1
|
Calderon-Espinosa E, De Ridder K, Benoot T, Jansen Y, Vanhonacker D, Heestermans R, De Becker A, Van Riet I, Decoster L, Goyvaerts C. The crosstalk between lung cancer and the bone marrow niche fuels emergency myelopoiesis. Front Immunol 2024; 15:1397469. [PMID: 39148724 PMCID: PMC11324509 DOI: 10.3389/fimmu.2024.1397469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Modest response rates to immunotherapy observed in advanced lung cancer patients underscore the need to identify reliable biomarkers and targets, enhancing both treatment decision-making and efficacy. Factors such as PD-L1 expression, tumor mutation burden, and a 'hot' tumor microenvironment with heightened effector T cell infiltration have consistently been associated with positive responses. In contrast, the predictive role of the abundantly present tumor-infiltrating myeloid cell (TIMs) fraction remains somewhat uncertain, partly explained by their towering variety in terms of ontogeny, phenotype, location, and function. Nevertheless, numerous preclinical and clinical studies established a clear link between lung cancer progression and alterations in intra- and extramedullary hematopoiesis, leading to emergency myelopoiesis at the expense of megakaryocyte/erythroid and lymphoid differentiation. These observations affirm that a continuous crosstalk between solid cancers such as lung cancer and the bone marrow niche (BMN) must take place. However, the BMN, encompassing hematopoietic stem and progenitor cells, differentiated immune and stromal cells, remains inadequately explored in solid cancer patients. Subsequently, no clear consensus has been reached on the exact breadth of tumor installed hematopoiesis perturbing cues nor their predictive power for immunotherapy. As the current era of single-cell omics is reshaping our understanding of the hematopoietic process and the subcluster landscape of lung TIMs, we aim to present an updated overview of the hierarchical differentiation process of TIMs within the BMN of solid cancer bearing subjects. Our comprehensive overview underscores that lung cancer should be regarded as a systemic disease in which the cues governing the lung tumor-BMN crosstalk might bolster the definition of new biomarkers and druggable targets, potentially mitigating the high attrition rate of leading immunotherapies for NSCLC.
Collapse
Affiliation(s)
- Evelyn Calderon-Espinosa
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemistry, University of Warwick, Warwick, United Kingdom
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Benoot
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Yanina Jansen
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Domien Vanhonacker
- Department of Anesthesiology, Perioperative and Pain Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Robbe Heestermans
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Lore Decoster
- Department of Medical Oncology, Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Xu X, Qiu Y, Chen S, Wang S, Yang R, Liu B, Li Y, Deng J, Su Y, Lin Z, Gu J, Li S, Huang L, Zhou Y. Different roles of the insulin-like growth factor (IGF) axis in non-small cell lung cancer. Curr Pharm Des 2022; 28:2052-2064. [DOI: 10.2174/1381612828666220608122934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Non-small cell lung cancer (NSCLC) remains one of the deadliest malignant diseases, with high incidence and mortality worldwide. The insulin-like growth factor (IGF) axis, consisting of IGF-1, IGF-2, related receptors (IGF-1R, -2R), and high-affinity binding proteins (IGFBP 1–6), is associated with promoting fetal development, tissue growth, and metabolism. Emerging studies have also identified the role of the IGF axis in NSCLC, including cancer growth, invasion, and metastasis. Upregulation of IGE-1 and IGF-2, overexpression of IGF-1R, and dysregulation of downstream signaling molecules involved in the PI-3K/Akt and MAPK pathways jointly increase the risk of cancer growth and migration in NSCLC. At the genetic level, some noncoding RNAs could influence the proliferation and differentiation of tumor cells through the IGF signaling pathway. The resistance to some promising drugs might be partially attributed to the IGF axis. Therapeutic strategies targeting the IGF axis have been evaluated, and some have shown promising efficacy. In this review, we summarize the biological roles of the IGF axis in NSCLC, including the expression and prognostic significance of the related components, noncoding RNA regulation, involvement in drug resistance, and therapeutic application. This review offers comprehensive understanding of NSCLC and provides insightful ideas for future research.
Collapse
Affiliation(s)
- Xiongye Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanli Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Simin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuaishuai Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruifu Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yufei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiating Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziying Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincui Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoli Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
The Efficacy of Long-Term Chinese Herbal Medicine Use on Lung Cancer Survival Time: A Retrospective Two-Center Cohort Study with Propensity Score Matching. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5522934. [PMID: 34475962 PMCID: PMC8407994 DOI: 10.1155/2021/5522934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/13/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023]
Abstract
Objective To explore the efficacy of long-term use of Chinese herbal medicine (CHM) on survival time of lung cancer. Methods We conducted a retrospective cohort study on lung cancer patients. A propensity score matching (PSM) was performed to balance the covariates. Progression-free survival (PFS) was the primary endpoint and overall survival (OS) was the secondary endpoint. Patients who received CHM therapy from the initial date of diagnosis of lung cancer were included in the CHM group. Patients who were not treated with CHM during the same interval were categorized in the control group. A Cox regression model was used to explore the prognostic factors related to lung cancer. Hazard ratios of different subgroups were also analyzed. Results A total of 1134 patients were included in our study: 761 patients were in the CHM group and 373 patients were in the control group. After PSM, the mPFS and mOS in the CHM group were 70.4 months and 129.1 months, respectively, while the mPFS and mOS in the control group were 23.8 months and 99.7 months, respectively. The results of survival analysis on each stage demonstrated that patients may benefit from the long-term CHM treatment especially for patients with early stage. One-year to ten-year progression-free survival rates in the CHM group were higher than those in the control group (p < 0.001). COX multivariate regression analysis indicated that CHM treatment, female, low age at diagnosis, early tumor stage, and surgery were independent protective factors against recurrence and metastasis of lung cancer. Subgroup analysis showed that CHM treatment could reduce the risk of recurrence and metastasis in each subgroup (p < 0.01). Conclusion Long-term CHM treatment with the Fuzheng Quxie Formula, which can be flexibly applied in the course of lung cancer treatment, not only has a positive influence on the progression-free survival time of lung cancer patients, but also reduces the risk of recurrence and metastasis of lung cancer.
