1
|
Katsimperis S, Kapriniotis K, Manolitsis I, Bellos T, Angelopoulos P, Juliebø-Jones P, Somani B, Skolarikos A, Tzelves L. Early investigational agents for the treatment of benign prostatic hyperplasia'. Expert Opin Investig Drugs 2024; 33:359-370. [PMID: 38421373 DOI: 10.1080/13543784.2024.2326023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH), as a clinical entity that affects many people, has always been in the forefront of interest among researchers, pharmaceutical companies, and physicians. Patients with BPH exhibit a diverse range of symptoms, while current treatment options can occasionally cause adverse events. All the aforementioned have led to an increased demand for more effective treatment options. AREAS COVERED This review summarizes the outcomes of new medications used in a pre-clinical and clinical setting for the management of male lower urinary tract symptoms (LUTS)/BPH and provides information about ongoing trials and future directions in the management of this condition. More specifically, sheds light upon drug categories, such as reductase‑adrenoceptor antagonists, drugs interfering with the nitric oxide (NO)/cyclic guanosine monophosphate (GMP) signaling pathway, onabotulinumtoxinA, vitamin D3 (calcitriol) analogues, selective cannabinoid (CB) receptor agonists, talaporfin sodium, inhibitor of transforming growth factor beta 1 (TGF-β1), drugs targeting the hormonal control of the prostate, phytotherapy, and many more. EXPERT OPINION Clinical trials are being conducted on a number of new medications that may emerge as effective therapeutic alternatives in the coming years.
Collapse
Affiliation(s)
- Stamatios Katsimperis
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ioannis Manolitsis
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Themistoklis Bellos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Angelopoulos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Patrick Juliebø-Jones
- Department of Urology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bhaskar Somani
- Department of Urology, University Hospital Southampton, Southampton, UK
| | - Andreas Skolarikos
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lazaros Tzelves
- 2nd University Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Urology, University College of London Hospitals (UCLH), London, UK
| |
Collapse
|
2
|
Liu Z, Li S, Chen S, Sheng J, Li Z, Lv T, Yu W, Fan Y, Wang J, Liu W, Hu S, Jin J. YAP-mediated GPER signaling impedes proliferation and survival of prostate epithelium in benign prostatic hyperplasia. iScience 2024; 27:109125. [PMID: 38420594 PMCID: PMC10901089 DOI: 10.1016/j.isci.2024.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) occurs when there is an imbalance between the proliferation and death of prostate cells, which is regulated tightly by estrogen signaling. However, the role of G protein-coupled estrogen receptor (GPER) in prostate cell survival remains ambiguous. In this study, we observed that prostates with epithelial hyperplasia showed increased yes-associated protein 1 (YAP) expression and decreased levels of estrogen and GPER. Blocking YAP through genetic or drug interventions led to reduced proliferation and increased apoptosis in the prostate epithelial cells. Interestingly, GPER agonists produced similar effects. GPER activation enhanced the phosphorylation and degradation of YAP, which was crucial for suppressing cell proliferation and survival. The Gαs/cAMP/PKA/LATS pathway, downstream of GPER, transmitted signals that facilitated YAP inhibition. This study investigated the interaction between GPER and YAP in the prostate epithelial cells and its contribution to BPH development. It lays the groundwork for future research on developing BPH treatments.
Collapse
Affiliation(s)
- Zhifu Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Senmao Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shengbin Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jindong Sheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Tianjing Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jinlong Wang
- Department of Urology, Tibet Autonomous Region People's Hospital, Lhasa 850000, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
3
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
4
|
Design and Synthesis of a Novel Antimicrobial Peptide Targeting β-catenin in Human Breast Cancer Cell lines. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Chen Z, Ge M. Discovering pathways in benign prostate hyperplasia: A functional genomics pilot study. Exp Ther Med 2021; 21:242. [PMID: 33603850 PMCID: PMC7851599 DOI: 10.3892/etm.2021.9673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is one of the well-known urological neoplasms common in males with an increasing number of associated deaths in aging males. It causes uncomfortable urinary symptoms, including urine flow blockage, and may cause bladder, urinary tract or kidney problems. The histopathological and clinical knowledge regarding BPH is limited. In the present study, an in silico approach was applied that uses genome-scale microarray expression data to discover a wide range of protein-protein interactions in addition to focusing on specific genes responsible for BPH to develop prognostic biomarkers. Various genes that were differentially expressed in BPH were identified. Gene and functional annotation clusters were determined and an interaction analysis with disease phenotypes of BPH was performed, as well as an RNA tissue specificity analysis. Furthermore, a molecular docking study of certain short-listed gene biomarkers, namely anterior gradient 2 (AGR2; PDB ID: 2LNT), steroid 5α-reductase 2 (PDB ID: 6OQX), zinc finger protein 3 (PDB ID: 5T00) and collagen type XII α1 chain (PDB ID: 1U5M), was performed in order to identify alternative Chinese herbal agents for the treatment of BPH. Data from the present study revealed that AGR2 receptor (PDB ID: 2LNT) and berberine (Huang Bo) form the most stable complex and therefore may be assessed in further pharmacological studies for the treatment of BPH.
