemoresistance through the HIF-1-dependent induction of ABCB1. HIF-1 blockade before and concurrent with chemotherapy could suppress cycling hypoxia-induced chemoresistance.
Collapse
Affiliation(s)
- Chii-Wen Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Doublier S, Belisario DC, Polimeni M, Annaratone L, Riganti C, Allia E, Ghigo D, Bosia A, Sapino A. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast. BMC Cancer 2012; 12:4. [PMID: 22217342 PMCID: PMC3262753 DOI: 10.1186/1471-2407-12-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022] Open
Abstract
Background Invasive micropapillary carcinoma (IMPC) of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1) activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters. Methods HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1α to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp) expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay. Results In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1α inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (a widely used HIF-1α inhibitor) or by transfecting cells with specific siRNA for HIF-1α significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids. Conclusions MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance.
Collapse
Affiliation(s)
- Sophie Doublier
- Department of Genetics, Biology and Biochemistry, University of Turin, Via Santena, 5/bis, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|