Collapse
|
4
|
Ianza A, Sirico M, Bernocchi O, Generali D. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front Cell Dev Biol 2021; 9:641449. [PMID: 33829018 PMCID: PMC8019779 DOI: 10.3389/fcell.2021.641449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last two decades, many studies have demonstrated that the insulin-like growth factor-1 (IGF-1) is involved in a number of patho-physiological processes, as well as in the development of different types of solid tumors, including breast cancer (BC). Preclinical and clinical data showed that IGF-1 receptor (R) is overexpressed and hyper-phosphorylated in several subtypes of BCs. The central implications of this pathway in tumor cell proliferation and metastasis make it an important therapeutic target. Moreover, the IGF-1 axis has shown strong interconnection with estrogen regulation and endocrine therapy, suggesting a possible solution to anti-estrogen resistance. IGF-1R might also interfere with other pivotal therapeutic strategies, such as anti HER2 treatments and mTOR inhibitors; several clinical trials are ongoing evaluating the role of IGF-1R inhibition in modulating resistance mechanisms to target therapies. Our aim is to offer an overview of the most recent and significant field of application of IGF-1 inhibitors and relevant therapeutic strategies, weighing their possible future impact on clinical practice.
Collapse
Affiliation(s)
- Anna Ianza
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Marianna Sirico
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
| | - Ottavia Bernocchi
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
5
|
Abstract
The insulin and insulin-like growth factor (IGF) family of proteins are part of a complex network that regulates cell proliferation and survival. While this system is undoubtedly important in prenatal development and postnatal cell growth, members of this family have been implicated in several different cancer types. Increased circulating insulin and IGF ligands have been linked to increased risk of cancer incidence. This observation has led to targeting the IGF system as a therapeutic strategy in a number of cancers. This chapter aims to describe the well-characterized biology of the IGF1R system, outline the rationale for targeting this system in cancer, summarize the clinical data as it stands, and discuss where we can go from here.
Collapse
|
6
|
The IGF-II-Insulin Receptor Isoform-A Autocrine Signal in Cancer: Actionable Perspectives. Cancers (Basel) 2020; 12:cancers12020366. [PMID: 32033443 PMCID: PMC7072655 DOI: 10.3390/cancers12020366] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin receptor overexpression is a common event in human cancer. Its overexpression is associated with a relative increase in the expression of its isoform A (IRA), a shorter variant lacking 11 aa in the extracellular domain, conferring high affinity for the binding of IGF-II along with added intracellular signaling specificity for this ligand. Since IGF-II is secreted by the vast majority of malignant solid cancers, where it establishes autocrine stimuli, the co-expression of IGF-II and IRA in cancer provides specific advantages such as apoptosis escape, growth, and proliferation to those cancers bearing such a co-expression pattern. However, little is known about the exact role of this autocrine ligand–receptor system in sustaining cancer malignant features such as angiogenesis, invasion, and metastasis. The recent finding that the overexpression of angiogenic receptor kinase EphB4 along with VEGF-A is tightly dependent on the IGF-II/IRA autocrine system independently of IGFIR provided new perspectives for all malignant IGF2omas (those aggressive solid cancers secreting IGF-II). The present review provides an updated view of the IGF system in cancer, focusing on the biology of the autocrine IGF-II/IRA ligand–receptor axis and supporting its underscored role as a malignant-switch checkpoint target.
Collapse
|
7
|
Phase I Study of IGF-Methotrexate Conjugate in the Treatment of Advanced Tumors Expressing IGF-1R. Am J Clin Oncol 2019; 42:862-869. [DOI: 10.1097/coc.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies. Target Oncol 2017; 12:571-597. [PMID: 28815409 PMCID: PMC5610669 DOI: 10.1007/s11523-017-0514-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance.
Collapse
Affiliation(s)
- Aaron Simpson
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria.