Collapse
Affiliation(s)
- Zheling Chen
- Department of Traditional Chinese Medicine, Zhenxin Community Health Service Center, Shanghai 201824, P.R. China
| | - Minyao Ge
- Department of Urology Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
6
|
|
7
|
Vásquez-Velásquez C, Gasco M, Fano-Sizgorich D, Gonzales GF. Inflammatory pathway employed by Red Maca to treat induced benign prostatic hyperplasia in rats. Andrologia 2020; 52:e13516. [PMID: 31989657 DOI: 10.1111/and.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a pathology characterised by an increase in prostate size associated with low urinary tract symptoms. Finasteride (F), a 5a-reductase inhibitor, is the standard treatment for BPH reducing prostate weight but also sexual desire. The Peruvian plant known as Red Maca (RM) (Lepidium meyenii) inhibits BPH in rats and mice. The aim of the study was to assess the inflammatory effect of RM and finasteride in rats with testosterone enanthate (TE)-induced BPH. Thirty rats were divided into 5 groups: Control, TE (50 mg/rat), TE + F (0.6 mg/kg), and two groups of TE + RM 40/80 (40 or 80 mg). After treatments, tumour necrosis factor alpha (TNFa), interleukin 4 (IL4) and interferon gamma (INFg) as well as testosterone and oestradiol were evaluated and inflammatory cells (neutrophils, mast cells and lymphocytes) in prostate were quantified. Red Maca and finasteride treatments decreased inflammatory cells counts in prostate, inhibiting TNFa by different pathways. Finasteride increased IL4 whereas Red Maca increased INFg. In conclusion, data suggest that finasteride acts on Th2 response by increasing IL4 in prostate, while Red Maca acts on Th1 response mediated by INFg.
Collapse
Affiliation(s)
- Cinthya Vásquez-Velásquez
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manuel Gasco
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Diego Fano-Sizgorich
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo F Gonzales
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
8
|
Inhibitory effect of α 1D/1A antagonist 2-(1H-indol-3-yl)-N-[3-(4-(2-methoxyphenyl) piperazinyl) propyl] acetamide on estrogen/androgen-induced rat benign prostatic hyperplasia model in vivo. Eur J Pharmacol 2019; 870:172817. [PMID: 31756334 DOI: 10.1016/j.ejphar.2019.172817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disorder of the urinary system in aging men. 2-(1H-indol-3-yl)-N-[3-(4-(2-methoxyphenyl) piperazinyl) propyl] acetamide (HJZ-3), which is derived from naftopidil, exhibited 97.7- and 64.6-fold greater inhibitory effects for a1D adrenoceptor than for a1B- and a1A-adrenoceptors in vitro, respectively. To investigate the therapeutic potential for treating BPH, we evaluated the pharmacological activity of HJZ-3. Specifically, we evaluated through estrogen/androgen-induced rat benign prostatic hyperplasia model in vivo. HJZ-3 effectively prevented the progression of rat prostatic hyperplasia by suppressing the increase in prostate index and reducing the quantitative analysis of the relative acinus volume, relative stroma, epithelial volume and epithelial thickness and expression of proliferating cell nuclear antigen and α-smooth muscle actin. HJZ-3 decreased α1A- and α1D-adrenoceptor protein expressions in prostate tissue. HJZ-3 is a good alternative for α1A- and α1D-adrenoceptor blocker. It may relax smooth muscle tone and relieve symptoms of BPH.