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
9
|
Lazăr DC, Tăban S, Cornianu M, Faur A, Goldiş A. New advances in targeted gastric cancer treatment. World J Gastroenterol 2016; 22:6776-6799. [PMID: 27570417 PMCID: PMC4974579 DOI: 10.3748/wjg.v22.i30.6776] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Despite a decrease in incidence over past decades, gastric cancer remains a major global health problem. In the more recent period, survival has shown only minor improvement, despite significant advances in diagnostic techniques, surgical and chemotherapeutic approaches, the development of novel therapeutic agents and treatment by multidisciplinary teams. Because multiple genetic mutations, epigenetic alterations, and aberrant molecular signalling pathways are involved in the development of gastric cancers, recent research has attempted to determine the molecular heterogeneity responsible for the processes of carcinogenesis, spread and metastasis. Currently, some novel agents targeting a part of these dysfunctional molecular signalling pathways have already been integrated into the standard treatment of gastric cancer, whereas others remain in phases of investigation within clinical trials. It is essential to identify the unique molecular patterns of tumours and specific biomarkers to develop treatments targeted to the individual tumour behaviour. This review analyses the global impact of gastric cancer, as well as the role of Helicobacter pylori infection and the efficacy of bacterial eradication in preventing gastric cancer development. Furthermore, the paper discusses the currently available targeted treatments and future directions of research using promising novel classes of molecular agents for advanced tumours.
Collapse
|
10
|
Iams WT, Lovly CM. Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade. Clin Cancer Res 2016; 21:4270-7. [PMID: 26429980 DOI: 10.1158/1078-0432.ccr-14-2518] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The IGF1R signaling pathway is a complex and tightly regulated network that is critical for cell proliferation, growth, and survival. IGF1R is a potential therapeutic target for patients with many different malignancies. This brief review summarizes the results of clinical trials targeting the IGF1R pathway in patients with breast cancer, sarcoma, and non-small cell lung cancer (NSCLC). Therapeutic agents discussed include both monoclonal antibodies to IGF1R (dalotuzumab, figitumumab, cixutumumab, ganitumab, R1507, AVE1642) and newer IGF1R pathway targeting strategies, including monoclonal antibodies to IGF1 and IGF2 (MEDI-573 and BI 836845) and a small-molecule tyrosine kinase inhibitor of IGF1R (linsitinib). The pullback of trials in patients with breast cancer and NSCLC based on several large negative trials is noted and contrasted with the sustained success of IGF1R inhibitor monotherapy in a subset of patients with sarcoma. Several different biomarkers have been examined in these trials with varying levels of success, including tumor expression of IGF1R and its pathway components, serum IGF ligand levels, alternate pathway activation, and specific molecular signatures of IGF1R pathway dependence. However, there remains a critical need to define predictive biomarkers in order to identify patients who may benefit from IGF1R-directed therapies. Ongoing research focuses on uncovering such biomarkers and elucidating mechanisms of resistance, as this therapeutic target is currently being analyzed from the bedside to bench.
Collapse
Affiliation(s)
- Wade T Iams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Lovly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.
| |
Collapse
|
11
|
Nurwidya F, Andarini S, Takahashi F, Syahruddin E, Takahashi K. Implications of Insulin-like Growth Factor 1 Receptor Activation in Lung Cancer. Malays J Med Sci 2016; 23:9-21. [PMID: 27418865 PMCID: PMC4934714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) has been intensively investigated in many preclinical studies using cell lines and animal models, and the results have provided important knowledge to help improve the understanding of cancer biology. IGF1R is highly expressed in patients with lung cancer, and high levels of circulating insulin-like growth factor 1 (IGF1), the main ligand for IGF1R, increases the risk of developing lung malignancy in the future. Several phase I clinical trials have supported the potential use of an IGF1R-targeted strategy for cancer, including lung cancer. However, the negative results from phase III studies need further attention, especially in selecting patients with specific molecular signatures, who will gain benefits from IGF1R inhibitors with minimal side effects. This review will discuss the basic concept of IGF1R in lung cancer biology, such as epithelial-mesenchymal transition (EMT) induction and cancer stem cell (CSC) maintenance, and also the clinical implications of IGF1R for lung cancer patients, such as prognostic value and cancer therapy resistance.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
12
|
Xu W, Yang Z, Lu N. Molecular targeted therapy for the treatment of gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:1. [PMID: 26728266 PMCID: PMC4700735 DOI: 10.1186/s13046-015-0276-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
Despite the global decline in the incidence and mortality of gastric cancer, it remains one of the most common malignant tumors of the digestive system. Although surgical resection is the preferred treatment for gastric cancer, chemotherapy is the preferred treatment for recurrent and advanced gastric cancer patients who are not candidates for reoperation. The short overall survival and lack of a standard chemotherapy regimen make it important to identify novel treatment modalities for gastric cancer. Within the field of tumor biology, molecular targeted therapy has attracted substantial attention to improve the specificity of anti-cancer efficacy and significantly reduce non-selective resistance and toxicity. Multiple clinical studies have confirmed that molecular targeted therapy acts on various mechanisms of gastric cancer, such as the regulation of epidermal growth factor, angiogenesis, immuno-checkpoint blockade, the cell cycle, cell apoptosis, key enzymes, c-Met, mTOR signaling and insulin-like growth factor receptors, to exert a stronger anti-tumor effect. An in-depth understanding of the mechanisms that underlie molecular targeted therapies will provide new insights into gastric cancer treatment.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
13
|
Chen BJ, Litvin O, Ungar L, Pe’er D. Context Sensitive Modeling of Cancer Drug Sensitivity. PLoS One 2015; 10:e0133850. [PMID: 26274927 PMCID: PMC4537214 DOI: 10.1371/journal.pone.0133850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/03/2015] [Indexed: 12/19/2022] Open
Abstract
Recent screening of drug sensitivity in large panels of cancer cell lines provides a valuable resource towards developing algorithms that predict drug response. Since more samples provide increased statistical power, most approaches to prediction of drug sensitivity pool multiple cancer types together without distinction. However, pan-cancer results can be misleading due to the confounding effects of tissues or cancer subtypes. On the other hand, independent analysis for each cancer-type is hampered by small sample size. To balance this trade-off, we present CHER (Contextual Heterogeneity Enabled Regression), an algorithm that builds predictive models for drug sensitivity by selecting predictive genomic features and deciding which ones should-and should not-be shared across different cancers, tissues and drugs. CHER provides significantly more accurate models of drug sensitivity than comparable elastic-net-based models. Moreover, CHER provides better insight into the underlying biological processes by finding a sparse set of shared and type-specific genomic features.
Collapse
Affiliation(s)
- Bo-Juen Chen
- Department of Biomedical Informatics, Columbia University, New York, New York, 10032, United States of America
- Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, New York, 10027, United States of America
| | - Oren Litvin
- Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, New York, 10027, United States of America
| | - Lyle Ungar
- Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Dana Pe’er
- Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, New York, 10027, United States of America
- * E-mail:
| |
Collapse
|
14
|
Bowers LW, Rossi EL, O’Flanagan CH, deGraffenried LA, Hursting SD. The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link. Front Endocrinol (Lausanne) 2015; 6:77. [PMID: 26029167 PMCID: PMC4432799 DOI: 10.3389/fendo.2015.00077] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
Numerous epidemiological and pre-clinical studies have demonstrated that the insulin/insulin-like growth factor (IGF) system plays a key role in the development and progression of several types of cancer. Insulin/IGF signaling, in cooperation with chronic low-grade inflammation, is also an important contributor to the cancer-promoting effects of obesity. However, clinical trials for drugs targeting different components of this system have produced largely disappointing results, possibly due to the lack of predictive biomarker use and problems with the design of combination therapy regimens. With careful attention to the identification of likely patient responders and optimal drug combinations, the outcome of future trials may be improved. Given that insulin/IGF signaling is known to contribute to obesity-associated cancer, further investigation regarding the efficacy of drugs targeting this system and its downstream effectors in the obese patient population is warranted.
Collapse
Affiliation(s)
- Laura W. Bowers
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily L. Rossi
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ciara H. O’Flanagan
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- *Correspondence: Stephen D. Hursting, Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA,
| |
Collapse
|
15
|
Song T, Yu W, Wu SX. Subsequent treatment choices for patients with acquired resistance to EGFR-TKIs in non-small cell lung cancer: restore after a drug holiday or switch to another EGFR-TKI? Asian Pac J Cancer Prev 2014; 15:205-13. [PMID: 24528028 DOI: 10.7314/apjcp.2014.15.1.205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The outcomes of first-generation EGFR-TKIs (Gefitnib and Erlotinib) have shown great advantages over traditional treatment strategies in patients with non-small cell lung cancer (NSCLC), but unfortunately we have to face the situation that most patients still fail to respond in the long term despite initially good control. Up to now, the mechanism of acquired resistance to EGFR-TKIs has not been fully clarified. Herein, we sought to compile the available clinical reports in the hope to better understanding the subsequent treatment choices, particularly on whether restoring after a drug holiday or switching to another EGFR-TKI is the better option after failure of one kind of EGFR-TKI.
Collapse
Affiliation(s)
- Tao Song
- Department of Radiation Oncology, The First Clinical College of Wenzhou Medical University, Hangzhou Cancer Hospital, Hangzhou, China E-mail :
| | | | | |
Collapse
|
16
|
King H, Aleksic T, Haluska P, Macaulay VM. Can we unlock the potential of IGF-1R inhibition in cancer therapy? Cancer Treat Rev 2014; 40:1096-105. [PMID: 25123819 DOI: 10.1016/j.ctrv.2014.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
IGF-1R inhibitors arrived in the clinic accompanied by optimism based on preclinical activity of IGF-1R targeting, and recognition that low IGF bioactivity protects from cancer. This was tempered by concerns about toxicity to normal tissue IGF-1R and cross-reactivity with insulin receptor (InsR). In fact, toxicity is not a show-stopper; the key issue is efficacy. While IGF-1R inhibition induces responses as monotherapy in sarcomas and with chemotherapy or targeted agents in common cancers, negative Phase 2/3 trials in unselected patients prompted the cessation of several Pharma programs. Here, we review completed and on-going trials of IGF-1R antibodies, kinase inhibitors and ligand antibodies. We assess candidate biomarkers for patient selection, highlighting the potential predictive value of circulating IGFs/IGFBPs, the need for standardized assays for IGF-1R, and preclinical evidence that variant InsRs mediate resistance to IGF-1R antibodies. We review hypothesis-led and unbiased approaches to evaluate IGF-1R inhibitors with other agents, and stress the need to consider sequencing with chemotherapy. The last few years were a tough time for IGF-1R therapeutics, but also brought progress in understanding IGF biology. Even failed studies include patients who derived benefit; they should be investigated to identify features distinguishing the tumors and host environment of responders from non-responders. We emphasize the importance of incorporating biospecimen collection into trial design, and wording patient consents to allow post hoc analysis of trial material as new data become available. Such information represents the key to unlocking the potential of this approach, to inform the next generation of trials of IGF signalling inhibitors.