Collapse
|
9
|
Tao R, Miao L, Yu X, Orgah JO, Barnabas O, Chang Y, Liu E, Fan G, Gao X. Cynomorium songaricum Rupr demonstrates phytoestrogenic or phytoandrogenic like activities that attenuates benign prostatic hyperplasia via regulating steroid 5-α-reductase. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:65-74. [PMID: 30708032 DOI: 10.1016/j.jep.2019.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynomorium songaricum Rupr. (CS) belongs to the genus of parasitic perennial flowering plants, mostly used in Chinese traditional medicine for benign prostatic hyperplasia (BPH) treatment. BPH is a chronic disease in men that both androgen and estrogen play a crucial role in promoting its development via their receptors. Previously we have showed that compounds from CS have the phytoestrogenic and/or phytoandrogenic activities that may have the potential suppressive effects on BPH, while the mechanism remains unclear. AIM OF THE STUDY In this study, we aim to investigate the effect of CS and its derived compounds: luteolin (LUT), gallic acid (GA), protocatechuic acid (PA) and protocatechualdehyde (Pra) on inhibition of rat BPH and proliferation of BPH-1 cell line respectively, and further uncover whether it is related with the phytoestrogenic and / or phytoandrogenic activities. MATERIALS AND METHODS Estradiol/testosterone (1:100) was subcutaneous injected to induce BPH in a castrated rat model, and CS was orally administrated for 45 days. Then the weights of the body and prostate were recorded, the pathogenesis changes of prostate were analyzed by Hematoxylin and eosin (H&E) and immunohistochemical (IHC). The levels of 17β-estradiol (E2), testosterone, and dihydrotestosterone (DHT) from rats' serum were measured by enzyme-linked immunosorbent assay (ELISA). In vitro, human benign prostatic epithelial cell BPH-1 was cultured and treated with or without different CS compounds and DHT or E2. MTT and CCK-8 assays were performed to detect the regulatory effects on cell proliferation. The expressions of PCNA, AR, ERα, ERβ, and steroid 5-α-reductases (SRD5A1 and SRD5A2) were further analyzed by western blotting upon treatment. RESULTS Treatment with CS significantly inhibited rat prostate enlargement, improved the pathological feature and reduced the thickness of smooth muscle layer. The up-regulated AR and ERα expressions and down-regulated ERβ in BPH rat prostate were significantly blocked after CS administration. Moreover, the enhanced values of E2/testosterone and the level of DHT in serum were also strongly inhibited in CS group compared with those in BPH groups. In cellular level, LUT, GA, PA, or Pra significantly inhibited DHT- or E2- induced BPH-1 cell proliferation and PCNA expressions. Consistently with the data in vivo, compounds from CS interfered the DHT or E2-regulated AR, ERα and ERβ expressions in BPH-1 cells as well. Importantly, the dramatic increased SRD5A1 and SRD5A2 expressions were observed in BPH rat prostates and DHT or E2-stimulated BPH-1 cells. However, treatment with CS in rat or with compounds isolated from CS in BPH-1 cells significantly blocked the induction of SRD5A1 and SRD5A2. CONCLUSIONS CS suppressed BPH development through interfering with prostatic AR, ERα/β, and SRD5A1/2 expressions, which provided evidence of CS for BPH treatment.
Collapse
Affiliation(s)
- Rui Tao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lin Miao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiean Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - John Owoicho Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Oche Barnabas
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China.
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
10
|
Shi X, Peng Y, Du X, Liu H, Klocker H, Lin Q, Shi J, Zhang J. Estradiol promotes epithelial-to-mesenchymal transition in human benign prostatic epithelial cells. Prostate 2017; 77:1424-1437. [PMID: 28850686 DOI: 10.1002/pros.23404] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is involved in pathogenesis of human benign prostatic hyperplasia (BPH). Estrogenic signaling pathways may stimulate the induction of EMT. However, the details of estradiol (E2) and estrogen receptors (ERs) effects on EMT, as well as E2-induced modulation of benign prostatic epithelial cell phenotype in vitro have not been completely clarified. METHODS The effects of E2 on EMT markers and cytokeratins (CKs) expression were evaluated in benign epithelial cell lines BPH-1 and RWPE-1, which were cultured both in two-dimensional (2D) culture and three-dimensional (3D) culture model using hanging drop technique or 3D Matrigel model. ER antagonist, ICI182,780, was used to confirm the regulatory effects of E2 on EMT and phenotypic modulation. In 3D culture, immunohistochemical stainings were performed to detect the specific phenotype of cells that underwent EMT in acinar-like spheroids formed by RWPE-1. To illustrate the exact function of ERs in E2-induced EMT and phenotypic modulation, specific short interfering RNAs (siRNAs), and agonists were used to knockdown or activate individual ERs, respectively. RESULTS E2-induced EMT was observed both in 2D and 3D culture, with related regulation of EMT markers expression at both mRNA and protein level. In addition, E2 down-regulated luminal cell type markers CK18 and CK8 and up-regulated basal cell type markers CK5 and CK14. E2 also increased intermediate type markers CK15 and CK17, while it attenuated CK19 in 3D culture. ICI182,780 blocked E2-induced EMT and cell phenotypic switching. In 3D Matrigel culture, Vimentin was co-expressed with ERα and CK17, as well as with SMemb, which is related to cell status switching and proliferation. Knockdown of ERα but not GPR30 inhibited EMT, while ERβ knockdown facilitated EMT process. Knockdown of ERα blocked E2-induced EMT both in RWPE-1 and BPH-1. MRNA expression of EMT markers was stimulated by ERα-specific agonist PPT and inhibited by ERβ-specific agonist DPN. CONCLUSIONS Estrogenic effect mediated by ERα can promote EMT. E2 is also an inductive factor of cell phenotypic switching. Cell type modulation is associated with E2-induced EMT in benign prostatic epithelial cells. Taken together the results support a contribution of estrogens to the pathogenesis of BPH in elderly men.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Bioactive Materials Key Lab of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaoling Du