Collapse
Affiliation(s)
- Helen King
- St Catherine's College, University of Oxford, Manor Road, Oxford OX1 3UJ, UK.
| | - Tamara Aleksic
- Department of Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA.
| | - Valentine M Macaulay
- Department of Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK; Oxford Cancer Centre, Churchill Hospital, Oxford OX3 7LE, UK.
| |
Collapse
|
17
|
Dilli UD, Yildırim M, Suren D, Alikanoglu A, Kaya V, Goktas S, Yildiz M, Sezer C, Gunduz S. Lack of any Prognostic Role of Insulin-Like Growth Factor-1 Receptor in Non-Small Cell Lung Cancer. Asian Pac J Cancer Prev 2014; 15:5753-7. [DOI: 10.7314/apjcp.2014.15.14.5753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Langer CJ, Novello S, Park K, Krzakowski M, Karp DD, Mok T, Benner RJ, Scranton JR, Olszanski AJ, Jassem J. Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J Clin Oncol 2014; 32:2059-66. [PMID: 24888810 PMCID: PMC4067944 DOI: 10.1200/jco.2013.54.4932] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Figitumumab (CP-751,871), a fully human immunoglobulin G2 monoclonal antibody, inhibits the insulin-like growth factor 1 receptor (IGF-1R). Our multicenter, randomized, phase III study compared figitumumab plus chemotherapy with chemotherapy alone as first-line treatment in patients with advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients with stage IIIB/IV or recurrent NSCLC disease with nonadenocarcinoma histology received open-label figitumumab (20 mg/kg) plus paclitaxel (200 mg/m(2)) and carboplatin (area under the concentration-time curve, 6 mg · min/mL) or paclitaxel and carboplatin alone once every 3 weeks for up to six cycles. The primary end point was overall survival (OS). RESULTS Of 681 randomly assigned patients, 671 received treatment. The study was closed early by an independent Data Safety Monitoring Committee because of futility and an increased incidence of serious adverse events (SAEs) and treatment-related deaths with figitumumab. Median OS was 8.6 months for figitumumab plus chemotherapy and 9.8 months for chemotherapy alone (hazard ratio [HR], 1.18; 95% CI, 0.99 to 1.40; P = .06); median progression-free survival was 4.7 months (95% CI, 4.2 to 5.4) and 4.6 months (95% CI, 4.2 to 5.4), respectively (HR, 1.10; P = .27); the objective response rates were 33% and 35%, respectively. The respective rates of all-causality SAEs were 66% and 51%; P < .01). Treatment-related grade 5 adverse events were also more common with figitumumab (5% v 1%; P < .01). CONCLUSION Adding figitumumab to standard chemotherapy failed to increase OS in patients with advanced nonadenocarcinoma NSCLC. Further clinical development of figitumumab is not being pursued.
Collapse
Affiliation(s)
- Corey J Langer
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China.
| | - Silvia Novello
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Keunchil Park
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Maciej Krzakowski
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Daniel D Karp
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Tony Mok
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Rebecca J Benner
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Judith R Scranton
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Anthony J Olszanski
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Jacek Jassem
- Corey J. Langer, University of Pennsylvania; Anthony J. Olszanski, Fox Chase Cancer Center, Philadelphia, PA; Daniel D. Karp, MD Anderson Center, Houston, TX; Rebecca J. Benner, Judith R. Scranton, Pfizer Oncology, Groton, CT; Silvia Novello, University of Turin, Orbassano, Italy; Keunchil Park, Sungkyunkwan University School of Medicine, Seoul, Korea; Maciej Krzakowski, The Maria Sklodowska-Curie Institute of Oncology, Warsaw; Jacek Jassem, Medical University of Gdansk, Gdansk, Poland; Tony Mok, Chinese University, Hong Kong, Special Administrative Region, People's Republic of China
| |
Collapse
|
19
|
Ma H, Zhang T, Shen H, Cao H, Du J. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br J Clin Pharmacol 2014; 77:917-28. [PMID: 24033707 PMCID: PMC4093917 DOI: 10.1111/bcp.12228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 08/11/2013] [Indexed: 12/31/2022] Open
Abstract
AIM(S) Insulin-like growth factor-1 receptor (IGF-1R) targeted therapies have become one of the intriguing areas in anticancer drug development during the last decade. As one of these therapies, anti-IGF-1R monoclonal antibodies (mAbs) are also advancing further in development. Our purpose was to conduct a systematic review of the adverse events (AEs) caused by anti-IGF-1R monoclonal antibodies in cancer therapy. METHODS We searched the term'IGF-1R monoclonal antibody' in the Pubmed database and found 389 related articles. After elaborate selection, 15 clinical studies that satisfied our criteria were then adopted for further analysis. We extracted all the useful information about the AEs of mAbs from the enrolled studies. Every kind of reported AE as well as corresponding incidences were summed up and calculated. We compared AE incidence differences in two age groups, and analyzed toxicities of mAbs used as a single agent or combined with chemotherapies. Finally, the differences of AE profiles between individual mAbs were also valued. RESULTS AEs were more severe in the lower age group and 13 of 19 AE incidences in the single-agent group were significantly lower than in the combination group (P < 0.05). R1507 seemed to show a worse AE profile than cixutumumab and figitumumab. CONCLUSIONS When anti-IGF-1R mAbs are used for cancer therapy, it is essential to choose the proper drug and combined chemotherapies to reduce AE occurrences. Also, administration of these mAbs to younger patients should be more carefully supervised. Furthermore, some more frequently observed AEs for specific mAb should be paid adequate attention.
Collapse
Affiliation(s)
- Honghai Ma
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Tiehong Zhang
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Hongchang Shen
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Hongxin Cao
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Jiajun Du
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| |
Collapse
|
20
|
de Bono JS, Piulats JM, Pandha HS, Petrylak DP, Saad F, Aparicio LMA, Sandhu SK, Fong P, Gillessen S, Hudes GR, Wang T, Scranton J, Pollak MN. Phase II randomized study of figitumumab plus docetaxel and docetaxel alone with crossover for metastatic castration-resistant prostate cancer. Clin Cancer Res 2014; 20:1925-34. [PMID: 24536060 DOI: 10.1158/1078-0432.ccr-13-1869] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Figitumumab is a human IgG2 monoclonal antibody targeting insulin-like growth factor 1 receptor (IGF-1R), with antitumor activity in prostate cancer. This phase II trial randomized chemotherapy-naïve men with progressing castration-resistant prostate cancer to receive figitumumab every 3 weeks with docetaxel/prednisone (Arm A) or docetaxel/prednisone alone (Arm B1). At progression on Arm B1, patients could cross over to the combination (Arm B2). EXPERIMENTAL DESIGN Prostate-specific antigen (PSA) response was the primary endpoint; response assessment on the two arms was noncomparative and tested separately; H0 = 0.45 versus HA = 0.60 (α = 0.05; β = 0.09) for Arm A; H0 = 0.05 versus HA = 0.20 (α = 0.05, β = 0.10) for Arm B2. A comparison of progression-free survival (PFS) on Arms A and B1 was planned. RESULTS A total of 204 patients were randomized and 199 treated (Arm A: 97; Arm B1: 102); 37 patients crossed over to Arm B2 (median number of cycles started: Arm A = 8; B1 = 8; B2 = 4). PSA responses occurred in 52% and 60% of Arms A and B1, respectively; the primary PSA response objective in Arm A was not met. Median PFS was 4.9 and 7.9 months, respectively (HR = 1.44; 95% confidence interval, 1.06-1.96). PSA response rate was 28% in Arm B2. The figitumumab combination appeared more toxic, with more treatment-related grade 3/4 adverse events (75% vs. 56%), particularly hyperglycemia, diarrhea, and asthenia, as well as treatment-related serious adverse events (41% vs. 15%), and all-causality grade 5 adverse events (18% vs. 8%). CONCLUSION IGF-1R targeting may merit further evaluation in this disease in selected populations, but combination with docetaxel is not recommended.
Collapse
Affiliation(s)
- Johann S de Bono
- Authors' Affiliations: Royal Marsden NHS Foundation Trust and The Institute of Cancer Research UK, Sutton; Institut Català d'Oncologia, L'Hospitalet, Barcelona; University of Surrey, Surrey, United Kingdom; Yale University Cancer Center, New Haven; Centre Hospitalier de l'Universite de Montreal, Montreal; A Coruña University Hospital, A Coruña, Spain; Kantonsspital St. Gallen, St. Gallen, Switzerland; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Pfizer Inc, Groton, Connecticut; and Lady Davis Institute for Medical Research, Jewish General Hospital and McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rajan A, Carter CA, Berman A, Cao L, Kelly RJ, Thomas A, Khozin S, Chavez AL, Bergagnini I, Scepura B, Szabo E, Lee MJ, Trepel JB, Browne SK, Rosen LB, Yu Y, Steinberg SM, Chen HX, Riely GJ, Giaccone G. Cixutumumab for patients with recurrent or refractory advanced thymic epithelial tumours: a multicentre, open-label, phase 2 trial. Lancet Oncol 2014; 15:191-200. [PMID: 24439931 DOI: 10.1016/s1470-2045(13)70596-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND No standard treatment exists for refractory or relapsed advanced thymic epithelial tumours. We investigated the efficacy of cixutumumab, a fully human IgG1 monoclonal antibody targeting the insulin-like growth factor 1 receptor in thymic epithelial tumours after failure of previous chemotherapy. METHODS Between Aug 25, 2009, and March 27, 2012, we did a multicentre, open-label, phase 2 trial in patients aged 18 years or older with histologically confirmed recurrent or refractory thymic epithelial tumours. We enrolled individuals who had progressed after at least one previous regimen of platinum-containing chemotherapy, had an Eastern Cooperative Oncology Group performance status of 0 or 1, and had measurable disease and adequate organ function. Eligible patients received intravenous cixutumumab (20 mg/kg) every 3 weeks until disease progression or development of intolerable toxic effects. The primary endpoint was the frequency of response, analysed on an intention-to-treat basis. We also did pharmacodynamic studies. This trial is registered with ClinicalTrials.gov, number NCT00965250. FINDINGS 49 patients were enrolled (37 with thymomas and 12 with thymic carcinomas) who received a median of eight cycles of cixutumumab (range 1-46). At the final actuarial analysis when follow-up data were updated (Nov 30, 2012), median potential follow-up (from on-study date to most current follow-up date) was 24·0 months (IQR 17·3-36·9). In the thymoma cohort, five (14%) of 37 patients (95% CI 5-29) achieved a partial response, 28 had stable disease, and four had progressive disease. In the thymic carcinoma cohort, none of 12 patients (95% CI 0-26) had a partial response, five had stable disease, and seven had progressive disease. The most common grade 3-4 adverse events in both cohorts combined were hyperglycaemia (five [10%]), lipase elevation (three [6%]), and weight loss, tumour pain, and hyperuricaemia (two each [4%]). Nine (24%) of 37 patients with thymoma developed autoimmune conditions during treatment (five were new-onset disorders), the most common of which was pure red-cell aplasia. Two (4%) patients died; one was attributed to disease progression and the other to disease-related complications (respiratory failure, myositis, and an acute coronary event), which could have been precipitated by treatment with cixutumumab. INTERPRETATION Cixutumumab monotherapy is well-tolerated and active in relapsed thymoma. Development of autoimmunity during treatment needs further investigation. FUNDING Division of Cancer Treatment and Diagnosis at the National Cancer Institute (National Institutes of Health), ImClone Systems.