- Bioactive Materials Key Lab of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Haitao Liu
- Shanghai First People's Hospital Shanghai Jiaotong University, Shanghai, 200080, China
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Qimei Lin
- Bioactive Materials Key Lab of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiandang Shi
- Bioactive Materials Key Lab of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ju Zhang
- Bioactive Materials Key Lab of Ministry of Education, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Minutoli L, Rinaldi M, Marini H, Irrera N, Crea G, Lorenzini C, Puzzolo D, Valenti A, Pisani A, Adamo EB, Altavilla D, Squadrito F, Micali A. Apoptotic Pathways Linked to Endocrine System as Potential Therapeutic Targets for Benign Prostatic Hyperplasia. Int J Mol Sci 2016; 17:ijms17081311. [PMID: 27529214 PMCID: PMC5000708 DOI: 10.3390/ijms17081311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a chronic condition common in older men that can result in bothersome lower urinary tract symptoms. The molecular mechanisms and networks underlying the development and the progression of the disease are still far from being fully understood. BPH results from smooth muscle cell and epithelial cell proliferation, primarily within the transition zone of the prostate. Apoptosis and inflammation play important roles in the control of cell growth and in the maintenance of tissue homeostasis. Disturbances in molecular mechanisms of apoptosis machinery have been linked to BPH. Increased levels of the glycoprotein Dickkopf-related protein 3 in BPH cause an inhibition of the apoptosis machinery through a reduction in B cell lymphoma (Bcl)-2 associated X protein (Bax) expression. Inhibitors of apoptosis proteins influence cell death by direct inhibition of caspases and modulation of the transcription factor nuclear factor-κB. Current pharmacotherapy targets either the static component of BPH, including finasteride and dutasteride, or the dynamic component of BPH, including α-adrenoceptor antagonists such as tamsulosin and alfuzosin. Both these classes of drugs significantly interfere with the apoptosis machinery. Furthermore, phytotherapic supplements and new drugs may also modulate several molecular steps of apoptosis.
Collapse
Affiliation(s)
- Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Mariagrazia Rinaldi
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Herbert Marini
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Giovanni Crea
- Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Cesare Lorenzini
- Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Antonina Pisani
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| | - Elena B Adamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
12
|
Choi BR, Soni KK, Zhang LT, Lee SW, So I, Kim HK, Park JK. Effect of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid on the intraurethral pressure in a rat model of benign prostatic hyperplasia. Int J Urol 2015; 23:259-65. [PMID: 26646436 DOI: 10.1111/iju.13018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the effect of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid, a new benzofuroindole derivative, on the intraurethral pressure in a rat model of benign prostatic hyperplasia. METHODS Benign prostatic hyperplasia was induced by testosterone and 17β-estradiol, which were administered intramuscularly once a day for 12 weeks. The effects of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid and tamsulosin on the intraurethral pressure induced by the electrostimulation of hypogastric nerves after a single intravenous injection of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid (10 mg/kg) or tamsulosin (10 μg/kg) were evaluated in a benign prostatic hyperplasia model. The electrostimulation-induced intraurethral pressure was measured just before and after the injection of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid. Bodyweight and genitourinary organ weights were recorded, and serums and tissues were subjected to hormone assays and histopathology. In addition, the expression of α1-adrenoceptors in the prostate was measured by western blotting. RESULTS The benign prostatic hyperplasia groups showed increased prostatic index, increased concentrations of testosterone, free testosterone and estradiol in serum, and increased epithelial thickness of the prostate. An injection of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid or tamsulosin significantly inhibited the elevation of electrostimulation-induced intraurethral pressure. In addition, 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid did not cause a significant change in the blood pressure compared with tamsulosin. While the benign prostatic hyperplasia group showed increased the expression of α1-adrenoceptors, the 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid or tamsulosin injection into a rat model of benign prostatic hyperplasia decreased the expression of α1-adrenoceptors. CONCLUSIONS These findings show that 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid might be beneficial for lowering the intraurethral pressure associated with benign prostatic hyperplasia, and it could represent a therapeutic option for benign prostatic hyperplasia patients.