Collapse
Affiliation(s)
- Arun Rajan
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Corey A Carter
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arlene Berman
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Liang Cao
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ronan J Kelly
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anish Thomas
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Khozin
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel Lopez Chavez
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Barbara Scepura
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Szabo
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Min-Jung Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jane B Trepel
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah K Browne
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsey B Rosen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yunkai Yu
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Helen X Chen
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Giuseppe Giaccone
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Domvri K, Zarogoulidis P, Darwiche K, Browning RF, Li Q, Turner JF, Kioumis I, Spyratos D, Porpodis K, Papaiwannou A, Tsiouda T, Freitag L, Zarogoulidis K. Molecular Targeted Drugs and Biomarkers in NSCLC, the Evolving Role of Individualized Therapy. J Cancer 2013; 4:736-54. [PMID: 24312144 PMCID: PMC3842443 DOI: 10.7150/jca.7734] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/12/2013] [Indexed: 01/08/2023] Open
Abstract
Lung cancer first line treatment has been directed from the non-specific cytotoxic doublet chemotherapy to the molecular targeted. The major limitation of the targeted therapies still remains the small number of patients positive to gene mutations. Furthermore, the differentiation between second line and maintenance therapy has not been fully clarified and differs in the clinical practice between cancer centers. The authors present a segregation between maintenance treatment and second line and present a possible definition for the term “maintenance” treatment. In addition, cancer cell evolution induces mutations and therefore either targeted therapies or non-specific chemotherapy drugs in many patients become ineffective. In the present work pathways such as epidermal growth factor, anaplastic lymphoma kinase, met proto-oncogene and PI3K are extensively presented and correlated with current chemotherapy treatment. Future, perspectives for targeted treatment are presented based on the current publications and ongoing clinical trials.
Collapse
Affiliation(s)
- Kalliopi Domvri
- 1. Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Macaulay VM, Middleton MR, Protheroe AS, Tolcher A, Dieras V, Sessa C, Bahleda R, Blay JY, LoRusso P, Mery-Mignard D, Soria JC. Phase I study of humanized monoclonal antibody AVE1642 directed against the type 1 insulin-like growth factor receptor (IGF-1R), administered in combination with anticancer therapies to patients with advanced solid tumors. Ann Oncol 2013; 24:784-91. [PMID: 23104723 PMCID: PMC3574548 DOI: 10.1093/annonc/mds511] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/23/2012] [Accepted: 08/27/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Type 1 insulin-like growth factor receptor (IGF-1R) mediates resistance to chemotherapy and targeted agents. This study assessed the safety, pharmacokinetics (PK), and tolerability of humanized IGF-1R antibody AVE1642 with other cancer treatments. PATIENTS Patients with advanced solid tumors received three weekly AVE1642 dosed at 6 mg/kg, chosen following previous study, with 75 (cohort A) or 100 mg/m(2) (B) docetaxel, 1250 mg/m(2) gemcitabine/100 mg erlotinib (C1), or 60 mg/m(2) doxorubicin (D1). Blood samples were assayed for PK, IGFs, and IGF-BP3. RESULTS Fifty-eight patients received 317 AVE1642 infusions. The commonest adverse events were diarrhea (37/58 patients), asthenia (34/58), nausea (30/58), and stomatitis (21/58). Dose-limiting toxic effects in cohorts C1 (diarrhea) and D1 (neutropenia) prompted addition of cohorts C2 (1000 mg/m(2) gemcitabine/75 mg erlotinib) and D2 (50 mg/m(2) doxorubicin). Grade 3-4 hyperglycemia (three cases) accompanied steroid premedication for docetaxel administration. No PK interactions were detected. There were three partial responses in cohorts B (melanoma) and C (leiomyosarcoma, two cases) and 22 stabilizations ≥12 weeks, giving a control rate of 25/57 (44%). On treatment IGF-II rose by 68 ± 25 ng/ml in patients discontinuing treatment <12 weeks, and fell by 55.5 ± 21 ng/ml with disease control (P < 0.001). CONCLUSION AVE1642 was tolerable with 75-100 mg/m(2) docetaxel and 1000 mg/m(2) gemcitabine/75 mg erlotinib, achieving durable disease control in 44%, with an association between IGF-II and response.