Collapse
Affiliation(s)
- Bo Ram Choi
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| | - Kiran Kumar Soni
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| | - Li Tao Zhang
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Kyung Kim
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| | - Jong Kwan Park
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| |
Collapse
|
13
|
Metformin Attenuates Testosterone-Induced Prostatic Hyperplasia in Rats: A Pharmacological Perspective. Sci Rep 2015; 5:15639. [PMID: 26492952 PMCID: PMC4616049 DOI: 10.1038/srep15639] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is uncontrolled proliferation of prostate tissue. Metformin, a widely prescribed anti-diabetic agent, possesses anticancer activity through induction of apoptotic signaling and cell cycle arrest. This study aimed to investigate the protective effect of metformin against experimentally-induced BPH in rats. Treatment with 500 and 1000 mg/kg metformin orally for 14 days significantly inhibited testosterone-mediated increase in the prostate weight & prostate index (prostate weight/body weight [mg/g]) and attenuated the pathological alterations induced by testosterone. Mechanistically, metformin significantly protected against testosterone-induced elevation of estrogen receptor-α (ER-α) and decrease of estrogen receptor-β (ER-β) expression, with no significant effect of androgen receptor (AR) and 5α-reductase expression. It decreased mRNA expression of IGF-1 and IGF-1R and protein expression ratio of pAkt/total Akt induced by testosterone. Furthermore, it significantly ameliorated testosterone–induced reduction of mRNA expression Bax/Bcl-2 ratio, P21 and phosphatase and tensin homolog (PTEN) and AMPK [PT-172] activity. In conclusion, these findings elucidate the effectiveness of metformin in preventing testosterone-induced BPH in rats. These results could be attributed, at least partly, to its ability to enhance expression ratio of ER-β/ER-α, decrease IGF-1, IGF-1R and pAkt expressions, increase P21, PTEN, Bax/Bcl-2 expressions and activate AMPK with a subsequent inhibition of prostate proliferation.
Collapse
|
14
|
A precisely substituted benzopyran targets androgen refractory prostate cancer cells through selective modulation of estrogen receptors. Toxicol Appl Pharmacol 2015; 283:187-97. [PMID: 25655200 DOI: 10.1016/j.taap.2015.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/28/2022]
Abstract
Dietary consumption of phytoestrogens like genistein has been linked with lower incidence of prostate cancer. The estradiol-like benzopyran core of genistein confers estrogen receptor-β (ER-β) selectivity that imparts weak anti-proliferative activity against prostate cancer cells. DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2H-1-benzopyran (BP), a SERM designed with benzopyran core, targeted androgen independent prostate cancer (PC-3) cells 14-times more potently than genistein, ~25% more efficiently than tamoxifen and 6.5-times more actively than ICI-182780, without forfeiting significant specificity in comparison to genistein. BP increased apoptosis (annexin-V and TUNEL labeling), arrested cell cycle, and significantly increased caspase-3 activity along with mRNA expressions of estrogen receptor (ER)-β and FasL (qPCR) in PC-3 cells. In classical ERE-luc reporter assay BP behaved as a potent ER-α antagonist and ER-β agonist. Accordingly, it decreased expression of ER-α target PS2 (P<0.01) and increased expression of ER-β target TNF-α (P<0.05) genes in PC-3. ER-β deficient PC-3 (siRNA-transfected) was resistant to apoptotic and anti-proliferative actions of SERMs, including stimulation of FasL expression by BP. BP significantly inhibited phosphorylation of Akt and ERK-1/2, JNK and p38 in PC-3 (immunoblotting), and thus adopted a multi-pathway mechanism to exert a more potent anti-proliferative activity against prostate cancer cells than natural and synthetic SERMs. Its precise ER-subtype specific activity presents a unique lead structure for further optimization.
Collapse
|
15
|
Wang C, Du X, Yang R, Liu J, Xu D, Shi J, Chen L, Shao R, Fan G, Gao X, Tian G, Zhu Y, Zhang J. The prevention and treatment effects of tanshinone IIA on oestrogen/androgen-induced benign prostatic hyperplasia in rats. J Steroid Biochem Mol Biol 2015; 145:28-37. [PMID: 25290459 DOI: 10.1016/j.jsbmb.2014.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 11/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is one of the major diseases of the urinary system in elderly men. Tanshinone IIA (Tan IIA) is the active ingredient extracted from the traditional Chinese medicine Salvia, and it has effects of anti-oxidation, anti-inflammation, vascular smooth muscle relaxation and tumour growth inhibition. The present study aimed to investigate the therapeutic potential of Tan IIA in the prevention and treatment of BPH. In a rat model of oestradiol/testosterone-induced BPH, Tan IIA inhibited the increase in the thickness of the peri-glandular smooth muscle layer, suppressed the expression of proliferating cell nuclear antigen (PCNA) in both prostate epithelial cells and stromal cells, downregulated the expression of androgen receptor (AR), oestrogen receptor α (ERα), cyclin B1 (CCNB1) and cyclin D1 (CCND1), and effectively prevented the development of the disorder. In vitro, Tan IIA inhibited the proliferation of human prostate stromal cell line WPMY-1 and epithelial cell line RWPE-1 in a dose- and time-dependent manner. In WPMY-1 cells, Tan IIA treatment arrested the cell cycle at the G2/M phase and downregulated the expression of CCNB1. However, in RWPE-1 cells, Tan IIA treatment arrested cell cycle at the G0/G1 phase and reduced the expression of CCND1. Tan IIA also reduced the expression of ERα and AR in WPMY-1 and RWPE-1 cells. These results suggest that Tan IIA can inhibit the growth of prostate stromal and epithelial cells both in vivo and in vitro by a mechanism that may involve arresting the cell cycle and downregulating ERα and AR expression.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Rui Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jie Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Da Xu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Linfeng Chen
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02445, USA
| | - Rui Shao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guo Tian
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Abstract
Testosterone (T) deficiency syndrome (TDS) is a prevalent condition, commonly managed with exogenous T. Despite an abundance of T formulations, alternative treatments are often sought for various reasons. To evaluate outcomes of alternative therapies, a PubMed search was performed of all publications that included men with TDS from 1990 through October 2013, with results summarized. Proposed mechanisms of action were also reviewed to provide a pathophysiologic basis for reported outcomes. Nonpharmacologic therapies that increase endogenous T are weight loss, exercise, and varicocelectomy, while medications used off-label include aromatase inhibitors, human chorionic gonadotropin, and selective estrogen receptor modulators. All reported therapies increase T, while changes in estradiol and adverse events vary by therapeutic class. Although limited data preclude direct comparisons between therapies, exercise and weight loss alone or in combination with medications may be considered first line. The role for surgical therapy in TDS remains undefined and requires further study.
Collapse
|
17
|
Park H, Park S, Kim KH, Cho MS, Sung SH, Ro JY. Stromal nodules in benign prostatic hyperplasia: morphologic and immunohistochemical characteristics. Prostate 2014; 74:1433-43. [PMID: 25111578 DOI: 10.1002/pros.22859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/24/2014] [Indexed: 11/11/2022]
Abstract
BACKGROUND One hundred forty nine stromal nodules (SNs) from transurethral resection of benign prostatic hyperplasia specimens in 39 patients (57-85 years with mean of 70.9) were investigated to characterize the SNs and to outline the etiopathogenesis of solitary fibrous tumors (SFTs) and gastrointestinal stromal tumors (GISTs) of prostate by immunohistochemistry performed on tissue microarray sections. METHODS Antibodies used included smooth muscle actin, desmin, vimentin, and S-100 protein for subtyping, vascular endothelial growth factor, insulin-like growth factor-1, fibroblast growth factor, and TGF-ß as growth factors; CD133, c-KIT, CD34, and CD44 as stem cell markers; and estrogen (ER), progesterone (PR), and androgen receptor (AR) as hormone receptors. RESULTS SNs were classified into four subtypes: (1) immature mesenchymal (n = 7, 4.7%); (2) fibroblastic (n = 74, 49.7%); (3) fibromuscular (n = 53, 35.6%); and (4) smooth muscular (n = 15, 10.1%) types. There were linear trends of the expression of all growth factors (VEGF, IGF-1, FGF, TGF-ß), but only CD44 stem cell marker and AR hormone receptor as maturation progressed from immature mesenchymal to smooth muscular type (Ptrend < 0.05). S-100, c-KIT, and ER were not expressed in any types of SNs. CD34 was positive in 55% of the SNs (82/149). CONCLUSIONS The data suggest that AR and growth factors are important factors for maturation of SNs, but not influenced by the administration of 5-alpha reductase inhibitor (5ARI). Although the cells comprising the SNs seem to be not associated with the origin of prostatic GISTs, there is a possibility of a tentative link of SFTs arising from SNs of the prostate.