Collapse
Affiliation(s)
- V M Macaulay
- Department of Oncology, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford OX3 7LE, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
邵 岚, 宋 正, 张 沂, 苏 丹. [Advances of molecular subtype and targeted therapy of lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:545-52. [PMID: 22989458 PMCID: PMC5999864 DOI: 10.3779/j.issn.1009-3419.2012.09.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/30/2012] [Indexed: 11/24/2022]
Abstract
The discovery of multiple molecular mechanisms underlying the development, progression, and prognosis of lung cancer, has created new opportunities for targeted therapy. Each subtype is associated with molecular tests that define the subtype and drugs that may have potential therapeutic effect on lung cancer. In 2004, mutations in the epidermal growth factor receptor (epidermal growth factor receptor, EGFR) gene were discovered in non-small cell lung cancers (NSCLC), especially in adenocarcinomas. And they are strongly associated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Moreover, in 2007 the existence of the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene was discovered in NSCLC, and the same as EGFR-TKIs, ALK inhibitors are being found to be highly effective in lung cancers. At present, multiple molecular subtype of lung cancer and relevant targeted drugs are undering study. Here, we review the remarkable progress in molecular subtype of lung cancer and the related targeted therapy.
Collapse
Affiliation(s)
- 岚 邵
- 310022 杭州,浙江省肿瘤医院化疗中心Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
- 310022 杭州,浙江省胸部肿瘤重点实验室Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou 310022, China
| | - 正波 宋
- 310022 杭州,浙江省肿瘤医院化疗中心Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
- 310022 杭州,浙江省胸部肿瘤重点实验室Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou 310022, China
| | - 沂平 张
- 310022 杭州,浙江省肿瘤医院化疗中心Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
- 310022 杭州,浙江省胸部肿瘤重点实验室Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou 310022, China
| | - 丹 苏
- 310022 杭州,浙江省胸部肿瘤重点实验室Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou 310022, China
- 310022 杭州,浙江省肿瘤医院肿瘤研究所Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
25
|
Zhao D, Zhang Y, Xu C, Dong C, Lin H, Zhang L, Li C, Ren S, Wang X, Yang S, Han D, Chen X. Pharmacokinetics, tissue distribution, and plasma protein binding study of platinum originating from dicycloplatin, a novel antitumor supramolecule, in rats and dogs by ICP-MS. Biol Trace Elem Res 2012; 148:203-8. [PMID: 22367705 DOI: 10.1007/s12011-012-9364-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022]
Abstract
Dicycloplatin, as a new antitumor supramolecule, was considered to have higher solubility and higher stability compared with carboplatin. The aim of the present study was to evaluate the pharmacokinetic characteristics of platinum originating from dicycloplatin. A rapid, sensitive, and specific method with inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the determination of platinum in bio-samples. The study was performed in male rats and dogs at a single dose of 10 and 5 mg kg(-1) separately by intravenous injection. Pharmacokinetic parameters were calculated by non-compartmental method, and the dose of platinum was used in the calculation of these parameters. Results showed that plasma concentrations of platinum began to decrease rapidly initially but decline slowly with a long terminal phase. The mean half-life was 27.39 and 100.98 and clearance was 0.77 and 0.08 L/h/kg for rats and dogs separately. Tissue distribution showed that platinum originating from dicycloplatin had a certain distribution in testis and prostate. Plasma protein binding proportion of platinum was increased with time. In conclusion, this research investigated the pharmacokinetic characteristics including plasma kinetics, tissue distribution, and plasma protein binding of platinum originating from dicycloplatin in rats and dogs in detail for the first time by ICP-MS.
Collapse
Affiliation(s)
- Di Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Although several early phase clinical trials raised enthusiasm for the use of insulin-like growth factor I receptor (IGF1R)-specific antibodies for cancer treatment, initial Phase III results in unselected patients have been disappointing. Further clinical studies may benefit from the use of predictive biomarkers to identify probable responders, the use of rational combination therapies and the consideration of alternative targeting strategies, such as ligand-specific antibodies and receptor-specific tyrosine kinase inhibitors. Targeting insulin and IGF signalling also needs to be considered in the broader context of the pathophysiology that relates obesity and diabetes to neoplasia, and the effects of anti-diabetic drugs, including metformin, on cancer risk and prognosis. The insulin and IGFI receptor family is also relevant to the development of PI3K-AKT pathway inhibitors.
Collapse
Affiliation(s)
- Michael Pollak
- Lady Davis Research Institute and McGill University, Montreal, Quebec H3T1E2, Canada.
| |
Collapse
|
27
|
Gualberto A, Hixon ML, Pollak M. Reply: ‘Pre-treatment levels of circulating free IGF-1 identify NSCLC patients who derive clinical benefit from figitumumab’. Br J Cancer 2011. [PMCID: PMC3241567 DOI: 10.1038/bjc.2011.413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|