Collapse
Affiliation(s)
- Heejung Park
- Department of Pathology, Ewha Womans University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Eiffe E, Pasquier E, Kavallaris M, Herbert C, StC Black D, Kumar N. Synthesis, anti-cancer and anti-inflammatory activity of novel 2-substituted isoflavenes. Bioorg Med Chem 2014; 22:5182-93. [PMID: 25189689 DOI: 10.1016/j.bmc.2014.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/09/2014] [Indexed: 11/28/2022]
Abstract
Fifteen novel 2-substituted isoflavenes were synthesised via nucleophilic addition to isoflavylium salts. Twelve of the newly synthesised isoflavenes, along with the unsubstituted parent isoflavene, were tested in cell viability assays against the SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines. While the 2-substituted isoflavenes displayed a range of anti-proliferative activities, in most cases they were less active that the unsubstituted isoflavene (IC50=9.9 μM vs SHEP; IC50=33 μM vs MDA-MB-231). However, compound 7f, derived from the reaction between isoflavylium salt 5 and para-methoxyacetophenone, showed improved anti-proliferative activity against breast cancer cells (IC50=7.6 μM). Furthermore, compound 7f, as well as analogues 7a, 7c, 11d and 14, inhibited the production of interleukin-6 in LPS-activated RAW 264.7 cells.
Collapse
Affiliation(s)
- Eleanor Eiffe
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Eddy Pasquier
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2052, Australia; Metronomics Global Health Initiative, Marseille, France
| | - Maria Kavallaris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2052, Australia; Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Cristan Herbert
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David StC Black
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Patel ND, Parsons JK. Epidemiology and etiology of benign prostatic hyperplasia and bladder outlet obstruction. Indian J Urol 2014; 30:170-6. [PMID: 24744516 PMCID: PMC3989819 DOI: 10.4103/0970-1591.126900] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a histological diagnosis associated with unregulated proliferation of connective tissue, smooth muscle and glandular epithelium. BPH may compress the urethra and result in anatomic bladder outlet obstruction (BOO); BOO may present as lower urinary tract symptoms (LUTS), infections, retention and other adverse events. BPH and BOO have a significant impact on the health of older men and health-care costs. As the world population ages, the incidence and prevalence of BPH and LUTS have increased rapidly. Although non-modifiable risk factors – including age, genetics and geography – play significant roles in the etiology of BPH and BOO, recent data have revealed modifiable risk factors that present new opportunities for treatment and prevention, including sex steroid hormones, the metabolic syndrome and cardiovascular disease, obesity, diabetes, diet, physical activity and inflammation. We review the natural history, definitions and key risk factors of BPH and BOO in epidemiological studies.
Collapse
Affiliation(s)
- Nishant D Patel
- Department of Urology, Moores UCSD Cancer Center, University of California, San Diego, and Section of Surgery, VA San, USA
| | - J Kellogg Parsons
- Department of Urology, Moores UCSD Cancer Center, University of California, San Diego, and Section of Surgery, VA San, USA
| |
Collapse
|
20
|
Verma V, Sharma V, Singh V, Kumar R, Khan MF, Singh AK, Sharma R, Arya KR, Maikhuri J, Dalela D, Maurya R, Gupta G. Labda-8(17),12,14-trien-19-oic Acid Contained in Fruits ofCupressus sempervirensSuppresses Benign Prostatic Hyperplasia in Rat andIn VitroHuman Models Through Inhibition of Androgen and STAT-3 Signaling. Phytother Res 2014; 28:1196-203. [DOI: 10.1002/ptr.5114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Vikas Verma
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| | - Vikas Sharma
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| | - Vishal Singh
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| | - Rajeev Kumar
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| | - Mohammad F. Khan
- Division of Medicinal and Process Chemistry; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| | - Anil K. Singh
- Department of Physics and Computer Science; Ewing Christian College; Allahabad 211003 India
| | - Rolee Sharma
- Department of Biotechnology; Integral University; Lucknow 226026 India
| | - Kamal R. Arya
- Division of Botany; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| | - J.P. Maikhuri
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| | - Diwakar Dalela
- Department of Urology; CSM Medical University; Lucknow 226 003 India
| | - Rakesh Maurya
- Division of Medicinal and Process Chemistry; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| | - Gopal Gupta
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow 226 001 India
| |
Collapse
|
21
|
Nicholson TM, Sehgal PD, Drew SA, Huang W, Ricke WA. Sex steroid receptor expression and localization in benign prostatic hyperplasia varies with tissue compartment. Differentiation 2013; 85:140-9. [PMID: 23792768 DOI: 10.1016/j.diff.2013.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/16/2013] [Accepted: 02/27/2013] [Indexed: 11/17/2022]
Abstract
Androgens and estrogens, acting via their respective receptors, are important in benign prostatic hyperplasia (BPH). The goals of this study were to quantitatively characterize the tissue distribution and staining intensity of androgen receptor (AR) and estrogen receptor-alpha (ERα), and assess cells expressing both AR and ERα, in human BPH compared to normal prostate. A tissue microarray composed of normal prostate and BPH tissue was used and multiplexed immunohistochemistry was performed to detect AR and ERα. We used a multispectral imaging platform for automated scanning, tissue and cell segmentation and marker quantification. BPH specimens had an increased number of epithelial and stromal cells and increased percentage of epithelium. In both stroma and epithelium, the mean nuclear area was decreased in BPH relative to normal prostate. AR expression and staining intensity in epithelial and stromal cells was significantly increased in BPH compared to normal prostate. ERα expression was increased in BPH epithelium. However, stromal ERα expression and staining intensity was decreased in BPH compared to normal prostate. Double positive (AR and ERα) epithelial cells were more prevalent in BPH, and fewer double negative (AR and ERα) stromal and epithelial negative cells were observed in BPH. These data underscore the importance of tissue layer localization and expression of steroid hormone receptors in the prostate. Understanding the tissue-specific hormone action of androgens and estrogens will lead to a better understanding of mechanisms of pathogenesis in the prostate and may lead to better treatment for BPH.
Collapse
|
22
|
Garg M, Dalela D, Dalela D, Goel A, Kumar M, Gupta G, Sankhwar SN. Selective estrogen receptor modulators for BPH: new factors on the ground. Prostate Cancer Prostatic Dis 2013; 16:226-32. [PMID: 23774084 DOI: 10.1038/pcan.2013.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 02/07/2023]
Abstract
As the current management of BPH/lower urinary tract symptoms by traditionally involved pharmacological agents such as 5alpha-reductase inhibitors and α1-adrenoceptor antagonists is suboptimal, there is definite need of new therapeutic strategies. There is ample evidence in literature that suggests the role of estrogens in BPH development and management through the different tissue and cell-specific receptors. This article reviews the beneficial actions of selective estrogen receptor modulator (SERM) and ERβ-selective ligands, which have been demonstrated through in vitro studies using human prostate cell lines and in vivo animal studies. SERMs have anti-proliferative, anti-inflammatory and pro-apoptotic mechanisms in BPH, and also act by inhibiting various growth factors, and thus represent a unique and novel approach in BPH management directed at estrogen receptors or estrogen metabolism.
Collapse
Affiliation(s)
- M Garg
- Department of Urology, King George Medical University, Lucknow, India.
| | | | | | | | | | | | | |
Collapse
|
23
|
Current world literature. Curr Opin Urol 2012. [PMID: 23202289 DOI: 10.1097/mou.0b013e32835bb149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. JOURNAL OF ONCOLOGY 2011; 2012:192464. [PMID: 22187555 PMCID: PMC3236518 DOI: 10.1155/2012/192464] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/25/2011] [Indexed: 12/18/2022]
Abstract
The genesis of cancer is often a slow process and the risk of developing cancer increases with age. Altering a diet that includes consumption of beneficial phytochemicals can influence the balance and availability of dietary chemopreventive agents. In chemopreventive approaches, foods containing chemicals that have anticancer properties can be supplemented in diets to prevent precancerous lesions from occurring. This necessitates further understanding of how phytochemicals can potently maintain healthy cells. Fortunately there is a plethora of plant-based phytochemicals although few of them are well studied in terms of their application as cancer chemopreventive and therapeutic agents. In this analysis we will examine phytochemicals that have strong chemopreventive and therapeutic properties in vitro as well as the design and modification of these bioactive compounds for preclinical and clinical applications. The increasing potential of combinational approaches using more than one bioactive dietary compound in chemoprevention or cancer therapy will also be evaluated. Many novel approaches to cancer prevention are on the horizon, several of which are showing great promise in saving lives in a cost-effective manner.
Collapse
|